首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Debris-flow runout is a fascinating process to understand due to its implications for downstream alluvial fans. Based on the propagation-deposition behaviors of the Dongyuege (DYG) debris flow, in Yunnan, the effect of biofilms on channel surfaces on debris-flow runout is investigated in laboratory flumes with two different internal surfaces: surfaces are lined with granite slabs (Model I) and gravel (Model II), respectively. Our results show that biofilms can significantly reduce frictional resistance to flows. They increase flow velocities, slow down the deceleration of the snouts, prolong runout distances, and subsequently extend the areas covered with resulting deposits, thus greatly assisting the propagation of experimental debris flows. Slippery biofilms consisting mainly of diatoms and their extracellular mucus (ECM) reduce the contact friction between the flume-beds and the overlying fluids, and greatly promote the propagation of tested flows. Well-developed biofilms are found on the underwater channel surfaces of the DYG Creek. Acting as lubricating layers, they likely played a key role in the DYG debris-flow runout. Most of the debris transported during the DYG event was deposited on overbanks, and the sediment that caused the disaster was transported to the populated fan region through the stream-bed clad in the thick biofilms. Owing to their impacts on the development and width of the temporary debris dam breach, the stream-bed covered with biofilms became a direct contributor to the debris-flow hazard. Because of the ubiquitous presence of biofilms on mountain stream-bed surfaces, the development of perennial streamflows can be viewed as an indicator of gully susceptibility to debris flows threatening creek fans. The underwater areas of pre-event channel cross-sections should be regarded as slip or low-friction boundaries, and the parts above stream-levels can be viewed as no-slip boundaries. © 2019 John Wiley & Sons, Ltd.  相似文献   

2.
Coupling morphological, sedimentological, and rheological studies to numerical simulations is of primary interest in defining debris‐flow hazard on alluvial fans. In particular, numerical runout models must be carefully calibrated by morphological observations. This is particularly true in clay‐shale basins where hillslopes can provide a large quantity of poorly sorted solid materials to the torrent, and thus change both the mechanics of the debris flow and its runout distance. In this context, a study has been completed on the Faucon stream (southeastern French Alps), with the objectives of (1) defining morphological and sedimentological characteristics of torrential watersheds located in clay‐shales, and (2) evaluating through a case study the scouring potential of debris flows affecting a clay‐shale basin. Morphological surveys, grain‐size distributions and petrographic analyses of the debris‐flow deposits demonstrate the granular character of the flow during the first hectometre, and its muddy character from there to its terminus on the debris fan. These observations and laboratory tests suggest that the contributing areas along the channel have supplied the bulk of the flow material. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Extreme rainfall in June 1949 and November 1985 triggered numerous large debris flows on the steep slopes of North Fork Mountain, eastern West Virginia. Detailed mapping at four sites and field observations of several others indicate that the debris flows began in steep hillslope hollows, propagated downslope through the channel system, eroded channel sediment, produced complex distributions of deposits in lower gradient channels, and delivered sediment to floodwaters beyond the debris-flow termini. Based on the distribution of deposits and eroded surfaces, up to four zones were identified with each debris flow: an upper failure zone, a middle transport/erosion zone, a lower deposition zone, and a sediment-laden floodwater zone immediately downstream from the debris-flow terminus. Geomorphic effects of the debris flows in these zones are spatially variable. The initiation of debris flows in the failure zones and passage through the transport/erosion zones are characterized by degradation; 2300 to 17 000 m3 of sediment was eroded from these zones. The total volume of channel erosion in the transport/erosion zones was 1·3 to 1·5 times greater than the total volume of sediment that initially failed, indicating that the debris flows were effective erosion agents as they travelled through the transport/erosion zones. The overall response in the deposition zones was aggradation. However, up to 43 per cent of the sediment delivered to these zones was eroded by floodwaters from joining tributaries immediately after debris-flow deposition. This sediment was incorporated into floodwaters downstream from the debris-flow termini causing considerable erosion and deposition in these channels. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
Debris flows are among the most destructive and hazardous mass movements on steep mountains. An understanding of debris-flow erosion, entrainment and resulting volumes is a key requirement for modelling debris-flow propagation and impact, as well as analysing the associated risks. As quantitative controls of erosion and entrainment are not well understood, total volume, runout and impact energies of debris flows are often significantly underestimated. Here, we present an analysis of geomorphic change induced by an erosive debris-flow event in the German Alps in June 2015. More than 50 terrestrial laser scans of a 1.2 km long mountain torrent recorded geomorphic change in comparison to an airborne laser scan performed in 2007. Errors were calculated using a spatial variable threshold based on the point density of airborne laser scanning and terrestrial laser scanning and the slope of the digital elevation models. Highest erosion rates approach 5.0 m3/m2 (mean 0.6 m3/m2). During the event 9550 ± 1550 m3 was eroded whereas only 650 ± 150 m3 was deposited in the channel. Velocity, flow pressure, momentum and shear stress were calculated using a carefully calibrated RAMMS Debris Flow model including material entrainment. Here we present a linear regression model relating debris-flow erosion rates to momentum and shear stress with an R2 up to 68%. Channel transitions from bedrock to loose debris sections cause excessive erosion up to 1 m3/m2 due to previously unreleased random kinetic energy now available for erosion. © 2019 John Wiley & Sons, Ltd.  相似文献   

5.
The assessment of the dominant flow type on alluvial fans usually refers to two categories: debris‐flow fans (i.e. sediment gravity flows) and fluvial fans (i.e. fluid gravity flows). Here we report the results of combined morphometric, stratigraphic and sedimentological approaches which suggest that hyperconcentrated flows, a transitional process rheologically distinct from debris flows and floods and sometimes referred to as debris floods, mud floods, or transitional debris flows, are the dominant fan building process in eastern Canada. These flows produce transitional facies between those of debris flows which consist of a cohesive matrix‐supported diamicton, and those of river flows which display more distinct stratification. The size of the blocks in the channels and the abrasion scars at the base of several trees attest to the high transport capacity of these flows. The fan channels are routed according to various obstacles comprised primarily of woody debris that impede sediment transit. However, these conditions of sediment storage are combined with readily available sediment due to the friable nature of the local lithology. Tree‐ring analysis allowed the reconstruction of eight hydrogeomorphic events which are characterized by a return period of 9.25 years for the period 1934–2008, although most of the analyzed events occurred after 1970. Historical weather data analysis indicates that they were related to rare hydrometeorological events at regional and local scales. This evidence led to the elaboration of weather scenarios likely responsible for triggering flows on the fan. According to these scenarios, two distinct hydrologic regimes emerge: the torrential rainfall regime and the nival regime related to snowmelt processes. Hydrogeomorphic processes occurring in a cold‐temperate climate, and particularly on small forested alluvial fans of north‐eastern North America, should receive more attention from land managers given the hazard they represent, as well as because of their sensitivity to various meteorological parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A dataset of 809 debris flows that occurred in 537 basins in mountainous areas of northeastern Italy between the mid-19th century and 2015 is collected and analyzed. A remarkable increase in the number of events is observed in the last four decades and is mainly ascribed to more systematic data collection. The correlation between debris-flow volume and drainage basin area is obtained assuming a power-law relationship. The exponent of the power-law curve at the 50th percentile (0.67 ± 0.02) indicates negative allometry, which means that basin area grows out of proportion to debris-flow volume. In contrast, the exponents at the 98th and 99th percentiles are close to one, implying that debris-flow volumes grow linearly with basin areas. The isometric relationship between the largest debris flows and the corresponding basin areas is due to the enhanced debris supply provided by the activation of widespread sediment sources, the extent of which is proportional to the basin size. The probability density function of debris-flow volume for a subset of the collected dataset is calculated using the kernel density estimation function, which permits estimating the probability of the occurrence of debris flows that exceed a given threshold volume. The comparison with debris flows in other hydroclimatic regions shows that, although debris-flow volumes in northeastern Italy may attain high values, they are often exceeded by debris flows that occur in seismically active regions and/or are triggered by more intense rainstorms. © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
AbstractUsing observations from 688 debris flows, we analyse the hydrologic and landscape characteristics that influenced debris-flow initiation mechanisms and locations in a watershed that had been partially burned by the 2012 Whitewater-Baldy Complex Fire in the Gila Mountains, southern New Mexico. Debris flows can initiate due to different processes. Slopes can fail as discrete landslides and then become fluidized and move downstream as debris flows (landslide initiated) or progressive bulking of sediment from a distributed area can become channelized and concentrated as it moves downslope (runoff generated). In this study, we have an unusual opportunity to investigate both types of debris-flow initiation mechanisms in our observations of debris flows, triggered by an exceptional rainstorm in the autumn of 2013. Additionally, we compare our observations with those of a dataset of 1138 debris flows in the Colorado Front Range, triggered during the same weather system. We found that runoff-generated debris flows dominated in burn areas, and runoff required to start these flows could be well characterized by the Shields stress. Landslide-initiated debris flows were dominant in unburned areas. Debris-flow densities were tied to total rainfall and precipitation intensities. Like the observations in the Colorado Front Range, debris-flow initiation locations were found primarily in areas of relatively sparse vegetation on south-facing slopes between 25 and 40°, and with upslope contributing areas less than 1000 m2. In terms of preferential locations for debris-flow initiations, 2013 vegetation coverage, approximated by Green–Red Vegetation Index metrics, proved to be more influential than the 2012 burn-severity designation. The uniformity of observations between our study area and those in the Colorado Front Range indicate that the underlying hydrologic and landscape patterns of the debris-flow initiation locations documented in these studies could be applicable to the wider southwest and Rocky Mountain regions. © 2019 John Wiley & Sons, Ltd.  相似文献   

8.
A new method to predict the runout of debris flows is presented. A data base of documented sediment‐transporting events in torrent catchments of Austria, Switzerland and northern Italy has been compiled, using common classification techniques. With this data we test an empirical approach between planimetric deposition area and event volume, and compare it with results from other studies. We introduce a new empirical relation to determine the mobility coefficient as a function of geomorphologic catchment parameters. The mobility coefficient is thought to reflect some of the flow properties during the depositional part of the debris‐flow event. The empirical equations are implemented in a geographical information system (GIS) based simulation program and combined with a simple flow routing algorithm, to determine the potential runout area covered by debris‐flow deposits. For a given volume and starting point of the deposits, a Monte‐Carlo technique is used to produce flow paths that simulate the spreading effect of a debris flow. The runout zone is delineated by confining the simulated potential spreading area in the down slope direction with the empirically determined planimetric deposition area. The debris‐flow volume is then distributed over the predicted area according to the calculated outflow probability of each cell. The simulation uses the ARC‐Objects environment of ESRI© and is adapted to run with high resolution (2·5 m × 2·5 m) digital elevation models, generated for example from LiDAR data. The simulation program called TopRunDF is tested with debris‐flow events of 1987 and 2005 in Switzerland. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Avulsion is a key process in building alluvial fans, but it is also a formidable natural hazard. Based on laboratory experiments monitored with novel high-frequency photogrammetry, we present a new model for avulsion on widely graded gravel fans. Previous experimental studies of alluvial fans have suggested that avulsion occurs in a periodic autogenic cycle, that is thought to be mediated by the gradient of the fan and fan-channel. However, those studies measured gradients at low spatial or temporal resolutions, which capture temporally or spatially averaged topographic evolution. Here, we present high-resolution (1 mm), high-frequency (1-minute) topographic data and orthophotos from an alluvial fan experiment. Avulsions in the experiment were rapid and, in contrast to some previous experimental studies, avulsion occurrence was aperiodic. Moreover, we found little evidence of the back-filling observed at coarser temporal and spatial resolutions. Our observations suggest that avulsion is disproportionately affected by sediment accumulation in the channel, particularly around larger, less mobile grains. Such in-channel deposition can cause channel shifting that interrupts the autogenic avulsion cycle, so that avulsions are aperiodic and their timing is more difficult to predict.  相似文献   

10.
Debris flows can grow greatly in size by entrainment of bed material, enhancing their runout and hazardous impact. Here, we experimentally investigate the effects of debris‐flow composition on the amount and spatial patterns of bed scour and erosion downstream of a fixed to erodible bed transition. The experimental debris flows were observed to entrain bed particles both grain by grain and en masse, and the majority of entrainment was observed to occur during passage of the flow front. The spatial bed scour patterns are highly variable, but large‐scale patterns are largely similar over 22.5–35° channel slopes for debris flows of similar composition. Scour depth is generally largest slightly downstream of the fixed to erodible bed transition, except for clay‐rich debris flows, which cause a relatively uniform scour pattern. The spatial variability in the scour depth decreases with increasing water, gravel (= grain size) and clay fraction. Basal scour depth increases with channel slope, flow velocity, flow depth, discharge and shear stress in our experiments, whereas there is no correlation with grain collisional stress. The strongest correlation is between basal scour and shear stress and discharge. There are substantial differences in the scour caused by different types of debris flows. In general, mean and maximum scour depths become larger with increasing water fraction and grain size, and decrease with increasing clay content. However, the erodibility of coarse‐grained experimental debris flows (gravel fraction = 0.64) is similar on a wide range of channel slopes, flow depths, flow velocities, discharges and shear stresses. This probably relates to the relatively large influence of grain‐collisional stress to the total bed stress in these flows (30–50%). The relative effect of grain‐collisional stress is low in the other experimental debris flows (<5%), causing erosion to be largely controlled by basal shear stress. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Due to their potentially long runout, debris flows are a major hazard and an important geomorphic process in mountainous environments. Understanding runout is therefore essential to minimize risk in the near-term and interpret the pace and pattern of debris flow erosion and deposition over geomorphic timescales. Many debris flows occur in forested landscapes where they mobilize large volumes of large woody debris (LWD) in addition to sediment, but few studies have quantitatively documented the effects of LWD on runout. Here, we analyze recent and historic debris flows in southeast Alaska, a mountainous, forested system with minimal human alteration. Sixteen debris flows near Sitka triggered on August 18, 2015 or more recently had volumes of 80 to 25 000 m3 and limited mobility compared to a global compilation of similarly-sized debris flows. Their deposits inundated 31% of the planimetric area, and their runout lengths were 48% of that predicted by the global dataset. Depositional slopes were 6°–26°, and mobility index, defined as the ratio of horizontal runout to vertical elevation change, ranged from 1.2 to 3, further indicating low mobility. In the broader southeast Alaskan region consisting of Chichagof and Baranof Islands, remote sensing-based analysis of 1061 historic debris flows showed that mobility index decreased from 2.3–2.5 to 1.4–1.8 as average forest age increased from 0 to 416 years. We therefore interpret that the presence of LWD within a debris flow and standing trees, stumps, and logs in the deposition zone inhibit runout, primarily through granular phenomena such as jamming due to force chains. Calibration of debris flow runout models should therefore incorporate the ecologic as well as geologic setting, and feedbacks between debris flows and vegetation likely control the transport of sediment and organic material through steep, forested catchments over geomorphic time. © 2020 John Wiley & Sons, Ltd.  相似文献   

12.
Two distinct types of alluvial fans occur in the Bow River Valley, Alberta, Canada: fluvially dominated and debris flow dominated. Large, gently sloping fans dominated by fluvial processes are associated with large and less rugged drainage basins, and small rugged basins have produced small, steep fans dominated by debris flow processes. Quantitative analysis demonstrates that strong fan-basin morphometric relationships occur despite a short fan history. Statistical analysis of fan area-basin area relationships indicate that debris flow fan areas do not increase in size as quickly as contributing basins. The relationship of fluvial fan area to basin area is not statistically significant. However, this relationship is probably affected by fan erosion. Examination of fan slope to basin ruggedness relationships indicates that fan slope increases more rapidly than basin ruggedness for both fan types. This is likely related to non-linear discharge and sediment size effects on fluvial fans, and reworking of larger fan surfaces by fluvial processes on debris flow fans.  相似文献   

13.
Construction of frequency–magnitude (F–M) relationships of debris floods and debris flows is challenging because of few direct observations, discontinuous event occurrence, loss of field evidence, the difficulty of accessing the sediment archive and the challenge of finding suitable statistical methods to analyse the dataset. Consultants often face budget limitations that prohibit application of the full gamut of absolute dating methods, stratigraphic analysis and analytical tools necessary to fully resolve the F–M legacy. In some cases, F–M curves are needed for watersheds without local information, or where obtaining this information is prohibitively expensive. For such watersheds, the F–M relationship may be estimated where several F–M curves have already been assembled in a specific region. Individual F–M curves are normalized by fan area or fan volume, then stratified by process type and geomorphic activity level. This paper describes the development of regional F–M curves for debris flows in southwestern British Columbia and debris flows and debris floods in the Bow River valley near Canmore, Alberta. We apply the regional relationships to other cases in Canada and the United States and demonstrate that the method can be globalized. The regional approach is compared to cases where detailed F–M relationships have been established by other means. Strong negative deviations from the regional debris-flow or debris-flood magnitude trends could signal inherent watershed stability, while strong positive deviations could signal extraordinary landslide processes, or suggest that the fan may be largely of paraglacial origin. We highlight some of these outlying cases and develop a method whereby the regional curves can be meaningfully adjusted, or reliance can be placed on lower or upper confidence bounds of the F–M curves. We caution against the indiscriminate use of the regionally based F–M curves, especially in watersheds where multiple geomorphic processes are active. © 2020 John Wiley & Sons, Ltd.  相似文献   

14.
This paper describes the application of a methodology for the evaluation of debris-flow risk in alluvial fans by incorporating numerical simulations with Geographical Information Systems to identify potential debris-flow hazard areas. The methodology was applied to a small catchment located in the north-eastern part of Sicily, Italy where an extreme debris flow event occurred in October 2007. The adopted approach integrates a slope stability model that identifies the areas of potential shallow landslides under different meteorological conditions using a two-dimensional finite-element model based on the De Saint Venant equation for the debris-flow propagation. The mechanical properties of the debris were defined using both laboratory and in situ test results. The risk classification of the area under study was derived using total hydrodynamic force per unit width (impact pressure) as an indicator for event intensity. Based on the simulation results, a potential risk zone was identified and mapped.  相似文献   

15.
The response of 12 fluvial fans near Sydney, Australia to a large storm between 2 and 4 February 1990 was determined by repeating previously surveyed longitudinal profiles and by undertaking detailed field observations of erosion and deposition. Peak rainfall intensities occurred on 3 and 4 February when between 173 and 193·8 mm were recorded. Return periods for 24 h duration peak rainfall ranged between 5·7 and 11·0 years on the annual maximum series at six stations within the study area and return periods for 48 h peak rainfall ranged between 13·5 and 29·4 years. Of the 12 fans, seven were trenched and five untrenched. The most significant geomorphic effects of the storm were recorded on the proximal region of the fans. However, fan response was highly variable, with one fan exhibiting no detectable change, three fans localized deposition, two fans spatially disjunct erosion and deposition, two fans channel avulsions, and seven fans fanhead trench reworking. Some fans exhibited more than one type of response. A four-stage, tentative cyclical model of fanhead development was constructed from the field data. Stage 1 refers to the episodic aggradation of the fanhead by localized deposition, spatially disjunct erosion and deposition and/or channel avulsions. Stage 2 represents the initiation of a fanhead trench when progressive aggradation locally exceeds a threshold slope leading to localized erosion. This erosion initially creates one or more discontinuous flow-aligned scour pools. Over time, the scour pools widen, deepen and extend both up- and downfan. Stage 3 refers to the coalescence of discontinuous scour pools into a continuous trench by the removal of intervening log and boulder steps. Stage 4 represents the backfilling phase of the trench once it has been overwidened and/or slope reduced. Aggradation then continues as for stage one.  相似文献   

16.
Debris flows are gravity-driven mass movements that are common natural hazards in mountain regions worldwide. Previous work has shown that measurements of ground vibrations are capable of detecting the timing, speed, and location of debris flows. A remaining question is to what extent additional flow properties, such as grain-size distribution and flow depth can be inferred reliably from seismic data. Here, we experimentally explore the relation of seismic vibrations and normal-force fluctuations with debris-flow composition and dynamics. We use a 5.4 m long and 0.3 m wide channel inclined at 20°, equipped with a geophone plate and force plate. We show that seismic vibrations and normal-force fluctuations induced by debris flows are strongly correlated, and that both are affected by debris-flow composition. We find that the effects of the large-particle distribution on seismic vibrations and normal-force fluctuations are substantially more pronounced than the effects of water fraction, clay fraction, and flow volume, especially when normalized by flow depth. We further show that for flows with similar coarse-particle distributions seismic vibrations and normal-force fluctuations can be reasonably well related to flow depth, even if total flow volume, water fraction, and the size distribution of fines varies. Our experimental results shed light on how changes in large-particle, clay, and water fractions affect the seismic and force-fluctuation signatures of debris flows, and provide important guidelines for their interpretation.  相似文献   

17.
Debris flows are fast-moving gravity flows of poorly sorted rock and soil, mixed and saturated with water. Debris-flow initiation has been studied using empirical and experimental modelling, but the geomorphic changes, indicative of different triggering processes, are difficult to constrain with field observations only. We identify signatures to distinguish two different debris-flow release styles by integrating high-resolution multi-temporal remote sensing datasets and morphometric analysis. We analyse debris flows sourced above the town of Ísafjörður (Iceland). Two debris-flow triggering processes were previously hypothesised for this site: (i) slope failure, characterised by landslides evolving into debris flows; and (ii) the fire-hose effect, in which debris accumulated in pre-existing, steep-sided bedrock passages is transported by a surge of water. It is unknown which process dominates and determines the local risk. To investigate this question, we compare airborne LiDAR elevation models and aerial photographs collected in 2007 with similar data from 2013. We find that two new debris-flow tracks were created by slope failures. These are characterised by steep sliding surfaces and lateral leveed channels. Slope failure also occurred in two large, recently active tracks, creating the preparatory conditions for the fire-hose effect to mobilise existing debris. These tracks show alternating zones of fill and scour along their length, and debris stored below the source-area at rest angles >35°. Our approach allows us to identify and quantify the morphological changes produced by slope failure release process, which generated the preparatory conditions for the fire-hose effect. As debris flows are rarely observed in action and morphological changes induced by them are difficult to detect and monitor, the same approach could be applied to other landscapes to understand debris-flow initiation in the absence of other monitoring information, and can improve the identification of zones at risk in inhabited areas near hillslopes with potential for debris flows. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

18.
Alluvial fans and debris cones link two zones of the fluvial system (e.g. hillslope gully systems to stream channels; mountain catchment sediment source areas to main river systems or to sedimentary basins) and therefore have important coupling or buffering roles. These roles may be both functional and preservational. The functional role includes debris‐cone coupling, which controls sediment supply from hillslope gully systems to stream channels, influencing channel morphology. Coupling through larger alluvial fans, expressed by fanhead trenching, causes a distal shift in sedimentation zones, or when expressed by through‐fan trenching, causes complete sediment by‐pass. The preservational role stems from the fact that fans and cones are temporary sediment storage zones, and may preserve a record of source–area environmental change more sensitively than would sediments preserved further downsystem. Fan coupling mechanisms include distally‐induced coupling (basal scour, ‘toe cutting’, marginal incision) and proximally‐induced coupling (fanhead and midfan trenching). These mechanisms lead initially to partial coupling, either extending the immediate sediment source area to the stream system or shifting the focus of sedimentation distally. Complete coupling involves transmission of sediment from the feeder catchment through the fan environment into the downstream drainage or a sedimentary basin. The implications of coupling relate to downstream channel response, fan morphology, sedimentation patterns and vertical sedimentary sequences. Temporal and spatial scales of coupling are related, and with increasing scales the dominant controls shift from storm events to land cover to climatic and base‐level change and ultimately to the relationships between tectonics and accommodation space. Finally, future research challenges are identified. Modern dating techniques and sophisticated analysis of remotely sensed data can greatly improve our understanding of fan dynamics, and should lead to better cross‐scale integration between short‐term process‐based approaches and long‐term sedimentological applications, while maintaining high quality field‐based observations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Factors influencing the distance a disintegrating rock mass travels as it spreads across the landscape after detaching from a slope include the volume and mechanical properties of the material, local topography and the materials encountered in the runout path. Here we investigate the influence of runout‐path material on the mobility and final morphology of the Round Top rock avalanche deposit, New Zealand. This rock avalanche of mylonitic schist ran out over a planar surface of saturated fluvial gravel. Longitudinal ridges aligned radial to source grade into smaller aligned hummocks and digitate lobes in the distal reach. Soils and river gravels in the runout path are found bulldozed at elongate ridge termini where they formed local obstacles halting avalanche motion at these locations, thus aiding development of prominent elongate ridges on the deposit. Further travel over the disrupted substrate led to avalanche–substrate mixing at the base of the debris mass. Field observations combined with subsurface geophysical investigations and laboratory analogue models illustrate the processes of substrate deformation features at the Round Top rock avalanche. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The flooding susceptibility of alluvial fans in the Southern Apennines has long been neglected. To partly address this oversight, we focus on the region of Campania which contains highly urbanized piedmont areas particularly vulnerable to flooding. Our findings are based on stratigraphic analysis of the fans and morphometric analysis of the basin‐fan systems. Using geomorphological analysis we recognized active alluvial fans while stratigraphic analysis together with statistical analysis of the morphometric variables was used to classify the fans in terms of the transport process involved. The results indicate that in the geological context examined, the best discrimination between debris flow (Df) and water flood (Wf) processes is achieved by means of two related variables, one for the basin (feeder channel inclination, Cg) and one for the fan (fan length, Fl). The probability that an unclassified fan belongs to group Wf is computed by applying a logistic function in which a P value exceeding 0.5 indicates that a basin/fan system belongs to group Wf. This important result led to the classification of the entire basin/fan system data. As regards process intensity, debris flow‐dominated fans are susceptible to the occurrence of flows with high viscosity and hence subject to more severe events than water flood‐dominated fans. Bearing this in mind, the data gathered in this study allow us to detect where alluvial fan flooding might occur and give information on the different degrees of susceptibility at a regional scale. Regrettably, urban development in recent decades has failed to take the presence of such alluvial fans into account due to the long recurrence time (50–100 years) between floods. This paper outlines the distribution of such susceptibility scenarios throughout the region, thereby constituting an initial step to implementing alluvial fan flooding control and mitigation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号