首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Distinction between active and legacy sources of nutrients is needed for effective reduction of waterborne nutrient loads and associated eutrophication. This study quantifies main typological differences in nutrient load behaviour versus water discharge for active and legacy sources. This quantitative typology is used for source attribution based on monitoring data for water discharge and concentrations of total nitrogen (TN) and total phosphorous (TP) from 37 catchments draining into the Baltic Sea along the coastline of Sweden over the period 2003–2013. Results indicate dominant legacy source contributions to the monitored loads of TN and TP in most (33 of the total 37) study catchments. Dominant active sources are indicated in 1 catchment for TN, and mixed sources are indicated in 3 catchments for TN, and 4 catchments for TP. The TN and TP concentration contributions are quantified to be overall higher from the legacy than the active sources. Legacy concentrations also correlate well with key indicators of human activity in the catchments, agricultural land share for TN (R2 = 0.65) and population density for TP (R2 = 0.56). Legacy-dominated nutrient concentrations also change more slowly than in catchments with dominant active or mixed sources. Various data-based results and indications converge in indicating legacy source contributions as largely dominant, mainly anthropogenic, and with near-zero average change trends in the present study of catchments draining into the Baltic Sea along the coastline of Sweden, as in other parts of the world. These convergent indications emphasize needs to identify and map the different types of sources in each catchment, and differentiate strategies and measures to target each source type for possible achievement of shorter- and longer-term goals of water quality improvement.  相似文献   

2.
Water quality data collected on a fortnightly or monthly basis are inadequate for assessment and modelling of many water quality problems as storm event samples are underrepresented or missed. This paper examines the stormflow dynamics of heavy metals (Pb, Cu, Cd and Zn) in the Nant‐y‐Fendrod stream, South Wales, which has been affected by 250 years of metal smelting, followed by 35 years of landscape rehabilitation measures. For storm events of contrasting (very dry and very wet) antecedent conditions in May 2000 and February 2001, respectively, temporal changes in streamwater heavy metal concentrations above and below an in‐line flood detention lake are analysed. At the upstream site, peaks in total metal concentration were recorded on the rising limb for Pb (0·150 mg l?1) and Cu (0·038 mg l?1) but on the falling limb for Zn (1·660 mg l?1) and Cd (0·006 mg l?1) in the summer 2000 storm event, yielding clockwise and anticlockwise hysteretic loops respectively. In contrast, metal concentrations, although high throughout the winter storm event, were diluted somewhat during the storm peak itself. The Pb and Cu appear to be supplied by quickflow processes and transported in close association with fine sediment, whereas Zn and Cd are delivered to the channel and lake by slower subsurface seepage in dissolved form. In the winter 2001 event, antecedent soil moisture and shallow groundwater levels were anomalously high and seepage sources of dissolved metals dominated. Downstream of the lake, Pb and Cu levels and suspended sediment were high in the summer storm, but low in the winter storm, suggesting retention with deposition of fine sediment in the lake during the latter. In the winter storm, Zn and Cd levels were higher downstream than upstream of the lake, perhaps because of additional seepage inputs from the surrounding slopes, which failed to have an impact during summer. An understanding of the complex interplay of antecedent soil moisture and the dynamics of subsurface seepage pathways in relation to the three‐dimensional distribution of sources is important in modelling heavy metal fluxes and levels in contaminated urban catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Trace metal clean sampling and analysis techniques were used to examine the temporal patterns of Hg, Cu, and Zn concentrations in shallow ground water, and the relationships between metal concentrations in ground water and in a hydrologically connected river. Hg, Cu, and Zn concentrations in ground water ranged from 0.07 to 4.6 ng L−1, 0.07 to 3.10 μg L−1, and 0.17 to 2.18 μg L−1, respectively. There was no apparent seasonal pattern in any of the metal concentrations. Filtrable Hg, Cu, and Zn concentrations in the North Branch of the Milwaukee River ranged from below the detection limit to 2.65 ng Hg L−1,0.51 to 4.30 μg Cu L−1, and 0.34 to 2.33 μg Zn L−1. Thus, metal concentrations in ground water were sufficiently high to account for a substantial fraction of the filtrable trace metal concentration in the river. Metal concentrations in the soil ranged from 8 to 86 ng Hg g−1, 10 to 39 μg Cu g−1, and 15 to 84 μg Zn g−1. Distribution coefficients, KD, in the aquifer were 7900,22,000, and 23,000 L kg−1 for Hg, Cu, and Zn, respectively. These values were three to 40 times smaller than KD values observed in the Milwaukee River for suspended particulate matter.  相似文献   

4.
The knowledge of the contribution of sediment sources to river networks is a prerequisite to understand the impact of land use change on sediment yield. We calculated the relative contributions of sediment sources in two paired catchments, one with commercial eucalyptus plantations (0.83 km2) and the other with grassland used for livestock farming (1.10 km2), located in the Brazilian Pampa biome, using different combinations of conventional [geochemical (G), radionuclide (R) and stable isotopes and organic matter properties (S)] and alternative tracer properties [spectrocolorimetric visible-based-colour parameters (V)]. Potential sediment sources evaluated were stream channel, natural grassland and oat pasture fields in the grassland catchment, and stream channel, unpaved roads and eucalyptus plantation in the eucalyptus catchment. The results show that the best combination of tracers to discriminate the potential sources was using GSRV tracers in the grassland catchment, and using GSRV, GSV and GS tracers in the eucalyptus catchment. In all these cases, samples were 100% correctly classified in their respective groups. Considering the best tracers results (GSRV) in both catchments, the sediment source contributions estimated in the catchment with eucalyptus plantations was 63, 30 and 7% for stream channel, eucalyptus stands and unpaved roads, respectively. In the grassland catchment, the source contributions to sediment were 84, 14 and 2% for natural grassland, stream channel and oats pasture fields, respectively. The combination of these source apportionment results with the annual sediment loads monitored during a 3-year period demonstrates that commercial eucalyptus plantations supplied approximately 10 times less sediment (0.1 ton ha−1 year−1) than the traditional land uses in this region, that is, 1.0 ton ha−1 year−1 from grassland and 0.3 ton ha−1 year−1 from oats pasture fields. These results demonstrate the potential of combining conventional and alternative approaches to trace sediment sources originating from different land uses in this region. Furthermore, they show that well-managed forest plantations may be less sensitive to erosion than grassland used for intensive livestock farming, which should be taken into account to promote the sustainable use of land in this region of South America.  相似文献   

5.
Surface water samples were collected from ten previously selected sites of the polluted Dil Deresi stream, during two field surveys, December 2001 and April 2002. All samples were analyzed using ICP-AES, and the concentrations of trace metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Pb, Sn and Zn) were determined. The results were compared with national and international water quality guidelines, as well as literature values reported for similar rivers. Factor analysis (FA) and a factor analysis-multiple regression (FA-MR) model were used for source apportionment and estimation of contributions from identified sources to the concentration of each parameter. By a varimax rotated factor analysis, four source types were identified as the paint industry; sewage, crustal and road traffic runoff for trace metals, explaining about 83% of the total variance. FA-MR results showed that predicted concentrations were calculated with uncertainties lower than 15%.  相似文献   

6.
Long-term ecosystem studies are valuable for understanding integrated ecosystem response to global changes in atmospheric deposition and climate. We examined trends for a 35-year period (1982/83–2017/18) in concentrations of a range of solutes in precipitation and stream water from nine headwater catchments spanning elevation and surficial geology gradients at the Turkey Lakes watershed (TLW) in northeastern Ontario, Canada. Average annual water year (WY, October to September) concentrations in precipitation significantly declined over the period for sulphate (SO42−), nitrate (NO3) and chloride (Cl), while calcium (Ca2+) and potassium (K+) concentrations increased, resulting in a significant pH increase from 4.2 to 5.7. Trends in stream chemistry through time are generally consistent with expectations associated with acidification recovery. Concentration of many stream water solutes (SO42−, Cl, calcium [Ca2+], magnesium [Mg2+] and NH4+ generally decreased, while others (silica [SiO2] and dissolved organic carbon [DOC]) generally increased. Increases were also observed for alkalinity (six of nine catchments), acid neutralizing capacity ([ANC]; six of nine catchments) and pH (eight of nine catchments), while conductivity declined (six of nine catchments). Variability in trends among catchments are associated with differences in surficial geology and wetland cover. While absolute solute concentrations were generally lower at bedrock dominated high-elevation catchments compared to till dominated lower elevation catchments, the rate of change of concentration was often greater for high elevation catchments. This study confirms continued, but non-linear stream chemistry recovery from acidification, particularly at the less buffered high and moderate elevation sites. The heterogeneity of responses among catchments highlights our incomplete understanding of the relative importance of different mechanisms influencing stream chemistry and the consequences for downstream ecosystems.  相似文献   

7.
The River Buyukmelen is located in the province of Duzce in northwest Turkey and its water basin is approximately 470 km2. The Aksu, Kucukmelen and Ugursuyu streams flow into the River Buyukmelen. It flows into the Black Sea with an output of 44 m3 s−1. The geological succession in the basin comprises limestone and dolomitic limestone of the Yılanlı formation, sandstone, clayey limestone and marls of the Akveren formation, clastics and volcano‐clastics of the Caycuma formation, and cover units comprised of river alluvium, lacutrine sediments and beach sands. The River Buyukmelen is expected to be a water source that can supply the drinking water needs of Istanbul until 2040; therefore, it is imperative that its water quality be preserved. The samples of rock, soil, stream water, suspended, bed and stream sediments and beach sand were collected from the Buyukmelen river basin. They were examined using mineralogical and geochemical methods. The chemical constituents most commonly found in the stream waters are Na+, Mg2+, SO2−4, Cl and HCO3 in the Guz stream water, Ca2+ in the Abaza stream water, and K+ in the Kuplu stream water. The concentrations of Na+, K+, Ca2+, Mg2+, SO2−4, HCO3, Cl, As, Pb, Ni, Mn, Cr, Zn, Fe and U in the Kuplu and Guz stream waters were much higher than the world average values. The Dilaver, Gubi, Tepekoy, Maden, Celik and Abaza streams interact with sedimentary rocks, and the Kuplu and Guz streams interact with volcanic rocks. The amount of suspended sediment in the River Buyukmelen in December 2002 was 120 mg l−1. The suspended and bed sediments in the muddy stream waters are formed of quartz, calcite, plagioclase, clay (kaolinite, illite and smectite), muscovite and amphibole minerals. As, Co, Cd, Cr, Pb, Ni, Zn and U have all accumulated in the Buyukmelen river‐bed sediments. The muddy feature of the waters is related to the petrographic features of the rocks in the basin and their mineralogical compositions, as most of the sandstones and volcanic rocks (basalt, tuffite and agglomerate) are decomposed to a clay‐rich composition at the surface. Thus, the suspended sediment in stream waters increases by physical weathering of the rocks and water–rock interaction. Owing to the growing population and industrialization, water demand is increasing. The plan is to bring water from the River Buyukmelen to Istanbul's drinking‐water reservoirs. According to the Water Pollution Regulations, the River Buyukmelen belongs to quality class 1 based on Hg, Cd, Pb, As, Cu, Cr, Zn, Mn, Se, Ba, Na+, Cl, and SO2−4; and to quality class 3 based on Fe concentration. The concentration of Fe in the River Buyukmelen exceeds the limit values permitted by the World Health Organization and the Turkish Standard. Because water from the River Buyukmelen will be used as drinking water, it will have an adverse effect on water quality and humans if not treated in advance. In addition, the inclusion of Mn and Zn in the Elmali drinking‐water reservoir of Istanbul and Fe in the River Buyukmelen water indicates natural inorganic contamination. Mn, Zn and Fe contents in the waters are related to geological origin. Moreover, the River Buyukmelen flow is very muddy in the rainy seasons and it is inevitable that this will pose problems during the purification process. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
We present concentrations of environmentally available (unfiltered acidified 2% v/v HNO3) As, Cu, Cd, Pb, V, Sr, and major ions including Ca2+, Cl?, and SO42? in a July 2005 and a March 2006 shallow snow profile from the lower Eliot Glacier, Mount Hood, Oregon, and its proglacial stream, Eliot Creek. Low enrichment factors (EF) with respect to crustal averages suggests that in fresh March 2006 snow environmentally available elements are derived primarily from lithogenic sources. Soluble salts occurred in lower and less variable concentrations in July 2005 snow than March 2006. Conversely, environmentally available trace elements occurred in greater and more variable concentrations in July 2005 than March 2006 snow. Unlike major solutes, particulate‐associated trace elements are not readily eluted during the melt season. Additionally, elevated surface concentrations suggest that they are likely added throughout the year via dry deposition. In a 1‐h stream sampling, ratios of dissolved (<0·45 µm) V:Cl?, Sr:Cl?, and Cu:Cl? are enriched in the Eliot Stream with respect to their environmentally available trace element to Cl? ratios in Eliot Glacier snow, suggesting chemical weathering additions in the stream waters. Dissolved Pb:Cl? is depleted in the Eliot Stream with respect to the ratio of environmentally available Pb to Cl? in snow, corresponding to greater adsorption onto particles at greater pH values. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
《Marine pollution bulletin》2012,64(5-12):523-527
Concentrations of trace metals (Zn, Cr, Cu, V, Cd and Pb), total organic carbon (TOC), black carbon (BC) and their granulometry were examined in 25 surface sediment samples from the northern Bering Sea, Chukchi Sea and adjacent areas. Trace metal concentrations in the sediments varied from 21.06–168.21 mg kg−1 for Zn, 8.91–46.94 mg kg−1 for Cr, 2.69–49.39 mg kg−1 for Cu, 32.46–185.54 mg kg−1 for V, 0.09–0.92 mg kg−1 for Cd, and 0.95–15.25 mg kg−1 for Pb. The geoaccumulation index (Igeo) indicated that trace metal contamination (Zn and Cd) existed in some stations of the study area. The distribution of grain size plays an important role in influencing the distribution of trace metals (Zn, Cr, Cu, V, and Pb) in sediments from the Chukchi Sea and adjacent areas.  相似文献   

10.
Freshwater lakes are one of the most vulnerable ecosystems to environmental contamination. This study was initiated to assess the spatial distribution, fractionation, ecological risk of selected potentially toxic metals (Pb, Zn, Cu, Cr, and Ni) in bottom sediments of the Zarivar lake, the second largest freshwater lake in Iran. The results revealed that Pb, Zn and Cu had the high spatial variability (coefficient of variation >50) across the sampling sites and their maximum concentrations (197.5 for Pb, 198.7 for Zn and 185.6 mg/kg for Cu) were observed in sampling sites from the northern, western and eastern margins of the lake. Cr and Ni with average concentrations of 28.3 and 31.38 mg/kg respectively, exhibited low spatial variability (coefficient of variation <20) and their concentrations did not vary significantly among the sampling sites. Based on the redundancy analysis (RDA), sediment organic matter was strongly correlated with Pb, Zn and Cu while Fe2O3 and Al2O3 showed a positive correlation with Ni and Cr. The calculated average enrichment factor (EF) and geoaccumulation index (Igeo) showed that the contamination level of metals can be arranged in the following order of Pb> Cu > Zn > Cr > Ni. Results from the modified five-step sequential extraction analysis indicated that 40 % of total Pb and Zn were associated with the reducible fraction, 45 % of Cu with the oxidizable fraction and more than 80 % of total Ni and Cr were retrieved from the residual fraction. It was also noticed that Pb, Zn and Cu were more incorporated into the non-residual fractions in the sites with a higher total concentration of these metals, suggesting that both total concentration and fractionation behavior of metals were influenced by their potential sources in the study area. Ecological risk assessment using the potential ecological risk index (PERI) and the modified potential ecological risk index (MPERI) showed that sediments from the eight sampling sites pose a moderate to considerable risk whereas the other sites had low ecological risk level. In comparison to sediment quality guidelines (SQGs), the effects range low (ERL) and probable effect level (PEL) values for Pb, Cu and Zn were exceeded at some sampling sites while Ni and Cr concentrations were found to be below or close to their SQGs values at all the sampling sites. Pb was generally identified as the contaminant of most concern in the study area. Taking into account the results obtained from the fractionation study and the source contribution estimate, it can be inferred that the Pb, Zn and Cu with the average contribution of 79, 54 and 64 % respectively, were mainly derived from anthropogenic sources whereas Ni and Cr with the estimated contribution of 80 and 89 % were predominately from the lithogenic source.  相似文献   

11.
为识别表层沉积物重金属的来源以及量化源贡献,选取鄱阳湖丰水期表层沉积物为研究对象,测定14种重金属(V、Cr、Co、Ni、Cu、Zn、Sr、Mo、Cd、Sb、W、Pb、Hg和As)的含量,分析其污染及空间分布特征,并利用主成分分析法(PCA)和正定矩阵因子分解法(PMF)对沉积物重金属进行源解析.结果表明:除V和Cr外,Cd、Mo、Hg、Cu、Pb、Zn、W、Sr、As、Ni、Co和Sb的平均含量分别为江西省土壤背景值的5.7、2.2、1.9、1.8、1.5、1.5、1.4、1.3、1.3、1.2、1.0和1.0倍; Cd、Hg、Cu、Mo、Pb、Sr和Zn超出江西省土壤背景值的比例相对较高,分别为100%、100%、100%、100%、97%、97%和93%,所有沉积物样品中Cd含量超过农用地土壤污染风险筛选值的比例为51%; V、Cr、Co、Ni、Cu、Zn、Sr、Mo、Sb、W、Pb、Hg和As含量呈未污染至弱污染水平,而Cd含量属于中等污染水平,接近于重污染水平.总体而言,Cd的污染相对较严重.重金属的分布具有显著的区域特征,其中Cr、Cu、Zn、Sr、Pb、Hg和As的空间分布十分相似,表现为在赣江、抚河、信江和饶河入湖口附近区域含量较高,而Co、Ni、Mo和Sb明显在湖区南部、东北部和修水入湖附近这3个区域聚集,Cd和W的空间变异性相对较大,V的含量分布相对较均匀.PCA和PMF解析结果都表明鄱阳湖丰水期表层沉积物重金属受4种来源的共同影响,其中,矿业和工业活动的影响最大,相对贡献率为38%,其次是尾矿和废渣,相对贡献率为28%,再是农业活动,相对贡献率为19%,最后是自然来源的相对贡献率为14%.  相似文献   

12.
The ponds are natural water resources used for drinking, bathing, washing and aqua culture. In this work, the contamination of ponds lied in central India with F and heavy metals (As, Sb, Cr, Mn, Fe, Cu, Zn, Cd, Pb, Th and U) is described. The F concentration in the pond water and sediment (n = 24) was ranged from 1.6–5.5 mg/L and 210–1430 mg/kg with mean value of 2.3 ± 0.4 mg/L and 599 ± 137 mg/kg, respectively. The concentration variation and sources of the elements in the pond water and sediment are discussed. The health hazards of F in the domestic animals are described.  相似文献   

13.
At the beginning of August 1997, 72 samples of flood sediments were taken along the Upper and Middle Odra river and its tributaries. The concentrations of Zn, Pb, Cu, Cd, Co, Ni, Cr, Mn, and Fe in the bulk samples and in the <20 μm fraction were determined by AAS method. The contents of metals vary in wide ranges and are significantly higher in the <20 μm fraction of sediments. The range concentrations vary as following: Zn 274...3 656 mg/kg, Pb 79...1 773 mg/kg, Cd 1.7...11.8 mg/kg, Cu 38...2 244 mg/kg, Cr 14...384 mg/kg, Co 4...73 mg/kg, Hg 0.2...3.9 mg/kg, Mn 214...6 972 mg/kg, and Fe 1.5...16.3 %. The highest amount of the metals was found in the Wrocław and Głogów regions. The mobile (exchangeable and carbonatic fractions) portions of metals reached up to 50 % of Zn, 40 % of Pb and Cu and 60 % of Mn.  相似文献   

14.
《Marine pollution bulletin》2008,56(10-12):459-468
Marabasco is a tropical river-estuary system comprising the Marabasco river and the Barra de Navidad Lagoon. The river is impacted by the Peña Colorada iron mine, which produces 3.5 million tons of pellets per year. Thirteen surface sediment samples were collected in May 2005 (dry season) in order to establish background levels of Al, Cd, Co, Cu, Fe, Ni, Pb, and Zn in the system and to ascertain the potential mobility of metals in the sediments. Analyses were carried out in the fraction finer than 63 μm, and labile metals extracted according the BCR procedure. Certified reference materials were used for validation of methods.Total concentrations of Cd, Co, Cu, Ni, Pb, and Zn were in the range of 0.05–0.34, 6–95, 0.7–31, 9–26, 2–18, and 53–179 mg kg−1, respectively; Al and Fe ranges of 24–127, and 26–69 mg g−1 correspondingly. Cadmium was found to be significantly labile in the sediments (20–100%), followed by Co (0–35%), Ni (3–16%) and Zn (0–25%), whereas the labile fraction for Cu, Fe and Pb was almost negligible (<4%).According with the total metal concentrations, background levels and normalised enrichment factors (NEF) of the metals studied, the impact of the Peña Colorada iron mine on the Marabasco system is lower than expected when compared with other similar World systems influenced by mining activities.  相似文献   

15.
In the recent years,the Red Sea coast of Yemen has been severely affected by intensive anthropogenic activities.The current study constitutes a thorough inquiry to evaluate the extent of heavy metals pollution in Yemen's Red Sea coast sediment and identifies the possible sources of pollution.The concentrations of five metals(copper(Cu),zinc(Zn),cadmium(Cd),lead(Pb),and nickel(Ni))collected from nine sites along the Red Sea coast of Yemen were assessed using an atomic absorption spectrophotometer(ASS).Sediment quality indices,such as the sediment quality guidelines(SQGs),potential ecological risk(RI),contamination factor(CF),pollution load index(PLI),geoaccumulation index(Igeo),and modified degree of contamination(mCd)were computed.In addition,multivariate statistical techniques(principal component analysis(PCA),hierarchical cluster analysis,and Pearson's correlation analysis)were applied to identify the potential sources of metals.The mean concentrations of Cu,Zn,Cd,Pb,and Ni were 51.3,61.9,4.02,9.9,and 33.4 mg/kg dry wt,respectively.The spatial distribution revealed that the metals concentrations were high at the middle zone and low southward of Hodeida city.According to the SQGs,the adverse biological effects of metals were occasionally associated with Cu and Cd,frequently associated with Ni,and not expected to occur with Zn and Pb.The RI indicated that the sediment of the studied sites pose low(RI<50)to considerable(100≤RI<200)ecological risk.The mean effect range-median quotient(M-ERM-Q)indicated that the combination of the studied metals had the toxicity probability of 21%at all studied sites.Igeo and CF indicated that the metals concentrations were in the descending order of:Zn>Ni>Pb>Cd>Cu,whereas the PLI and mCd indicated that Ras Isa(Site 5)and Urj village(Site 6)were the most polluted sites.PCA,cluster analysis,and correlation analysis found that Cd,Pb,and Ni mostly originated from anthropogenic sources while Cu and Zn were mainly derived from natural sources.Thus,it is evident that the intensive anthropogenic activities had negative influence on metals accumulation in the sediment of the Red Sea coast of Yemen leading to detrimental effects to the whole ecosystem.These comprehensive findings provide valuable information and data for future monitoring studies regarding heavy metals pollution and sediment quality at the Red Sea coast of Yemen.  相似文献   

16.
Dust, as a source of trace metal elements, affects the health of society. The spatial and temporal concentrations of dust‐bound trace metals (Cd, Pb, Ni, Zn, Cu, and Mn) in Kuhdasht watershed (456 km2), Lorestan Province, Iran, is investigated. Dust is collected using glass traps placed in ten research stations in the region. The spatial and temporal distribution of dust trace metals are plotted using ARC‐GIS. The highest and the lowest concentrations of Zn (9751150 mg kg?1), Pb (46.352.9 mg kg?1), and Cd (2.443.30 mg kg?1) are obtained in winter, of Ni (98110 mg kg?1) and Cu in autumn (16.053.5 mg kg?1), and of Mn in summer (385505 mg kg?1). The spatial concentrations of dust‐bound trace metals indicate all, except Cu, show a decreasing trend from the mountains toward the plains, similar to that of soil and of dust, except for Zn, which shows higher concentrations in dust than in soil. The potential sources of dust‐bound trace metals and their rate of contamination are also investigated using the enrichment and contamination factors. The major sources of Cd and Zn in the dust of watershed are due to anthropogenic activities or from activities outside the borders.  相似文献   

17.
巢湖沉积物重金属富集特征与人为污染评价   总被引:9,自引:6,他引:9  
本文分析了巢湖主要入湖河流河口区表层沉积物及西部湖心区沉积岩芯中Al、Fe、Ni、Cr、Cu、Zn、Pb、Li、V等金属元素变化特征,采用地球化学方法对金属元素变化的"粒度效应"进行矫正,并以Li、V为参照元素对矫正结果进行检验;参考历史沉积物,对河口区及西部湖心区沉积物重金属人为污染特征进行分析;结合沉积岩芯210Pb年代结果,估算西部湖心区近150a来Ni、Cr、Cu、Zn、Pb等重金属元素的人为污染贡献量.结果表明,河口表层沉积物重金属污染具有显著的空间差异,南淝河河口重金属人为污染最重,其中Ni、Cr、Cu、Zn、Pb的人为污染贡献量分别为12.2、32.2、25.3、479.9和76.0 mg/kg,分别占总含量的35%、37%、64%、92%和77%;其次是柘皋河河口,主要重金属污染元素为Cu、Zn和Pb,人为污染贡献量达57.6、57.0和19.5 mg/kg,分别占总含量的73%、47%和36%;而派河、白石山河、杭埠河等河口表层沉积物中重金属元素人为污染程度较弱.巢湖西部湖心区主要污染元素为Cu、Zn、Pb,人为污染开始于1950s,1980年以来其人为污染贡献量显著增加,平均为16.2、245.6、47.8 mg/(m2.a),分别占各元素沉积通量的23%、61%和37%;Ni人为污染开始于1980s初期,人为污染贡献量平均为12.6 mg/(m2.a),占其沉积通量的13%左右;Cr基本未受人为污染影响.西部湖心区沉积岩芯及南淝河河口表层沉积物中重金属污染程度均表现为Zn>Pb>Cu,而且南淝河河口沉积物重金属污染程度显著高于西部湖心区.结合主要入湖河流径流量与河口沉积物重金属污染特征,认为巢湖西部湖心区重金属污染主要通过南淝河输入,来自合肥等城市的废水是主要的污染源.  相似文献   

18.
Spatial and temporal variations of heavy metal contamination in sediments of a small mangrove stand in Hong Kong were examined by laying two transects perpendicular across the shore. Surface sediment samples were taken along the two transects running landward to seaward at intervals of 5 or 10 m during December 1989, and March, July and September 1990. Total concentrations of Cu, Zn, Mn and Pb did not show any specific trend along each transect, although the maximum concentration of heavy metals tended to occur at the landward edge. There was a high level of variability among locations within each transect; for instance, the Cu concentrations fluctuated from 1 to 42 μg g−1. Certain sites contained exceptionally high levels of total metals. Total concentrations of Cu, Zn, Mn and Pb as high as 42, 150, 640 and 650 μg g−1, respectively, were recorded, implying contaminated sediment. A comparison of the two transects indicated that the sediments of Transect B seemed to contain higher total Zn but lower Cu and Mn concentrations than those of Transect A. Most of the heavy metals accumulated in the sediments were not extractable with ammonium acetate and no Cu or Pb was detected in these extracts. The concentrations of extractable Zn and Mn were low, less than 10% of the total metal concentration in the sediment, and appeared to decrease from the landward to seaward samples. For both total and extractable metals, there were significant seasonal fluctuations for both transects, but no specific trends could be identified. These spatial and temporal variations suggest that the scale and representativeness of sampling require careful planning, and a single sample might not give a satisfactory evaluation of the levels of heavy metal contamination in mangrove ecosystems.  相似文献   

19.
In order to investigate the pollution levels, sources and ecological risks of arsenic (As) and heavy metals (Cr, Ni, Cu, Zn, Pb and Cd) in inshore sediments of the Yellow River estuary, the surface sediment in areas of inshore coastal waters were sampled in October 2014 as the flow-sediment regulation project (FSRP) was implemented for 13 years. Results showed that the concentrations of As and heavy metals in inshore sediments of the Yellow River estuary were in the order of Zn?>?Cr?>?Cu?>?Ni?>?Pb?>?As?>?Cd. Higher levels of As, Cr, Ni, Cu, Zn and Pb generally occurred in fine-grained sediments of the Yellow River estuary and the southeast region, which was consistent with the spatial distribution of clay. In contrast, higher concentrations of Cd were generally observed in northwest area of the Yellow River estuary and near the Qingshuigou estuary, which showed similarly spatial distribution with that of sand. The sediment quality guidelines (SQGS) and geoaccumulation indices (Igeo) indicated that the inshore sediments were polluted by Cu, Cd, As, Pb and Zn, and, among them, Cd pollution was more serious. Ecological risk indices (E r i ) demonstrated low risks for Cr, Ni, Cu, Zn, Pb and As, and high potential toxicity by Cd. The integrated ecological risk index implied that 6.8% of stations presented moderate risk, 4.5% of stations exhibited disastrous risk, and 88.7% of stations demonstrated considerable risk. Principal component analysis indicated that Ni, Cu, Zn, Pb and As might originate from common pollution sources, while Cr and Cd might share another similar sources. With the continuous implementation of FSRP, As and heavy metal levels in inshore sediments of the Yellow River estuary could be classified as stage I (2002–2010) and stage II (2010–2014). In the stage I, As, Cr, Ni, Cu, Zn and Pb levels fluctuated but decreased significantly, whereas Cd concentrations showed little variation. In the stage II, As and heavy metal levels significantly increased although some little fluctuations occurred. The continuous accumulation of As and heavy metals (especially for Cd) in inshore sediments of the Yellow River estuary would occur again as the FSRP was implemented for 9 years (since 2010). The ecotoxicological risk of Cd, As, Ni and Cu in inshore sediments might be more serious since the accumulation of the four elements would be continuously occurred in future years. Next step, there will be long-term potential consequences for marine organism if effective measures are not taken to control the loadings of metal pollutants into estuary.  相似文献   

20.
The concentration and areal distribution of selected trace metals (Cu, Zn, Pb, Cd, Mo, Ni, Mn and Hg) in surficial sediments of Saint John Harbour, New Brunswick, Canada, were studied to determine the extent of anthropogenic input and to estimate the effects of dumping dredged material in the outer harbour. Hg and Cd are of especial concern, since the disposal of dredge material containing these two elements is regulated under the Ocean Dumping Control Act.The concentrations of all metals are low: Cu 16, Zn 53, Pb 24, Cd 0.16, Mo 3, Ni 16, Mn 296 and Hg 0.04 μg g?1. Hg and Cd levels in sediments are well below the permissible limits of 0.75 and 0.6 μg g?1, respectively, set by the Ocean Dumping Control Act.The mean concentrations of trace elements are similar to the low mean values in the unpolluted Bay of Fundy. There is an overall decline in concentrations of metals in the sediments from the inner to the outer harbour. Comparison of the metal levels in the sediments from different areas within the harbour indicate that there is a detectable anthropogenic input in the Courtenay Bay area. Trace metal levels at the dumpsite are significantly lower than in the Courtenay Bay area, where the bulk of the dredged material originates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号