首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Intensive groundwater development in the urban area of the Nagaoka Plain, Japan, has induced changes in the pH and saturation index of calcite in groundwater. To account for these chemical changes, it is important to determine seasonal variations of recharge and the groundwater flow system in the aquifer. This study identified the sources and flow system of groundwater in this urban area by a comprehensive method using stable isotope data and a numerical groundwater model of the Nagaoka Plain. Stable isotope evidence shows that the groundwater is recharged by meteoric water originating from low‐elevation areas rather than the mountains surrounding the plain. The water table in the study area is drawn down during the winter and recovers in the other seasons. Numerical modeling shows that discharge occurs primarily along the Shinano River during the recovery period, whereas discharge is centered in urbanized areas during the drawdown period, when a conical depression of the water table stimulates recharge from the immediate area. These results are indications of a local groundwater flow system, with its recharge area between the Shinano River and the urban areas, which is governed by intensive seasonal groundwater extraction.  相似文献   

2.
Detailed monitoring of the groundwater table can provide important data about both short‐ and long‐term aquifer processes, including information useful for estimating recharge and facilitating groundwater modeling and remediation efforts. In this paper, we presents results of 4 years (2002 to 2005) of monitoring groundwater water levels in the Rio Claro Aquifer using observation wells drilled at the Rio Claro campus of São Paulo State University in Brazil. The data were used to follow natural periodic fluctuations in the water table, specifically those resulting from earth tides and seasonal recharge cycles. Statistical analyses included methods of time‐series analysis using Fourier analysis, cross‐correlation, and R/S analysis. Relationships could be established between rainfall and well recovery, as well as the persistence and degree of autocorrelation of the water table variations. We further used numerical solutions of the Richards equation to obtain estimates of the recharge rate and seasonable groundwater fluctuations. Seasonable soil moisture transit times through the vadose zone obtained with the numerical solution were very close to those obtained with the cross‐correlation analysis. We also employed a little‐used deep drainage boundary condition to obtain estimates of seasonable water table fluctuations, which were found to be consistent with observed transient groundwater levels during the period of study.  相似文献   

3.
The accurate understanding of groundwater circulation pattern and its renewable capacity is vital for groundwater resource assessment and the rational exploitation and utilization of groundwater. Estimation of groundwater recharge is difficult in arid or semiarid area due to the low amount and variability of recharge. A combination of isotope investigation with hybrid model allows a direct calculation of renewability of the aquifer. In this paper, the phreatic water circulation pattern and its renewable capacity of phreatic water in Yinchuan Basin, a semiarid area located at the northwest China, are investigated by the application of environmental isotope method, which mainly focusses on the isotope characteristics of different water bodies, phreatic water isotope age, phreatic water circulation pattern, and phreatic water renewal rate. The results demonstrate that the two dominant recharge sources of groundwater in Yinchuan Basin, local atmospheric precipitation and Yellow River, account for 13% and 87%, respectively. The average residence time of phreatic water in Yinchuan Basin is about 48 years, and the average renewal rate is 3.38%/a. The results indicate that the phreatic water has a strong renewable capacity and the regeneration rate distribution is consistent with that indicated by isotope age.  相似文献   

4.
Groundwater catchment boundaries and their associated groundwater catchment areas are typically assumed to be fixed on a seasonal basis. We investigated whether this was true for a highly permeable carbonate aquifer in England, the Berkshire and Marlborough Downs Chalk aquifer, using both borehole hydrograph data and a physics‐based distributed regional groundwater model. Borehole hydrograph data time series were used to construct a monthly interpolated water table surface, from which was then derived a monthly groundwater catchment boundary. Results from field data showed that the mean annual variation in groundwater catchment area was about 20% of the mean groundwater catchment area, but interannual variation can be very large, with the largest estimated catchment size being approximately 80% greater than the smallest. The flow in the river was also dependent on the groundwater catchment area. Model results corroborated those based on field data. These findings have significant implications for issues such as definition of source protection zones, recharge estimates based on water balance calculations and integrated conceptual modelling of surface water and groundwater systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The water balance of a 600 m2 field site on a lateritic hillslope in Kerala, southwest India, has been studied during two southwest monsoon seasons. Surface runoff was of minor importance while infiltration and evapotranspiration were the major components amounting to approximately 2/3 and 1/3 of the rainfall, respectively. Groundwater response was rapid, involving fluctuations of several metres. Recharge mechanisms hypothesized are water movement via preferred pathways from the ground surface to the capillary fringe where rapid rise in groundwater level is brought about by a transmitted pressure pulse. Groundwater recharge was found normally to take place during the southwest monsoon season only. the field study demonstrates that seasonal shallow groundwater recharge representing the major portion of the rainfall May, be observed in this lateritic terrain in the humid tropics. It indicates a good potential for further groundwater development. Moreover, conditions are conducive to a considerable contribution to possible recharge to deeper aquifers. the observed groundwater recharge is the result of a complex process on which further research will throw more light.  相似文献   

6.
Abstract

Accurate estimation of groundwater recharge is essential for the proper management of aquifers. A study of water isotope (δ2H, δ18O) depth profiles was carried out to estimate groundwater recharge in the Densu River basin in Ghana, at three chosen observation sites that differ in their altitude, geology, climate and vegetation. Water isotopes and water contents were analysed with depth to determine water flow in the unsaturated zone. The measured data showed isotope enrichment in the pore water near the soil surface due to evaporation. Seasonal variations in the isotope signal of the pore water were also observed to a depth of 2.75 m. Below that depth, the seasonal variation of the isotope signal was attenuated due to diffusion/dispersion and low water flow velocities. Groundwater recharge rates were determined by numerical modelling of the unsaturated water flow and water isotope transport. Different groundwater recharge rates were computed at the three observation sites and were found to vary between 94 and 182 mm/year (± max. 7%). Further, the approximate peak-shift method was applied to give information about groundwater recharge rates. Although this simple method neglects variations in flow conditions and only considers advective transport, it yielded mean groundwater recharge rates of 110–250 mm/year (± max. 30%), which were in the same order of magnitude as computed numerical modelling values. Integrating these site-specific groundwater recharge rates to the whole catchment indicates that more water is potentially renewed than consumed nowadays. With increases in population and irrigation, more clean water is required, and knowledge about groundwater recharge rates – essential for improving the groundwater management in the Densu River basin – can be easily obtained by measuring water isotope depth profiles and applying a simple peak-shift approach.

Citation Adomako, D., Maloszewski, P., Stumpp, C., Osae, S. & Akiti, T. T. (2010) Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River basin, Ghana. Hydrol. Sci. J. 55(8), 1405–1416.  相似文献   

7.
Alpine areas play a major role in water supply in downstream valleys by releasing water during warm and dry periods. However, the hydrogeology of alpine catchments, which are particularly exposed to the effects of climate change, is currently not well understood. Increasing our knowledge of alpine hydrogeological processes is thus of considerable importance for any forward-looking hydrological investigations in alpine areas. The objectives of this study are to quantify seasonal groundwater storage variations in a small Swiss alpine catchment and to evaluate the capabilities of time-lapse gravimetry in the identification of zones of high groundwater storage fluctuations. Time-lapse gravimetric measurements enable rapid localisation of zones of dynamic groundwater storage changes and help to highlight aquifers with a higher storage decrease. Temperature sensors enable measurement of the temporal trend in stream and spring drying in the post-snowmelt period. Stable isotope measurements allow us to identify the origin of surface water exiting the catchment. The results improve our comprehension of a conceptual schema highlighting two different hydrogeological systems: (a) a shallow, rapidly depleted one fed directly by snowmelt and (b) a deeper one, with a slower recession, fed by main recharge during peak snowmelt and emerging at the lower part of the catchment below the talus and moraine of the catchment where bedrock is exposed. These dynamics confirm the high variability of storage in the talus and moraine aquifers and highlight the dominant role of Quaternary deposits and their connectivity to store water over seasonal and multi-year time-scales. The mechanisms explaining the importance of Quaternary deposits are the combination of moraine and talus with different permeabilities allowing the storage of sufficient quantities of water permitting continuous release during drier periods of the year.  相似文献   

8.
The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low‐flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin‐wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed‐parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin‐wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.  相似文献   

9.
This research was conducted to develop relationships among evapotranspiration (ET), percolation (PERC), groundwater discharge to the stream (GWQ), and water table fluctuations through a modeling approach. The Soil and Water Assessment Tool (SWAT) hydrologic and crop models were applied in the Big Sunflower River watershed (BSRW; 7660 km2) within the Yazoo River Basin of the Lower Mississippi River alluvial plain. Results of this study showed good to very good model performances with the coefficient of determination (R2) and Nash‐Sutcliffe efficiency (NSE) index from 0.4 to 0.9, respectively, during both hydrologic and crop model calibration and validation. An empirical relationship between ET, PERC, GWQ, and water table fluctuations was able to predict 64% of the water table variation of the alluvial plain in this study. Thematic maps were developed to identify areas with overuse of groundwater, which can help watershed managers to develop water resource programs.  相似文献   

10.
Glaciers on the Tibetan Plateau play an important role in the local hydrological cycle. However, there are only few studies on groundwater in the alpine basins in the Tibetan Plateau which considered the effects of glaciers. Glaciers are extensively distributed in the Dongkemadi River Basin, which is a representative alpine basin in the Yangtze River source region. This study focuses on building a numerical groundwater flow model with glaciations using HydroGeoSphere (HGS) to simulate subglacial meltwater recharge to groundwater in the Dongkemadi River Basin in response to future climate changes. Effects of hydraulic conductivity, precipitation, and temperature on subglacial meltwater recharge to groundwater were discussed. Glacier changes in the future 50 years were predicted under different climate change scenarios. Results show that: (1) the average thickness of the glacier will change significantly; (2) the simulated rate of annual mean subglacial meltwater recharge to groundwater is 4.58 mm, which accounts for 6.33% of total groundwater recharge; and (3) hydraulic conductivity has the largest influence on subglacial meltwater recharge to groundwater, followed by temperature and precipitation. Results of this study are also important to sustainable water resource usage in the Yangtze River source region.  相似文献   

11.
The temporal and spatial dynamics of groundwater was investigated in a small catchment in the Spanish Pyrenees, which was extensively used for agriculture in the past. Analysis of the water table fluctuations at five locations over a 6‐year period demonstrated that the groundwater dynamics had a marked seasonal cycle involving a wetting‐up period that commenced with the first autumn rainfall events, a saturation period during winter and spring and a drying‐down period from the end of spring until the end of the summer. The length of the saturation period showed great interannual variability, which was mainly influenced by the rainfall and evapotranspiration characteristics. There was marked spatial variability in the water table, especially during the wetting‐up period, which could be related to differences in slope and drainage area, geomorphology, soil properties and local topography. Areas contributing to runoff generation were identified within the catchment by field mapping of moisture conditions. Areas contributing to infiltration excess runoff were correlated with former cultivated fields affected by severe sheetwash erosion. Areas contributing to saturation excess runoff were characterized by a marked spatial dynamics associated with catchment wetness conditions. The saturation spatial pattern, which was partially related to the topographic index, was very patchy throughout the catchment, suggesting the influence of other factors associated with past agricultural activities, including changes in local topography and soil properties. The relationship between water table levels and stream flow was weak, especially during the wetting‐up period, suggesting little connection between ground water and the hydrological response, at least at some locations. The results suggest that in drier and human‐disturbed environments, such as sub‐Mediterranean mountains, saturation patterns cannot be represented only by the general topography of the catchment. They also suggest that groundwater storage and runoff is not a succession of steady‐state flow conditions, as assumed in most hydrological models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Groundwater is the principal water resource in semi‐arid and arid environments. Therefore, quantitative estimates of its replenishment rate are important for managing groundwater systems. In dry regions, karst outcrops often show enhanced recharge rates compared with other surface and sub‐surface conditions. Areas with exposed karst features like sinkholes or open shafts allow point recharge, even from single rainfall events. Using the example of the As Sulb plateau in Saudi Arabia, this study introduces a cost‐effective and robust method for recharge monitoring and modelling in karst outcrops. The measurement of discharge of a representative small catchment (4.0 · 104 m2) into a sinkhole, and hence the direct recharge into the aquifer, was carried out with a time‐lapse camera. During the monitoring period of two rainy seasons (autumn 2012 to spring 2014), four recharge events were recorded. Afterwards, recharge data as well as proxy data about the drying of the sediment cover are used to set up a conceptual water balance model. The model was run for 17 years (1971 to 1986 and 2012 to 2014). Simulation results show highly variable seasonal recharge–precipitation ratios between 0 and 0.27. In addition to the amount of seasonal precipitation, this ratio is influenced by the interannual distribution of rainfall events. Overall, an average annual groundwater recharge for the doline (sinkhole) catchment on As Sulb plateau of 5.1 mm has estimated for the simulation period. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Climate variability and change impact groundwater resources by altering recharge rates. In semi-arid Basin and Range systems, this impact is likely to be most pronounced in mountain system recharge (MSR), a process which constitutes a significant component of recharge in these basins. Despite its importance, the physical processes that control MSR have not been fully investigated because of limited observations and the complexity of recharge processes in mountainous catchments. As a result, empirical equations, that provide a basin-wide estimate of mean annual recharge using mean annual precipitation, are often used to estimate MSR. Here North American Regional Reanalysis data are used to develop seasonal recharge estimates using ratios of seasonal (winter vs. summer) precipitation to seasonal actual or potential evapotranspiration. These seasonal recharge estimates compared favorably to seasonal MSR estimates using the fraction of winter vs. summer recharge determined from isotopic data in the Upper San Pedro River Basin, Arizona. Development of hydrologically based seasonal ratios enhanced seasonal recharge predictions and notably allows evaluation of MSR response to changes in seasonal precipitation and temperature because of climate variability and change using Global Climate Model (GCM) climate projections. Results show that prospective variability in MSR depends on GCM precipitation predictions and on higher temperature. Lower seasonal MSR rates projected for 2050-2099 are associated with decreases in summer precipitation and increases in winter temperature. Uncertainty in seasonal MSR predictions arises from the potential evapotranspiration estimation method, the GCM downscaling technique and the exclusion of snowmelt processes.  相似文献   

14.
Data from six monitoring stations were combined with a soil‐water dynamics model (HYDRUS 1D) to achieve physically‐based estimates of shallow water‐table recharge in representative hydropedological settings of the glaciated midwestern U.S.A. Calibration involved inverse modeling that yielded optimized hydraulic parameters. Root mean square errors for modeled versus measured soil moisture contents were generally within 3% for all soil layers at the six study sites. The optimized models also accurately simulated recharge values that corresponded to observed water‐table fluctuations. Optimized parameter values were consistent with estimates from a pedotransfer function, lab analyses, and field experiments. Forward modeling indicated that shallow water‐table recharge in mid‐continent glacial settings is approximately 35% of precipitation, but interannual and monthly variability is significant. Soil parent materials and horizon characteristics influence recharge primarily through their control on Ks with clay‐rich till parent materials producing values as low as 16% and coarse‐grained outwash parent materials producing values as high as 58% of precipitation. During the three‐year study period, distinct seasonality of recharge was observed with most recharge occurring in the winter (seasonal mean of all sites was 66% of precipitation) and lesser but interannually stable amounts in the spring (44%), summer (13%), and autumn (16%). This research underscores the importance of incorporating pedological information into models of soil‐water dynamics and groundwater recharge. © 2015 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

15.
The Jiangcang Basin is an important mining area of the former Qilian Mountain large coal base in Qinghai Province, and understanding the groundwater circulation mechanism is the basis for studying the hydrological effects of permafrost degradation in alpine regions. In this study, hydrogeochemical and multiple isotope tracer analysis methods are used to understand the chemical evolution and circulation mechanisms of the groundwater in the typical alpine region of the Jiangcang Basin. The diversity of the groundwater hydrochemistry in the study area reflects the complexity of the hydrogeochemical environment in which it is located. The suprapermafrost water and intrapermafrost water are recharged by modern meteoric water. The groundwater is closely hydraulically connected to the surface water with weak evaporation overall. The high δ34S value of deep groundwater is due to SO4 reduction, and SO42−-rich snow recharge with lixiviated sulfate minerals are the main controlling factor for the high SO42− concentration in groundwater. According to the multivariate water conversion relationships, it reveals that the river receives more groundwater recharge, suprapermafrost water is recharged by the proportion of meteoric water, which is closely related to the mountainous area at the edge of the basin, while intrapermafrost water is mainly recharged by the shallow groundwater. This study provides a data-driven approach to understanding groundwater recharge and evolution in alpine regions, in addition to having significant implications for water resource management and ecological environmental protection in coal bases of the Tibetan Plateau.  相似文献   

16.
Surface water and groundwater are normally closely connected in areas with shallow aquifer systems. Stream systems can thus be considered as the outcrops of associated groundwater flows in areas with a shallow groundwater table and a previous subsurface. This situation prevails in sandy lowland areas where almost all rainfall percolates into the subsurface so that the surplus over evapotranspiration becomes part of a groundwater drainage system before it reappears at the surface in a stream. The stream network, being the interface with the groundwater system, must have the capacity to release the seasonally dependent precipitation surplus through the continuum of ground and surface waters. A river network therefore consists of a hierarchical system of different order and incision depth, of which the discharge-contributing component contracts and expands with the seasonal fluctuation in recharge and water table depth.

Coupling the mathematical expressions for groundwater drainage and stream flow enables development of a conjunctive model which relates the properties of a seasonally contracting and expanding stream network and related groundwater level fluctuation to the seasonal rainfall character for given geological and geomorphological conditions. This model further allows for assessment of drainage network response to a changing environment.  相似文献   


17.
Regional groundwater flow in high mountainous terrain is governed by a multitude of factors such as geology, topography, recharge conditions, structural elements such as fracturation and regional fault zones as well as man‐made underground structures. By means of a numerical groundwater flow model, we consider the impact of deep underground tunnels and of an idealized major fault zone on the groundwater flow systems within the fractured Rotondo granite. The position of the free groundwater table as response to the above subsurface structures and, in particular, with regard to the influence of spatial distributed groundwater recharge rates is addressed. The model results show significant unsaturated zones below the mountain ridges in the study area with a thickness of up to several hundred metres. The subsurface galleries are shown to have a strong effect on the head distribution in the model domain, causing locally a reversal of natural head gradients. With respect to the position of the catchment areas to the tunnel and the corresponding type of recharge source for the tunnel inflows (i.e. glaciers or recent precipitation), as well as water table elevation, the influence of spatial distributed recharge rates is compared to uniform recharge rates. Water table elevations below the well exposed high‐relief mountain ridges are observed to be more sensitive to changes in groundwater recharge rates and permeability than below ridges with less topographic relief. In the conceptual framework of the numerical simulations, the model fault zone has less influence on the groundwater table position, but more importantly acts as fast flow path for recharge from glaciated areas towards the subsurface galleries. This is in agreement with a previous study, where the imprint of glacial recharge was observed in the environmental isotope composition of groundwater sampled in the subsurface galleries. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
流域范围内地表水和地下水转化对盐湖成盐元素的运移和富集具有十分重要的意义.本文通过尕斯库勒盐湖盆地内流域水体的水化学和B同位素特征识别了地表水和地下水之间的定量转化关系,在此基础上估算了流域中铀的补给通量.结果表明,流域水体中离子的分异除了蒸发浓缩作用之外,还受重力分异及掺杂作用的影响;上游库拉木勒克萨伊河和阿特阿特坎河水体在出山口附近转入地下并在中游补给地表水和地下水,其补给率分别占48.8%和51.2%,年均补给量分别为1.08×108和1.13×108m3/a;在中游至尾闾盐湖段,阿拉尔河和侧向补给对盐湖卤水的补给率占55.2%,深部水体的补给占44.8%;至少从5.7 ka以来,上游水体对盐湖卤水中铀的补给通量为4.11×103t,在湖积平原黏土沉积带以及祁漫塔格山前局部还原带可能具有较大规模的铀矿.研究结果有助于建立盐湖盆地水循环模式、揭示卤水资源形成机制;同时为尕斯库勒盐湖盆地水资源的高效利用和寻找铀矿提供理论依据和技术支持.  相似文献   

19.
Streams crossing underground coal mines may lose flow, whereas abandoned mine drainage (AMD) restores flow downstream. During 2005–2012, discharge from the Pine Knot Mine Tunnel, the largest AMD source in the upper Schuylkill River Basin, had near‐neutral pH and elevated concentrations of iron, manganese and sulphate. Discharge from the tunnel responded rapidly to recharge but exhibited a prolonged recession compared with nearby streams, consistent with rapid infiltration of surface water and slow release of groundwater from the mine complex. Dissolved iron was attenuated downstream by oxidation and precipitation, whereas dissolved CO2 degassed and pH increased. During high flow conditions, the AMD and downstream waters exhibited decreased pH, iron and sulphate with increased acidity that were modelled by mixing net‐alkaline AMD with recharge or run‐off having low ionic strength and low pH. Attenuation of dissolved iron within the river was least effective during high flow conditions because of decreased transport time coupled with inhibitory effects of low pH on oxidation kinetics. A numerical model of groundwater flow was calibrated by using groundwater levels in the Pine Knot Mine and discharge data for the Pine Knot Mine Tunnel and West Branch Schuylkill River during a snowmelt event in January 2012. Although the calibrated model indicated substantial recharge to the mine complex took place away from streams, simulation of rapid changes in mine pool level and tunnel discharge during a high flow event in May 2012 required a source of direct recharge to the Pine Knot Mine. Such recharge produced small changes in mine pool level and rapid changes in tunnel flow rate because of extensive unsaturated storage capacity and high transmissivity within the mine complex. Thus, elimination of stream leakage could have a small effect on the annual discharge from the tunnel, but a large effect on peak discharge and associated water quality downstream. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

20.
The surface water and groundwater are important components of water cycle, and the interaction between surface water and groundwater is the important part in water cycle research. As the effective tracers in water cycle research, environmental isotope and hydrochemistry can reveal the interrelationships between surface water and groundwater effectively. The study area is the Huaisha River basin, which is located in Huairou district, Beijing. The field surveying and sampling for spring, river and well water were finished in 2002 and 2003. The hydrogen and oxygen isotopes and water quality were measured at the laboratory. The spatial characteristics in isotope and evolution of water quality along river lines at the different area were analyzed. The altitude effect of oxygen isotope in springs was revealed, and then using this equation, theory foundation for deducing recharge source of spring was estimated. By applying the mass balance method, the annual mean groundwater recharge rate at the catchment was estimated. Based on the groundwater recharge analysis, combining the hydrogeological condition analysis, and comparing the rainfall-runoff coefficients from the 1960s to 1990s in the Huaisha River basin and those in the Chaobai River basin, part of the runoff in the Huaisha River basin is recharged outside of this basin, in other words, this basin is an un-enclosed basin. On the basis of synthetically analyses, combining the compositions of hydrogen and oxygen isotopes and hydrochemistry, geomorphology, geology, and watershed systems characteristics, the relative contributions between surface water and groundwater flow at the different areas at the catchments were evaluated, and the interaction between surface water and groundwater was re- vealed lastly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号