首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A deeper understanding of the sediment characteristics associated with rock fragment content can improve our knowledge of the erosional processes and transport mechanisms of sediments on steep rocky slopes. This research used simulated rainfall experiments lasting for 1 h at a rate of 90 mm h−1 and employed 5 × 1 × 0.4 m parallel troughs filled with purple soils with different rock fragment volumetric contents (0, 5, 10, 20, 30 and 40%) on a 15° slope gradient. For each simulated event, runoff and sediment were sampled at 1- and 3-min intervals, respectively, to study, in detail, the temporal changes in the size distributions of the eroded sediments. The results show that sediment concentrations, soil erosion rates and soil loss ratios significantly decreased as rock fragment content increased for rock fragment contents from 0 to 40% in purple soils. During the transportation process, clay particles often formed aggregates and were then transported as larger particles. Silt particles were more likely to be transported as primary particles with a low degree of sediment aggregation. Sand-sized particles, which constituted a greater proportion of the original soil than the eroded sediments, were formed from other fine particles and transported as aggregates rather than as primary particles. Suspension-saltation, which mainly transports fine particles of 0.02–0.05 mm and coarse particles larger than 0.5 mm in size, was the most important transport mechanism on steep rocky slopes. The results of this study can help to explain the inherent laws of erosional processes on steep rocky slopes and can provide a foundation for improving physical models of soil erosion. © 2019 John Wiley & Sons, Ltd.  相似文献   

2.
Modifications are made to the revised Morgan–Morgan–Finney erosion prediction model to enable the effects of vegetation cover to be expressed through measurable plant parameters. Given the potential role of vegetation in controlling water pollution by trapping clay particles in the landscape, changes are also made to the way the model deals with sediment deposition and to allow the model to incorporate particle‐size selectivity in the processes of erosion, transport and deposition. Vegetation effects are described in relation to percentage canopy cover, percentage ground cover, plant height, effective hydrological depth, density of plant stems and stem diameter. Deposition is modelled through a particle fall number, which takes account of particle settling velocity, flow velocity, flow depth and slope length. The detachment, transport and deposition of soil particles are simulated separately for clay, silt and sand. Average linear sensitivity analysis shows that the revised model behaves rationally. For bare soil conditions soil loss predictions are most sensitive to changes in rainfall and soil parameters, but with a vegetation cover plant parameters become more important than soil parameters. Tests with the model using field measurements under a range of slope, soil and crop covers from Bedfordshire and Cambridgeshire, UK, give good predictions of mean annual soil loss. Regression analysis of predicted against observed values yields an intercept value close to zero and a line slope close to 1·0, with a coefficient of efficiency of 0·81 over a range of values from zero to 38·6 t ha?1. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
To evaluate the impact of slope length on sediment yield under different rainfall intensities and land use types on low hill gentle slope, the characteristics of sediment yield process were analyzed based on the field artificial rainfall simulation. For the study, grassland and capsicum slope were taken from Anji county of Zhejiang province, China. Results indicated that rainfall intensity had stronger influence than slope length on sediment yield in south region. For capsicum slope, sediment yield increased quickly with increasing slope length when rainfall intensity greater than 90 mm h–1. The slope length had no significant effect on sediment yield when rainfall intensity less than or equaled to 90 mm h–1. For grassland, data from experiments indicated that sediment yield increased slowly with increasing slope length under rainfall intensity less than 120 mm h–1. There was a decreasing tendency of sediment yield at 6 m slope length under all rainfall events. It was concluded from particle size analysis of erosional sediment that silt and clay particles <0.02 mm were always preferentially transported on both capsicum slope (silt 47.1%, clay 40.9%) and grassland (silt 38.3%, clay 35.9%). We hope these results are useful for soil and water conservation and land management.  相似文献   

4.
This paper deals with the effect of rainfall on the process of wind erosion of beach sands and presents results from both field and wind tunnel experiments. Although sediment transport by splash is of secondary importance on coastal dunes, splash–saltation processes can move sediments in conditions where no motion is predicted by aeolian processes. The effect of raindrop impact on the movement of soil particles by wind was measured on a sand beach plain using an acoustic sediment sampler. In general, an increase of particle movement by wind at the sensor heights was observed during rainfall. Rainfall also affected the wind erosion process during and after rain by changing the cohesive conditions of the surface. The influence of the surface moisture content on the initiation of wind erosion and on the vertical distribution of transported sand particles was studied in a wind tunnel. Moisture significantly increased threshold wind velocities for the initiation of sediment transport and modified vertical sediment profiles.  相似文献   

5.
Plant litter can either cover on soil surface or be incorporated into top-soil layer in natural ecosystems. Their effects on infiltration and soil erosion are likely quite different. This study was performed to compare the effects of litter covering on soil surface and being incorporated into top-soil layer on infiltration and soil erosion under simulated rainfall. Four litter types (needle-leaf, broad-leaf, brush, and herb) were collected from fields and applied to cover on soil surface or to be incorporated into top-soil layer (5 cm) at the same rate (0.2 kg/m2). The simulated rainfalls (40 and 80 mm/hr) were run at two slope angles (10° and 20°). The results showed that the mean infiltration rate of litter covering treatment was 1.4 times as great as that of litter incorporated. Litter covering enhanced infiltration via protecting surface from soil sealing. Whereas, litter incorporation affected infiltration by its water repellency. Soil erosion of litter incorporated treatment was 5.4 times as large as that of litter covered treatment, which was attributed to the changes in surface litter coverage and soil erosion resistance. Litter type affected soil erosion through the variations in litter coverage and litter morphology. For litter covering treatment, litter coverage can explain the major variance of soil loss on the slopes. Whereas, for litter incorporated treatment, both the influences of litter coverage and litter length on soil erosion resistance were considered necessary to well explain the variance of soil loss. The results also showed that the benefits of litter to control soil erosion declined with rainfall intensity and slope gradient for both covering and incorporated treatments. The results of this study are helpful to understand the mechanisms of litter influencing hydrological and erosion processes on hillslopes.  相似文献   

6.
The bulk of eroded soils measured at the outlets of plots, slopes and watersheds are suspended sediments, splash‐induced sheet erosion. It is depending on rainfall intensity and antecedent soil moisture contents and contributes to a significant proportion of soil loss that usually is ignored in soil erosion and sediment studies. A digital image processing method for tracing and measuring non‐suspended soil particles detached/transported by splash/runoff was therefore used in the present study. Accordingly, fine mineral pumice grains aggregated with white cement and coloured with yellow pigment powder, with the same size, shape and specific gravity as those of natural soil aggregates, called synthetic color‐contrast aggregates, were used as tracers for detecting soil particle movement. Subsequently, the amount of non‐suspended soil particles detached and moved downward the slope was inferred with the help of digital image processing techniques using MATLAB R2010B software (Mathworks, Natick, Massachusetts, USA). The present study was conducted under laboratory conditions with four simulated rainfall intensities between 30–90 mm h‐1, five antecedent soil moisture contents between 12–44 % v v‐1 and a slope of 30%, using sandy loam soils taken from a summer rangeland in the Alborz Mountains, Northern Iran. A range of total transported soil between 90.34 and 1360.93 g m‐2 and net splash erosion between 36.82 and 295.78 g m‐2were observed. The results also showed the sediment redeposition ratio ranging from 87.27% [sediment delivery ratio (SDR) = 12.73%] to 96.39% (SDR = 3.61%) in various antecedent soil moisture contents of rainfall intensity of 30 mm h‐1 and from 80.55% (SDR = 19.45%) to 89.42% (SDR = 10.58%) in rainfall intensity of 90 mm h‐1. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Hyperconcentrated flows often occur in the middle and lower Yellow River(MLYR)and its tributaries,within which the main sediment source originates from the Loess Plateau of China due to serious water erosion.Little is known about the properties of river sediment that is transported by hyperconcentrated flows,particularly with respect to the mineral composition and size distribution.Samples of sediment and loess were collected in the northern,middle,and southern Loess Plateau and the mainstream and tributaries of the MLYR.A total of 18 loess samples and 24 river sediment samples were analyzed to determine their sediment size distribution and mineral composition.The bottom loess samples reflected the original sedimentary features of the Loess Plateau,and the median particle size reduced,and the clay content increased from the north to the south of the study region.The surface loess has been weathered under the action of wind and rainfall,and the clay particle content in the surface loess samples was higher than that in the undisturbed bottom loess.Erosion of the surface soil due to rainfall and surface runoff means that fine particles(mostly clay)have been washed away.The median diameter of surface loess particles was a little larger than that of the bottom loess particles where water erosion dominates.The particle size became coarser with increasing distance from the estuary in the MLYR,which reflects depositional sorting in the river channel.Significant logarithmic relations were found between the median diameter of the sediment particles and the i)non-clay mineral content and ii)clay mineral content.Thus,clay and non-clay mineral compositions can be conveniently estimated from the particle size distribution.  相似文献   

8.
Accelerated runoff and erosion commonly occur following forest fires due to combustion of protective forest floor material, which results in bare soil being exposed to overland flow and raindrop impact, as well as water repellent soil conditions. After the 2000 Valley Complex Fires in the Bitterroot National Forest of west‐central Montana, four sets of six hillslope plots were established to measure first‐year post‐wildfire erosion rates on steep slopes (greater than 50%) that had burned with high severity. Silt fences were installed at the base of each plot to trap eroded sediment from a contributing area of 100 m2. Rain gauges were installed to correlate rain event characteristics to the event sediment yield. After each sediment‐producing rain event, the collected sediment was removed from the silt fence and weighed on site, and a sub‐sample taken to determine dry weight, particle size distribution, organic matter content, and nutrient content of the eroded material. Rainfall intensity was the only significant factor in determining post‐fire erosion rates from individual storm events. Short duration, high intensity thunderstorms with a maximum 10‐min rainfall intensity of 75 mm h?1 caused the highest erosion rates (greater than 20 t ha?1). Long duration, low intensity rains produced little erosion (less than 0·01 t ha?1). Total C and N in the collected sediment varied directly with the organic matter; because the collected sediment was mostly mineral soil, the C and N content was small. Minimal amounts of Mg, Ca, and K were detected in the eroded sediments. The mean annual erosion rate predicted by Disturbed WEPP (Water Erosion Prediction Project) was 15% less than the mean annual erosion rate measured, which is within the accuracy range of the model. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

9.
A method for collecting suspended sediment samples has been developed that pumps a discharge-weighted volume of water from fixed depths at four to 40 locations across a river and separates the suspended sediment in the sample using a continuous-flow centrifuge. The efficacy of the method is evaluated by comparing the particle size distributions of sediment collected by the discharge-weighted pumping method with the particle size distributions of sediment collected by depth integration and separated by gravitational settling. The pumping method was found to undersample the suspended sand sized particles (> 63 μm) but to collect a representative sample of the suspended silt and clay sized particles (< 63 μm). The centrifuge separated the silt and clay sized particles (< 63 μm) into three fractions. Based on the average results of processing 17 samples from the Mississippi River and several of its large tributaries in 1990, about 10% of the silt and clay sized material was trapped in a centrifuge bowl-bottom sealing unit containing the nozzle and consisted of mostly medium and coarse silt from 16 to 63 μm. About 74% was retained on a Teflon liner in the centrifuge bowl and consisted of sizes from 0–1 to 63 μm. About 9% was discharged from the centrifuge in the effluent and was finer than 0–1 μm. About 7% was lost during the processes of removing the wet sediment fractions from the centrifuge, drying and weighing. The success of the discharge-weighted pumping method depends on how homogeneously the silt and clay sized particles (< 63 μm) are distributed in the vertical direction in the river. The degree of homogeneity depends on the composition and degree of aggregation of the suspended sediment particles.  相似文献   

10.
《国际泥沙研究》2023,38(1):49-65
Severe erosion is caused by intense rainfall in tropical regions. The erodible soil of steep hill slopes, accompanied by destruction of vegetation due to human interventions results in accelerated erosion. A sustainable and cost-effective solution such as vetiver grass (Chrysopogon zizanioides) is, thus, required to control the erosion process. In the current study, 6 small-scale glass models: 1 bare and 5 with vetiver grass, having a slope angle of 37° have been constructed. One year after planting, artificial rainfall of extremely high intensity was applied to all 6 small models and the role of vetiver canopy and roots in erosion and runoff control was observed. To see the effect of soil texture, one among these 5 models was made with silty sand and others contained sandy silt. The results demonstrated that, for sandy silt, the inclusion of vetiver reduced the soil loss by 94%–97%, and soil detachment rates were lowered by 95%. The average runoff also was reduced by 21%. The canopy cover showed a positive impact on reducing both quantities. An increase in average root diameter from 1.6 to 2.5 mm increases the soil loss due to its negative impact on added cohesion. The added cohesion showed a linearly negative correlation with soil loss. A composite system of vetiver and jute geotextile was most effective in erosion reduction among 4 vegetated models with sandy silt. Under same vetiver planting layout, the grass covered model of silty sand yielded 84% lower erosion and 62.5% lower runoff than the grass covered one with sandy silt. Thus, vetiver was more effective in erosion and runoff reduction for soil with a greater percentage of sand, and soil type dominated the erosion process.  相似文献   

11.
Plant litter can be incorporated into topsoil by a natural process, affecting the soil erosion process. This is a widespread phenomenon in erosion-prone areas. This study was conducted to investigate the effect of litter incorporation on the process of soil detachment on the Loess Plateau, China. Four common plant litters (Bothriochloa ischaemum L. Keng., Artemisia sacrorum Ledeb., Setaria viridis L. Beauv., and Artemisia capillaris Thunb.) were collected, then incorporated into the silt loam soil at five rates (0.1, 0.4, 0.7, 1.0, and 1.3 kg m−2) on the basis of our field investigation. Twenty litter–soil treatments and one bare soil control were prepared. After 50 days of natural stabilization, 30 soil samples of each treatment were collected. We used a flume test to scour the soil samples under six flow shear stress conditions (5.66, 8.31, 12.21, 15.55, 19.15, and 22.11 Pa). The results showed that the different incorporated litter masses and morphological characteristics, such as litter tissue density (ranging from 0.52 to 0.68 g cm−3), length density (2.34 to 91.00 km m−3), surface area density (LSAD; 27.9 to 674.2 m2 m−3), and volume ratio (0.003 to 0.050 m3 m−3), caused varied soil detachment capacities (0.043 to 4.580 kg·m−2·s−1), rill erodibilities (0.051 to 0.237 s m−1), and critical shear stresses (2.02 to 6.83 Pa). The plant litter incorporated within the soil reduced the soil detachment capacities by 38%–59%, lowered the rill erodibilities by 32%–46%, and increased the critical shear stresses by 98%–193% compared with the bare soil control. The soil containing B. ischaemum (L.) Keng. litter was more resistant to erosion. By comparing different parameters, we found that the contact area between the litter and soil was the main factor affecting the soil detachment process. The soil erosion resistance increased with the increasing contact area between the soil and litter. Furthermore, the litter incorporation effect on rill erodibility can be comprehensively reflected by LSAD (R2 = .93; Nash–Sutcliffe efficiency = 0.79), which could be used to adjust the rill erodibility parameter in physical process-based soil erosion models.  相似文献   

12.
Sediment fences are often used to monitor hillslope erosion, but these can underestimate sediment yields due to overtopping of runoff and associated sediment. We modified four sediment fences to collect and measure the runoff and sediment that overtopped the fence in addition to the sediment deposited behind the fence. Specific objectives were to: (1) determine the catch efficiency of sediment fences measuring post-fire hillslope erosion; (2) assess particle sorting of sand, silt/clay, and organic matter from each hillslope through the sediment fence and subsequent runoff collection barrels; (3) evaluate how catch efficiency and particle size sorting relate to site and rainfall-runoff event characteristics; and (4) use runoff simulations to estimate sediment fence volumes for future post-fire monitoring. Catch efficiency ranged from 28 to 100% for events and 38 to 94% per site for the entire sampling season, indicating a relatively large underestimation of sediment yields by sediment fences. Most of the eroded sediment had similar proportions of sand and silt/clay as the hillslope soils, but the sediment behind the fence was significantly enriched in sand while the sediment that overtopped the fence was more strongly enriched in silt/clay. The sediment fences had capacities of 3 m3 for hillslopes of 0.19–0.43 ha, but simulations of runoff for 2- to 100-year storms indicate that the sediment fences would need a capacity of up to 240 m3 to store all of the runoff and associated sediment. More accurate measurements of sediment yields with sediment fences require either increasing the storage capacity of the sediment fence(s) to accommodate the expected volume of runoff and sediment, reducing the size of the contributing area, or directly measuring the runoff and sediment that overtop the fence. © 2020 John Wiley & Sons, Ltd.  相似文献   

13.
Organic carbon (OC) is easily enriched in sediment particles of different sizes due to aggregate breakdown and selective transport for sheet erosion. However, the transport of aggregate-associated OC has not been thoroughly investigated. To address this issue, 27 simulated rainfall experiments were conducted in a 1 m × 0.35 m box on slope gradients of 15°, 10°, and 15°and under three rainfall intensities of 45 mm h−1, 90 mm h−1 and 120 mm h−1. The results showed that OC was obviously enriched in sediment particles of different sizes under sheet erosion. The soil organic carbon (SOC) concentrations of each aggregate size class in sediments were different from those in the original soil, especially when the rainfall intensity or slope was sufficiently low, such as 45 mm h–1 or 5°, respectively. Under a slope of 5°, the SOC enrichment ratios (ERocs) of small macroaggregates and microaggregates were high but decreased over time. As rainfall intensity increased, OC became enriched in increasingly fine sediment particles. Under a rainfall intensity of 45 mm h–1, the ERocs of the different aggregate size classes were always high throughout the entire erosion process. Under a rainfall intensity of > 45 mm h–1 and slope of > 5°, the ERocs of the different aggregate size classes were close to 1.0, especially those of clay and silt. Therefore, the high ERocs in sediments resulted from the first transport of effective clay. Among total SOC loss, the proportion of OC loss caused by the transport of microaggregates and silt plus clay-sized particles was greater than 50%. We also found that low stream power and low water depth were two requirements for the high ERocs in aggregates. Stream power was closely related to sediment particle distribution. Flow velocity was significantly and positively related to the percentage of OC-enriched macroaggregates in the sediments (P > 0.01). Our study will provide important information for understanding the fate of SOC and building physical-based SOC transport models. © 2019 John Wiley & Sons, Ltd.  相似文献   

14.
Sediment found in China’s Yangtze and Yellow River systems is characterized by large silt fractions. In contrast to sand and clay, sedimentation and erosion behaviour of silt and silt–clay–sand mixtures is relatively unknown. Therefore, settling and consolidation behaviour of silt-rich sediment from these river systems is analysed under laboratory conditions in specially designed settling columns. Results show that a transition in consolidation behaviour occurs around clay contents of about 10 %, which is in analogy with the transition from non-cohesive to cohesive erosion behaviour. Above this threshold, sediment mixtures consolidate in a cohesive way, whereas for smaller clay percentages only weak cohesive behaviour occurs. The settling behaviour of silt-rich sediment is found to be in analogy with granular material at concentration below 150 g/l. Above 150–200 g/l, the material settles in a hindered settling regime where segregation is limited or even prevented. The results indicate that for modelling purposes, multiple sediment fractions need to be assessed in order to produce accurate modelling results.  相似文献   

15.
The grain size distribution (GSD) of sediment in comparison with the original soil GSD is discussed under different slopes (5, 15 and 25%) and rainfall intensities (30, 60 and 90 mm h–1 with respective duration of 30, 15 and 10 min) but identical runoff (15 mm). The sediment quantification was carried out by raindrop-induced flow transport (RIFT) or/and transport by flow (FT) using a rainfall simulator and a 6 × 1 m2 erosion plot and a silt loam. The results show a high degree of enrichment for size classes of 2–4 and 4–8 μm and a high degree of depletion for size classes of >63 μm under different slopes and rainfall intensities. In addition, the results show that the experimental enrichment ratio (ER) for particle size <16 μm under different slopes and rainfall intensities was greater than 1, while the ER for particle size >32 μm was less than 1.  相似文献   

16.
Quantifying the relative proportions of soil losses due to interrill and rill erosion processes during erosion events is an important factor in predicting total soil losses and sediment transport and deposition. Beryllium‐7 (7Be) can provide a convenient way to trace sediment movement over short timescales providing information that can potentially be applied to longer‐term, larger‐scale erosion processes. We used simulated rainstorms to generate soil erosion from two experimental plots (5 m × 4 m; 25° slope) containing a bare, hand‐cultivated loessal soil, and measured 7Be activities to identify the erosion processes contributing to eroded material movement and/or deposition in a flat area at the foot of the slope. Based on the mass balance of 7Be detected in the eroded soil source and in the sediments, the proportions of material from interrill and rill erosion processes were estimated in the total soil losses, the deposited sediments in the flat area, and in the suspended sediments discharged from the plots. The proportion of interrill eroded material in the discharged sediment decreased over time as that of rill eroded material increased. The amount of deposited material was greatly affected by overland flow rates. The estimated amounts of rill eroded material calculated using 7Be activities were in good agreement with those based on physical measurements of total plot rill volumes. Although time lags of 45 and 11 minutes existed between detection of sediment being removed by rill erosion, based on 7Be activities, and observed rill initiation times, our results suggest that the use of 7Be tracer has the potential to accurately quantify the processes of erosion from bare, loessal cultivated slopes and of deposition in flatter, downslope areas that occur in single rainfall events. Such measurements could be applied to estimate longer‐term erosion occurring over larger areas possessing similar landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Surface runoff and soil erosion under eucalyptus and oak canopy   总被引:1,自引:0,他引:1       下载免费PDF全文
To assess potential differences in stormwater runoff and sediment yield between plots of blue gum eucalyptus (Eucalyptus globulus) and coast live oak (Quercus agrifolia), we measured runoff, sediment yield, water repellency and soil moisture at eight paired sites. Eucalyptus has been associated in many studies worldwide with elevated soil water repellency and increased runoff, a likely contributor to soil erosion. To better understand these connections and their relationship to land cover, there is a need for studies employing either rainfall simulators or natural rainfall. Our research employs the latter, and was subject to contrasting hydrologic conditions in the two years of the study. Fieldwork was conducted from October 2006 to February 2008 in the San Francisco Bay Area of central California. During the 2006–2007 winter wet season, runoff was significantly higher under eucalypts than at paired oak sites, and in the early phases of the season was connected with elevated water repellency. However, sediment yield at all sites during the 2006–2007 hydrologic year was below the detection limit of the Gerlach sediment collection traps, possibly due to a limited wet season, and only appeared as suspended sediment captured in overflow buckets. Intensive rainfall events in January 2008 however created substantial runoff of sediment and litter with significantly greater yield at oak sites compared to paired eucalyptus sites. Water repellency likely had little effect on runoff during these events, and the primary cause of greater erosion under oaks is the thinner cover of leaf litter in comparison to eucalyptus. Our study is limited to undisturbed sites with intact litter cover that have not experienced recent wildfires; if disturbed, we would expect a different picture given the propensity for crown fires of eucalypts, enhancement of rainsplash erosion, and the likely greater potential for stream‐connected sediment yield from post‐disturbance soil erosion events.  相似文献   

18.
Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995–1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the maximum rainfall intensity and infiltration characteristics. The Aobao catchment yielded much larger runoff volume, runoff coefficient and sediment than the Wangdongguo catchment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Variability of interrill erosion at low slopes   总被引:2,自引:0,他引:2  
Numerous models and risk assessments have been developed in order to estimate soil erosion from agricultural land, with some including estimates of nutrient and contaminant transfer. Many of these models have a slope term as a control over particle transfer, with increased transfer associated with increased slopes. This is based on data collected over a wide range of slopes and using relatively small soil flumes and physical principals, i.e. the role of gravity in splash transport and flow. This study uses laboratory rainfall simulation on a large soil flume to investigate interrill soil erosion of a silt loam under a rainfall intensity of 47 mm h?1 on 3%, 6% and 9% slopes, which are representative of agricultural land in much of northwest Europe. The results show: (1) wide variation in runoff and sediment concentration data from replicate experiments, which indicates the complexities in interrill soil erosion processes; and (2) that at low slopes processes related to surface area connectivity, soil saturation, flow patterns and water depth may dominant over those related to gravity. Consequently, this questions the use of risk assessments and soil erosion models with a dominant slope term when assessing soil erosion from agricultural land at low slopes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Wind erosion measurements were carried out in Nellis Dunes Recreation Area, southern Nevada, USA. Gross erosion (the total mass of sediment effectively blown away from a surface), gross deposition (the total mass of sediment effectively depositing on a surface) and net erosion (the difference in sediment mass before and after an event) were measured for 1 year, on 17 different types of surfaces developed on loose dune sand, compacted sand, loose silt, compacted and/or aggregated silt, rock‐covered sands and silts, mixtures of sand, silt and clay, exposed petrocalcic horizons, gravelly substrata and bedrock. Results showed that net erosion, which is the type of erosion measured in field and laboratory experiments, strongly differs from gross erosion. Activity on a surface is much higher than classic net erosion measurements suggest. Future studies on wind erosion should better acknowledge the distinction between the two types of process. Also, a grain diameter of maximum susceptibility to wind erosion (‘optimum deflation diameter’) near 70 µm as proposed by the aeolian literature only exists for net wind erosion. No such optimum diameter was found for gross wind erosion within the particle range 0–100 µm delineating the transport modes of suspension and modified saltation. In addition, desert surfaces predominantly composed of sand did not show an optimum deflation diameter (for net erosion) around 70 µm. Instead, there was a preferential grain size around 15 µm at which particles were most vulnerable to net emission. Desert surfaces poor in sand showed the classic value of 70 µm. This suggests that interactions exist between the type of surface and the susceptibility of particles to wind erosion. This study is solely based on field data. Although results are supported by two previous wind tunnel studies, more wind tunnel experiments documenting the interactions between gross erosion and gross deposition are necessary. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号