首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
High severity wildfires impact hillslope processes, including infiltration, runoff, erosion, and sediment delivery to streams. Wildfire effects on these processes can impair vegetation recovery, producing impacts on headwater and downstream water supplies. To promote forest regeneration and maintain forest and aquatic ecosystem functions, land managers often undertake active post-fire land management (e.g., salvage logging, sub-soiling, re-vegetation). The primary objective of our study was to quantify and compare sediment yields eroded from (a) burned, (b) burned and salvage logged, and (c) burned, salvage logged, and sub-soiled plots following the 2015 Valley Fire in the northern California Coast Range. We distributed 25 sediment fences (~75 m2 contributing area) across four hillslopes burned at high severity and representative of the three management types. We collected eroded sediment from the fences after precipitation events for 5 years. We also quantified precipitation, canopy cover, ground cover, and soil properties to characterize the processes driving erosion across the three management types. Interestingly, during the second year after the fire, sediment yields were greater in the burned-only plots compared with both the salvage logged and sub-soiled plots. By the third year, there were no differences in sediment yields among the three management types. Sediment yields decreased over the 5 years of the study, which may have occurred due to site recovery or exhaustion of mobile sediment. As expected, sediment yields were positively related to precipitation depth, bulk density, and exposed bare soil, and negatively related to the presence of wood cover on the soil surface. Unexpectedly, we observed greater sediment yields on the burned-only plots with greater canopy closure, which we attributed to increased throughfall drop size and kinetic energy related to the residual canopy. While these results will aid post-fire management decisions in areas with Mediterranean climates prone to low intensity, long duration rainstorms, additional research is needed on the comparative effects of post-fire land management approaches to improve our understanding of the mechanisms driving post-fire erosion and sediment delivery.  相似文献   

2.
Sediment delivery following post-fire logging is a concern relative to water quality. While studies have assessed the effect of post-fire logging on sediment yields at different spatial scales, none have explicitly identified sediment sources. Our goal was to quantify post-fire and post-salvage logging sediment yields and use rill patterns to identify sediment sources. We measured the extent and type of logging disturbance, length of rills per unit area or “rill density”, ground cover, and sediment yields in nine logged and five control small catchments or “swales”, 0.09 to 0.81 ha, for 5 years after the 2013 Rim Fire in California's Sierra Nevada. The logged swales had a mean ground disturbance of 31%. After the first wet season following logging, there was no difference in either mean rill density (0.071 and 0.088 m m−2, respectively) or mean transformed, normalized sediment yields between the control and logged swales. Untransformed mean sediment yields across three sites ranged from 0.11–11.8 and 1.1–3.2 Mg ha−1 for the controls and salvage-logged swales, respectively. Rill density was strongly related to sediment yield and increased significantly with the amount of high-traffic skid trail disturbance in logged swales. Rill density was not significantly related to the amount of bare soil despite a significant relationship between sediment yields and bare soil. Rills usually initiated in bare soil and frequently connected high traffic skid trails to the drainage network after being diverted by waterbars. Rill connectivity and sediment yields decreased in control and logged swales where vegetation or other surface cover was high, suggesting this cover disconnected rills from the drainage network. Increasing ground cover on skid trails and between areas disturbed by post-fire logging and stream channels may reduce sediment yields as well as the hydrologic connectivity between hillslopes and the drainage network.  相似文献   

3.
Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre-fire conditions. This research examines the connectivity of post-fire runoff and sediment from hillslopes (< 1.5 ha; n = 31) and catchments (< 1000 ha; n = 10) within two watersheds (< 1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post-fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration-excess overland flow, high sediment yields, in-stream sediment deposition and channel substrate fining. For both storms, hillslope-to-stream sediment delivery ratios and area-normalised cross-sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope-to-stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post-fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.  相似文献   

4.
Our ability to understand erosion processes in semi‐arid ecosystems depends on establishing relationships between rainfall and runoff. This requires collection of extensive and accurate hydrologic and sediment data sets. A supercritical flume with a total load traversing slot sediment sampler used on several sites at the Walnut Gulch Experimental Watershed (WGEW) near Tombstone, AZ has proven to be a reliable way to measure flow and sediment discharge from small watersheds. However, it requires installation of a costly structure that is only suitable for relatively small flows. A more commonly used method based on ease of installation and expense is the pump sampler. One example of this is a set of instrumentation developed by the Australian Commonwealth Scientific and Industrial Research Organization (CSIRO), in which the pump sediment sampler is part of an in‐channel, fully automated system for measuring water velocity, depth, turbidity and collecting runoff samples. A 3.7 ha arid watershed at WGEW was instrumented with both systems and hydrologic and sediment data were collected and compared during a 2 year period. Total sediment yield for the entire period measured by the CSIRO pump sampler (11.6 t ha‐1) was similar to that by traversing slot sampler (11.5 t ha‐1). The pump sampler accurately estimated the amount of fine (< 0.5 mm) sediment fractions exported, but consistently underestimated the coarse (>0.5 mm) sediment fractions. Median sediment diameter of samples collected by traversing slot and pump sampler were 0.32 and 0.22 mm, respectively. This study outlines the benefits and limitations of the pump sampler based system for monitoring sediment concentration and yield in high‐energy headwater catchments, and makes recommendations for improvement of its performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Wildfire is a natural component of sagebrush (Artemisia spp.) steppe rangelands that induces temporal shifts in plant community physiognomy, ground surface conditions, and erosion rates. Fire alteration of the vegetation structure and ground cover in these ecosystems commonly amplifies soil losses by wind- and water-driven erosion. Much of the fire-related erosion research for sagebrush steppe has focused on either erosion by wind over gentle terrain or water-driven erosion under high-intensity rainfall on complex topography. However, many sagebrush rangelands are geographically positioned in snow-dominated uplands with complex terrain in which runoff and sediment delivery occur primarily in winter months associated with cold-season hydrology. Current understanding is limited regarding fire effects on the interaction of wind- and cold-season hydrologic-driven erosion processes for these ecosystems. In this study, we evaluated fire impacts on vegetation, ground cover, soils, and erosion across spatial scales at a snow-dominated mountainous sagebrush site over a 2-year period post-fire. Vegetation, ground cover, and soil conditions were assessed at various plot scales (8 m2 to 3.42 ha) through standard field measures. Erosion was quantified through a network of silt fences (n = 24) spanning hillslope and side channel or swale areas, ranging from 0.003 to 3.42 ha in size. Sediment delivery at the watershed scale (129 ha) was assessed by suspended sediment samples of streamflow through a drop-box v-notch weir. Wildfire consumed nearly all above-ground live vegetation at the site and resulted in more than 60% bare ground (bare soil, ash, and rock) in the immediate post-fire period. Widespread wind-driven sediment loading of swales was observed over the first month post-fire and extensive snow drifts were formed in these swales each winter season during the study. In the first year, sediment yields from north- and south-facing aspects averaged 0.99–8.62 t ha−1 at the short-hillslope scale (~0.004 ha), 0.02–1.65 t ha−1 at the long-hillslope scale (0.02–0.46 ha), and 0.24–0.71 t ha−1 at the swale scale (0.65–3.42 ha), and watershed scale sediment yield was 2.47 t ha−1. By the second year post fire, foliar cover exceeded 120% across the site, but bare ground remained more than 60%. Sediment yield in the second year was greatly reduced across short- to long-hillslope scales (0.02–0.04 t ha−1), but was similar to first-year measures for swale plots (0.24–0.61 t ha−1) and at the watershed scale (3.05 t ha−1). Nearly all the sediment collected across all spatial scales was delivered during runoff events associated with cold-season hydrologic processes, including rain-on-snow, rain-on-frozen soils, and snowmelt runoff. Approximately 85–99% of annual sediment collected across all silt fence plots each year was from swales. The high levels of sediment delivered across hillslope to watershed scales in this study are attributed to observed preferential loading of fine sediments into swale channels by aeolian processes in the immediate post-fire period and subsequent flushing of these sediments by runoff from cold-season hydrologic processes. Our results suggest that the interaction of aeolian and cold-season hydrologic-driven erosion processes is an important component for consideration in post-fire erosion assessment and prediction and can have profound implications for soil loss from these ecosystems. © 2019 John Wiley & Sons, Ltd.  相似文献   

6.
This study examines runoff and sediment generation rates within the road prism on unsealed road segments in the Cuttagee Creek catchment near Bermagui in New South Wales, Australia. A large (600 m2) rainfall simulator was used to measure runoff and sediment yields from each of the potential sediment and runoff sources and pathways. These included the road surface, table‐drain, upslope contributing area and cutslope face, and the entire road segment as measured at the drain outlet. Experiments were conducted on two major types of road (ridge‐top and cut‐and‐fill) of varying traffic usage and maintenance standard for two 30‐minute simulations of increasing rainfall intensity. From the range of possible sources within the road prism, the road surface produced the dominant source of excess runoff and sediment at each site with limited contributions from the table‐drain, cutslope face or contributing hillslope. Sediment generation varied significantly with road usage and traffic intensity. Road usage was strongly related to the amount of loose available sediment as measured prior to the experiments. Table‐drains acted primarily as sediment traps during the low rainfall event but changes in sediment concentration within the drains were observed as runoff volumes increased during the higher rainfall event of 110 mm h?1, releasing sediment previously stored in litter and organic dams. The experiments demonstrate the potential roles of various features of the road prism in the generation and movement of sediment and water. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
When a sediment laden river reaches a flat basin area the coarse fraction of their sediment load is deposited in a cone shaped structure called an alluvial fan. In this article we used the State Space Soil Production and Assessment Model (SSSPAM) coupled landform–soilscape evolution model to simulate the development of alluvial fans in two- and three-dimensional landforms. In SSSPAM the physical processes of erosion and armouring, soil weathering and sediment deposition were modelled using state-space matrices, in both two and three dimensions. The results of the two-dimensional fan showed that the fan grew vertically and laterally keeping a concave up long profile. It also showed a downstream fining of the sediments along the fan profile. Both of these observations are in agreement with available literature concerning natural and experimental fan formations. Simulations with the three-dimensional landform produced a fan with a semicircular shape with concave up long profiles and concave down cross profiles which is typical for fans found in nature and ones developed in laboratory conditions. During the simulation the main channel which brings sediment to the fan structure changed its position constantly leading to the semicircular shape of the fan. This behaviour is similar to the autogenic process of ‘fanhead trenching’ which is the major mechanism of sediment redistribution while the fan is developing. The three-dimensional fan simulation also exhibited the downstream fining of sediments from the fan apex to the peripheries. Further, the simulated fan also developed complex internal sediment stratification which is modelled by SSSPAM. Currently such complex sediment stratification is thought to be a result of allogenic processes. However, this simulation shows that, such complex internal sediment structures can develop through autogenic processes as well. © 2020 John Wiley & Sons, Ltd.  相似文献   

8.
Data concerning runoff and sediment yield in arid zones is of prime importance for hydrologists, geomorphologists, pedologists, ecologists and landscape engineers. For data comparison and extrapolations, runoff and sediment yield are often presented in mass per unit area. Runoff and sediment yield collected on dune slopes over a wide range of plot sizes during 1990–1994 in the Negev Desert, Israel, showed that the contributing area was mainly confined to a narrow belt at the bottom of the slopes. It was therefore hypothesized that the very short rain bursts, capable of runoff generation, may result in a scale effect (SE). Indeed, average duration of duration of consecutive medium and high rain intensities which are potentially above the surface infiltration rate ranged between 2.2 and 3.0 minutes, implying that flow connectivity is largely limited. Based on the intermittent character of the rain spells capable of runoff generation it is argued that SE is an inherent outcome of the rain properties. Yet, it is further argued that the magnitude of the SE is surface‐dependent. As a result, it is argued that the conventional way for runoff and sediment yield presentation as mass per unit area implies theoretical misconceptions and may cause gross overestimation in extrapolation and the presentation of runoff and sediment yield in mass per unit width of the slope is suggested. The accuracy of the two extrapolation methods are compared to the actual runoff and sediment yield collected in the field. The data show that extrapolation based on runoff (or sediment) yield per plot width deviates from the actual amounts collected by a factor of 1·1 to 1·3 only while deviating by a factor of 4·2 to 5·6 and 10·7 to 11·8 if the extrapolation is based on large and small plots, respectively. Theoretical and practical reasons for presentation of runoff and sediment yield as mass per unit width are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Erosion and sediment yield from large and small watersheds exhibit different laws. Variations in surface runoff and sediment yield because of landuse change in four watersheds of different scales from 1 km2 to 73 km2 were analyzed. Due to reforestation and farmland terracing, surface runoff and sediment yield reduced by 20-100% and 10-100% respectively. Reductions in surface runoff were differed significantly under different precipitation regimes. For the large watershed (73 km2) landuse change had similar effects on surface runoff regardless of changing of precipitation. For the small watershed (1 km2) landuse change had fewer effects on surface runoff under high precipitation. The relative changes of sediment yield in the four watersheds under reforestation and farmland terracing decreased as precipitation increased from 350 mm to 650 mm, then increased as precipitation increased from 650 mm to 870 mm. Where initial forest coverage rate was below 45%, sediment yield decreased dramatically as forest coverage rate increased. Watershed management with aiming at reducing both surface runoff and sediment yield should be conducted both on sloping surfaces and in channels in large watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号