首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Residence times and flow paths of pipe and stream flow were studied during low flow in the Nant Gerig and Gwy experimental catchments at Plynlimon in mid-Wales, UK, using a two-month time series of natural deuterium and electrical conductivity data from perennial and ephemeral pipe flow, stream flow, groundwater and rainfall. Low flow in both the perennial pipe and the stream was maintained by ‘old’ groundwater discharge. This groundwater was at least 40 days old. Flow in the ephemeral pipe was dominated by old groundwater and was only slightly affected by direct inputs of new water. Although direct rainfall inputs contributed minimally to runoff in the perennial pipe and the stream, rainfall influenced the isotopic and chemical character of the groundwater. Rainfall also affected the water-table elevation, which determined the flashiness of the perennial pipe flow and whether the ephemeral pipe flowed. The isotope and electrical conductivity data suggest that storm runoff in both the main pipe and the stream is overwhelmingly old water. A sensitivity analysis suggests that the old water is supplied both from near-stream groundwater and upslope groundwater delivered by the ephemeral pipes.  相似文献   

2.
To evaluate the influence of hydrological processes on dissolved organic carbon (DOC) dynamics in a forested headwater catchment, DOC concentration was observed along the flow path from rainfall to stream water via throughfall, soil water, groundwater, and spring water for 4 years, and DOC flux through the catchment was calculated. The spatial and temporal variations in DOC concentration and flux were compared with physical hydrological observations and the mean residence time of water. In the upslope soil layer, DOC concentrations were not significantly correlated with water fluxes, suggesting that DOC concentrations were not strictly controlled by water fluxes. In the upslope perennial groundwater, DOC concentration was affected by the change in the amount of microbial degradation of DOC produced by changes in the mean residence time of water. In stream water, the temporal variation in DOC concentration was usually affected by changes in DOC concentration of the inflow component via vertical infiltration from above the perennial groundwater. During dry periods, however, the component from inflow via vertical infiltration was negligible and DOC in the upslope perennial groundwater became the major component of stream water DOC. The temporal variation in stream water DOC concentration during baseflow was affected by rainfall patterns over several preceding months. Therefore, records of rainfall over several preceding months are one of the most important factors for predicting changes in DOC concentration on a catchment scale. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Xenobiotic organic compounds can be discharged from contaminated groundwater inflow and may seep into streams from multiple pathways with very different dynamics, some not fully understood. In this study, we investigated the spatio-temporal variation of chlorinated ethenes discharging from a former industrial site (with two main contaminant sources, A and B) into a stream system in a heterogeneous clay till setting in eastern Denmark. The investigated reach and near-stream surroundings are representative of peri-urban settings, with a mix of high channel alteration and more natural stream environment. We therefore propose an approach for risk assessing impacts arising from such complex contamination patterns, accounting for potential spatio-temporal fluctuations and presence of multiple pathways. Our study revealed substantial variations in pathway contributions and overall contaminant mass discharge to the stream. Variable contaminant contributions arising from both groundwater seepage and urban drains were identified in the channelized part of the north stream, primarily from source A. Furthermore, variations in the hyporheic and shallow groundwater flows were found to enhance contaminant transport from source B. These processes result in an increase of the overall mass of contaminant discharged, correlating with the channels' flow. Thus, an in-stream control plane approach was found to be an effective method for integrating multiple and variable discharge contributions quantitatively, although information on specific contaminant sources is lost. This study highlights the complexity and variability of contaminant fluxes occurring at the interface between groundwater and peri-urban streams, and calls for the consideration of these variations when designing monitoring programs and remedial actions for contaminated sites with the potential to impact streams.  相似文献   

4.
In this study, a water‐air two‐phase flow model was employed to investigate the formation, extension, and dissipation of groundwater ridging induced by recharge events in a hypothetical hillslope‐riparian zone, considering interactions between the liquid and gas phases in soil voids. The simulation results show that, after a rain begins, the groundwater table near the stream is elevated instantaneously and significantly, thereby generating a pressure gradient driving water toward both the stream (the discharge of groundwater to the stream) and upslope (the extension of groundwater ridging into upslope). Meanwhile, the airflow upslope triggered by the advancing wetting front moves downward gradually. Therefore, the extension of groundwater ridging into upslope and the downward airflow interact within a certain region. After the rain stops, groundwater ridging near the stream declines quickly while the airflow in the lower part of upslope is still moving into the hillslope. Thus, the airflow upslope mitigates the dissipation of groundwater ridging. Additionally, the development of groundwater ridging under different conditions, including rain intensity, intrinsic permeability, capillary fringe height, and initial groundwater table, was analyzed. Changes in intrinsic permeability affect the magnitude of groundwater ridging near the stream, as well as the downward speed of airflow, thereby generating highly complex responses. The capillary fringe is not a controlling factor but an influence factor on the formation of groundwater ridging, which is mainly related to the antecedent moisture. It was demonstrated that groundwater ridging also occurs where an unsaturated zone occurs above the capillary fringe with a subsurface lateral flow.  相似文献   

5.
The role of bedrock groundwater in rainfall–runoff processes is poorly understood. Hydrometric, tracer and subsurface water potential observations were conducted to study the role of bedrock groundwater and subsurface flow in the rainfall–runoff process in a small headwater catchment in Shiranui, Kumamoto prefecture, south‐west Japan. The catchment bedrock consists of a strongly weathered, fractured andesite layer and a relatively fresh continuous layer. Major chemical constituents and stable isotopic ratios of δ18O and δD were analysed for spring water, rainwater, soil water and bedrock groundwater. Temporal and spatial variation in SiO2 showed that stream flow under the base flow condition was maintained by bedrock groundwater. Time series of three components of the rainstorm hydrograph (rainwater, soil water and bedrock groundwater) separated by end member mixing analysis showed that each component fluctuated during rainstorm, and their patterns and magnitudes differed between events. During a typical mid‐magnitude storm event, a delayed secondary runoff peak with 1·0 l s−1 was caused by increase in the bedrock groundwater component, whereas during a large rainstorm event the bedrock groundwater component increased to ≈ 2·5 l s−1. This research shows that the contribution of bedrock groundwater and soil water depends strongly on the location of the groundwater table, i.e. whether or not it rises above the soil–bedrock interface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Nitrate concentrations in streamwater of agricultural catchments often exhibit interannual variations, which are supposed to result from land‐use changes, as well as seasonal variations mainly explained by the effect of hydrological and biogeochemical cycles. In catchments on impervious bedrock, seasonal variations of nitrate concentrations in streamwater are usually characterized by higher nitrate concentrations in winter than in summer. However, intermediate or inverse cycles with higher concentrations in summer are sometimes observed. An experimental study was carried out to assess the mechanisms that determine the seasonal cycles of streamwater nitrate concentrations in intensive agricultural catchments. Temporal and spatial patterns of groundwater concentrations were investigated in two adjacent catchments located in south‐western Brittany (France), characterized by different seasonal variations of streamwater nitrate concentrations. Wells were drilled across the hillslope at depths ranging from 1·5 to 20 m. Dynamics of the water table were monitored and the groundwater nitrate and chloride concentrations were measured weekly over 2 years. Results highlighted that groundwater was partitioned into downslope domains, where denitrification induced lower nitrate concentrations than into mid‐slope and upslope domains. For one catchment, high subsurface flow with high nitrate concentrations during high water periods and active denitrification during low water periods explained the higher streamwater nitrate concentrations in winter than in summer. For the other catchment, the high contribution of groundwater with high nitrate concentrations smoothed or inverted this trend. Increasing bromide/chloride ratio and nitrate concentrations with depth argued for an effect of past agricultural pressure on this catchment. The relative contribution of flows in time and correlatively the spatial origin of waters, function of the depth and the location on the hillslope, and their chemical characteristics control seasonal cycles of streamwater nitrate concentrations and can influence their interannual trends. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Nonpoint sources of nitrogen (N) and other nutrients are a major source of water pollution within the Chesapeake Bay watershed and other basins around the world. Human activities associated with agricultural practices can account for a large percentage of N loadings delivered to streams and rivers. This work aims to improve understanding of N transport from groundwater to surface waters, quantifying the principal hydrological processes driving water and N fluxes into and out of a headwater agricultural stream reach. The study site is a 175-m stream reach in a heavily cultivated 40-ha watershed in east-central Pennsylvania. This subwatershed is underlain by fractured shale bedrock, and receives most of its baseflow from groundwater, either by diffuse matrix discharge through the streambed or by localized discharge through riparian seeps. Samples of stream, seep, and shallow groundwater were collected approximately monthly under steady hydrologic conditions in 2017. Calculated matrix flow from hydraulic head and conductivity measurements paired with differential stream gauging was used to solve for the riparian seep flux using a mass balance approach. Riparian seep fluxes ranged from 45 to 217 m3/d, transporting 0.6–4.2 kg N d−1 of nitrate-N from the fractured bedrock aquifer to the stream. Hydrochemical data suggest that the stream is mainly disconnected from the underlying aquifer and that seeps supply essentially all water and N to the system. Seeps are likely sourced with N in nearby agricultural fields and accelerated through the system with shorter residence times than shallow groundwater. Water isotope data reinforced this notion. This study underscores the importance of agriculture as a source of N to ground and surface waters. Identifying source areas that are causing groundwater enrichment of N and seep areas where N discharges to streams is beneficial for developing N pollution mitigation strategies and implementing management practices that aim to reduce nutrient loads to the Chesapeake Bay.  相似文献   

10.
Beaver dam analogues (BDAs) are a cost-effective stream restoration approach that leverages the recognized environmental benefits of natural beaver dams on channel stability and local hydrology. Although natural beaver dams are known to exert considerable influence on the hydrologic conditions of a stream system by mediating geomorphic processes, nutrient cycling, and groundwater–surface water interactions, the impacts of beaver-derived restoration methods on groundwater–surface water exchange are poorly characterized. To address this deficit, we monitored hyporheic exchange fluxes and streambed porewater biogeochemistry across a sequence of BDAs installed along a central Wyoming stream during the summer of 2019. Streambed fluxes were quantified by heat tracing methods and vertical hydraulic gradients. Biogeochemical activity was evaluated using major ion porewater chemistry and principal component analysis. Vertical fluxes of approximately 1.0 m/day were observed around the BDAs, as was the development of spatially heterogeneous zones of nitrate production, groundwater upwelling, and anaerobic reduction. Strong contrasts in hyporheic zone processes were observed across BDAs of differing sizes. This suggests that structures may function with size-dependent behaviour, only altering groundwater–surface water interactions after a threshold hydraulic step height is exceeded. Patterns of hyporheic exchange and biogeochemical cycling around the studied BDAs resemble those around natural beaver dams, suggesting that BDAs may provide comparable benefits to channel complexity and near-stream function over a 1-year period.  相似文献   

11.
Understanding natural variation in stream phosphorus (P) concentrations over space and time is critical for understanding natural drivers of catchment behavior and establishing regulatory standards. Across minimally impacted benchmark streams (n = 81) in Florida, spatial variation in mean total P concentrations was large, indicating the importance of geologic controls on catchment solute dynamics. While this variation was significantly predicted by geographic regions, within regions we observed nearly comparable cross‐site variation, suggesting important finer‐scale heterogeneity in baseline catchment chemistry. Within‐site residual variation (unexplained by region or site) was as large as spatial variation, suggesting temporal variation in response to drivers such as flow may be critically important. To further explore timescales of P export variation, we collected long‐term, high‐frequency (subdaily) measurements of stream discharge (Q) and soluble reactive P (SRP) in 2 forested watersheds. We observed significant variation at annual, event, and diel timescales, all of which arise primarily from corresponding Q‐variation. Over the entire period of record, we generally observed a strong dilution signal, with SRP concentrations declining with increased Q. Despite significant SRP variation, flow variation was far larger and, thus, dominated temporal control on downstream flux. Within‐storm events, we observed strong and consistent clockwise SRP versus Q hysteresis, suggesting mobilization of proximal SRP stores. Diel variation exhibited mid‐afternoon concentration minima, Q‐controlled amplitude, and pronounced seasonal shifts in both magnitude and timing consistent with riparian evapotranspiration‐regulating lateral inputs of P‐rich groundwater. Such high‐resolution temporal signals allow identification of solute sources and provide insights into geologic and hydrologic drivers of solute variation.  相似文献   

12.
Streamwater discharge and chemistry of two small catchments on Catoctin Mountain in north-central Maryland have been monitored since 1982. Repetitive seasonal cycles in stream-water chemistry have been observed each year, along with seasonal cycles in the volume of stream discharge and in groundwater levels. The hypothesis that the observed streamwater chemical cycles are related to seasonal changes in the hydrological flow paths that contribute to streamflow is examined using a combination of data on groundwater levels, shallow and deep groundwater chemistry, streamwater discharge, streamwater chemistry, soil-water chemistry, and estimates of water residence times. The concentrations of constituents derived from rock weathering, particularly bicarbonate and silica, increase in streamwater during the summer when the water table is below the regolith-bedrock interface and stream discharge consists primarily of deep groundwater from the fractured-bedrock aquifer. Conversely, the concentrations in streamwater of atmospherically derived components, particularly sulfate, increase in winter when the water table is above the regolith-bedrock interface and stream discharge consists primarily of shallow groundwater from the regolith. Tritium and chlorofluorocarbon (CFC) measurements suggest that the groundwater in these systems is young, with a residence time of less than several years. The results of this study have implications for the design of large-scale water-quality monitoring programs.  相似文献   

13.
We examined how and why dominant peak-flow runoff-generation mechanisms differ among neighbouring headwater catchments. We monitored runoff and groundwater levels and performed terrain analyses in a granitic second-order catchment and its four neighbouring subcatchments in the Kiryu Experimental Watershed in Japan. Our analysis of lag times from peak rainfall to peak runoff suggests differences in the dominant peak-flow runoff-generation mechanisms among the five catchments. For two of the three zero-order catchments, with few perennial groundwater bodies, subsurface flow from hillslopes was the dominant mechanism at some events. However, the dominant mechanisms were channel precipitation and riparian runoff at almost all events in first- and second-order catchments and in the third zero-order catchment, which has a large perennial groundwater body over a bedrock depression in the riparian zone. In this zero-order catchment, the quick-flow ratio was the smallest of the five catchments because subsurface flow from the hillslope was buffered at the riparian zone. These facts suggest that the channel length, riparian buffering, and hillslope connectivity were the factors governing the different dominant peak-flow runoff-generation mechanisms among the catchments. Riparian buffering was affected, not only by surface topography, but also by bedrock topography and bedrock groundwater (BGW) dynamics. Our findings indicate that both of BGW dynamics and topography are important for catchment classification, and the relative importance of topography increases with the change from baseflow to stormflow. Furthermore, mismatching between a geographic source and a flow path resulted in different catchment classifications depending on the approach. Therefore, multiple approaches during both baseflow and stormflow periods are necessary for catchment classification to apply information obtained from one headwater catchment to other headwater catchments within the same region.  相似文献   

14.
Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first-order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated-soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.  相似文献   

15.
Abstract

Throughflow has been measured from three soil horizons on a 12 slope with impermeable, bedrock. Storm flow comes from the 10–45 cm horizon and is controlled by the upslope extent of saturated conditions. Base flow comes from the 45–75 cm horizon and is supplied by slow unsaturated flow from the whole soil mass to a small constant zone of saturation.

Differences between input and output stream hydrographs over 270 metres of channel are attributed to throughflow and correlate well with measured values providing a basis for separating throughflow components from the stream hydrograph. Observed stream flows contain no overland flow or ground water flow components. The main basin flood peak is not generated within this control section of channel but is produced in the headwater zone (0.1 km2) by the faster runoff characteristics of the soils in that area and by topographic factors which lead to rapid channel extension.  相似文献   

16.
Arsenic in private drinking water wells is a significant problem across much of eastern Wisconsin, USA. The release mechanism and stratigraphic distribution of sulfide and iron (hydr)oxide sources of arsenic in bedrock aquifers are well understood for northeastern Wisconsin. However, recent geologic mapping has identified numerous small bedrock folds to the south, and the impact of these geologic structures on local groundwater flow and well contamination has been little studied. This paper examines the hydrologic and structural effects of the Beaver Dam anticline, southeast Wisconsin, on arsenic in groundwater in the region. Multivariate logistic regression shows wells near the Beaver Dam anticline are statistically more likely to detect arsenic in groundwater compared to wells farther away. Structural and hydrologic changes related to folding are interpreted to be the cause. Core drilled near the fold axis is heavily fractured, and many fractures are filled with sulfides. Elevated hydraulic conductivity estimates are also recorded near the fold axis, which may reflect a higher concentration of vertical fractures. These structural and hydrologic changes may have led to systematic changes in the distribution and concentration of arsenic-bearing mineral hosts, resulting in the observed detection pattern. For areas with similar underlying geology, this approach may improve prediction of arsenic risk down to the local level.  相似文献   

17.
This study presents an approach for delineating groundwater basins and estimating rates of recharge to fractured crystalline bedrock. It entailed the use of completion report data (boring logs) from 2500 domestic wells in bedrock from the Coventry Quadrangle, which is located in northeastern Connecticut and characterized by metamorphic gneiss and schist. Completion report data were digitized and imported into ArcGIS® for data analysis. The data were processed to delineate groundwater drainage basins for the fractured rock based on flow conditions and to estimate groundwater recharge to the bedrock. Results indicate that drainage basins derived from surface topography, in general, may not correspond with bedrock drainage basins due to scale. Estimates of recharge to the bedrock for the study area indicate that only a small fraction of the precipitation or the amount of water that enters the overburden recharges the rock. The approach presented here can be a useful method for water resource‐related assessments that involve fractured rock aquifers.  相似文献   

18.
Climate change is expected to affect air temperature and watershed hydrology, but the degree to which these concurrent changes affect stream temperature is not well documented in the tropics. How stream temperature varies over time under changing hydrologic conditions is difficult to isolate from seasonal changes in air temperature. Groundwater and bank storage contributions to stream flow (i.e., base flow [BF]) buffer water temperatures against seasonal and daily fluctuations in solar radiation and air temperature, whereas rainfall‐driven runoff produces flooding events that also influence stream temperature. We used a space‐for‐time substitution to examine how shifts in BF and runoff alter thermal regimes in streams by analyzing hydrological and temperature data collected from similar elevations (400–510 m above sea level) across a 3,500‐mm mean annual rainfall gradient on Hawai'i Island. Sub‐daily water temperature and stream flow gathered for 3 years were analyzed for daily, monthly, and seasonal trends and compared with air temperature measured at multiple elevations. Results indicate that decreases in median BF increased mean, maximum, and minimum water temperatures as well as daily temperature range. Monthly and daily trends in stream temperature among watersheds were more pronounced than air temperature, driven by differences in groundwater inputs and runoff. Stream temperature was strongly negatively correlated to BF during the dry season but not during the wet season due to frequent wet season runoff events contributing to total flow. In addition to projected increases in global air temperature, climate driven shifts in rainfall and runoff are likely to affect stream flow and groundwater recharge, with concurrent influences on BF resulting in shifts in water temperature that are likely to affect aquatic ecosystems.  相似文献   

19.
Hydrologic models have increasingly been used in forest hydrology to overcome the limitations of paired watershed experiments, where vegetative recovery and natural variability obscure the inferences and conclusions that can be drawn from such studies. Models are also plagued by uncertainty, however, and parameter equifinality is a common concern. Physically‐based, spatially‐distributed hydrologic models must therefore be tested with high‐quality experimental data describing a multitude of concurrent internal catchment processes under a range of hydrologic regimes. This study takes a novel approach by not only examining the ability of a pre‐calibrated model to realistically simulate watershed outlet flows over a four year period, but a multitude of spatially‐extensive, internal catchment process observations not previously evaluated, including: continuous groundwater dynamics, instantaneous stream and road network flows, and accumulation and melt period spatial snow distributions. Many hydrologic model evaluations are only on the comparison of predicted and observed discharge at a catchment outlet and remain in the ‘infant stage’ in terms of model testing. This study, on the other hand, tests the internal spatial predictions of a distributed model with a range of field observations over a wide range of hydroclimatic conditions. Nash‐Sutcliffe model efficiency was improved over prior evaluations due to continuing efforts in improving the quality of meteorological data collection. Road and stream network flows were generally well simulated for a range of hydrologic conditions, and snowpack spatial distributions were well simulated for one of two years examined. The spatial variability of groundwater dynamics was effectively simulated, except at locations where strong stream–groundwater interactions exist. Model simulations overall were quite successful in realistically simulating the spatiotemporal variability of internal catchment processes in the watershed, but the premature onset of simulated snowmelt for one of the simulation years has prompted further work in model development. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Allan Rodhe  Jan Seibert 《水文研究》2011,25(12):1899-1909
Knowledge of groundwater dynamics is important for the understanding of hydrological controls on chemical processes along the water flow pathways. To increase our knowledge of groundwater dynamics in areas with shallow groundwater, the groundwater dynamics along a hillslope were studied in a boreal catchment in Southern Sweden. The forested hillslope had a 1‐ to 2‐m deep layer of sandy till above bedrock. The groundwater flow direction and slope were calculated under the assumption that the flow followed the slope of the groundwater table, which was computed for different triangles, each defined by three groundwater wells. The flow direction showed considerable variations over time, with a maximum variation of 75°. During periods of high groundwater levels the flow was almost perpendicular to the stream, but as the groundwater level fell, the flow direction became gradually more parallel to the stream, directed in the downstream direction. These findings are of importance for the interpretation of results from hillslope transects, where the flow direction usually is assumed to be invariable and always in the direction of the hillslope. The variations in the groundwater flow direction may also cause an apparent dispersion for groundwater‐based transport. In contrast to findings in several other studies, the groundwater level was most responsive to rainfall and snowmelt in the upper part of the hillslope, while the lower parts of the slope reached their highest groundwater level up to 40 h after the upper parts. This can be explained by the topography with a wetter hollow area in the upper part. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号