首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prevailing ideas and calculations of coastal response to sea level rise (SLR) are often based on the Bruun model (Bruun P., Sea‐level rise as a cause of shore erosion, Journal Waterways Harbors Division, ASCE 88 : 117–130, 1962) that predicts upward and landward transfer of an equilibrium profile during SLR through offshore sediment transport on the shoreface. The model is based on a number of assumptions of questionable validity as well as outdated concepts on how sediment is transported across the shoreface. This contribution takes a numerical modelling approach that is based on first‐order processes contributing to the movement of sediment across the shoreface. Using a wave transformation model that predicts hydrodynamic processes driving cross‐shore sediment transport and an energetics‐based model for the coupling between hydrodynamics and sediment transport, we show that cross‐shore sediment transport is mainly onshore directed at the boundary between the lower and the upper shoreface, in agreement with the model proposed by Davidson‐Arnott (Conceptual model of the effects of sea level rise on sandy coasts, Journal of Coastal Research 21 : 1166–1172, 2005). The transition from onshore to offshore directed transport is located well within the surf zone and with a rising sea level this transition point becomes displaced landward and upward. Tests also show that substrate slope is of fundamental importance to the manner in which beaches react to rising sea level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Tidal marsh restoration and creation is growing in popularity due to the many and diverse sets of services these important ecosystems provide. However, it is unclear what conditions within constructed settings will lead to the successful establishment of tidal marsh. Here we provide documentation for widespread and rapid development of tidal freshwater wetlands for a major urban estuary as an unintended result of early industrial development. Anthropogenic backwater areas established behind railroad berms, jetties, and dredge spoil islands resulted in the rapid accumulation of clastic material and the subsequent initiation of emergent marshes. In one case, historical aerial photos document this transition occurring in less than 18 years, offering a timeframe for marsh development. Accretion rates for anthropogenic tidal marshes and mudflats average 0.8–1.1 and 0.6–0.7 cm year−1, respectively, equivalent to two to three times the rate of relative sea level rise as well as the observed accretion rate at a 6000+ year-old reference marsh in the study area. Paired historical and geospatial analysis revealed that more than half of all the tidal wetlands on the Hudson River were likely triggered by anthropogenic development since the onset of the industrial era, including two-thirds of the emergent cattail marsh. These inadvertently constructed tidal wetlands currently trap roughly 6% of the Hudson River's sediment load. Results indicate that when sediment is readily available, freshwater tidal wetlands can develop relatively rapidly in sheltered settings. The study sites serve as useful examples to help guide future tidal marsh creation and restoration efforts.  相似文献   

3.
未来的海平面上升将对沿海地区的经济发展和自然环境造成重大影响。下辽河平原区是辽宁沿海经济带的组成部分,也是容易产生砂土液化灾害的地区。从讨论砂土液化灾害致灾因素着手,分析了该区未来的地震趋势和因海平面上升带来的地下水水位变化,预测下辽河平原区未来百年可能产生一次或多次局部较严重的砂土液化灾害,而产生大面积砂土液化的可能性不大。  相似文献   

4.
The morphological evolution of embayed beaches on a microtidal coast is assumed to largely respond to the degree of exposure to wave conditions, decreasing the mobility with increasing beach indentation (and vice versa). However, the number of sediment arrivals at the beach or the impact of extreme storms can modify this relationship. Here, we present an analysis of 10 embayed beaches along the Catalan coast with different morphometric and sedimentary characteristics to identify the most relevant parameters controlling the morphological evolution of these embayed beaches at the inter-annual and decadal scales. The study was mostly based on LiDAR topographic data collected from 2012 to 2017, aerial photographs from 1945 to 2021, sediment sampling and a long-term series analysis of the forcing parameters (waves, sea level, precipitation and land-use changes). The results show a net loss of volume on all the studied beaches at an inter-annual scale and a general shoreline retreat during the last few decades, suggesting the influence of common processes on the evolution of the studied beaches. Smaller pocket beaches with medium-to-high indentations are more sensitive to changes induced by local factors and show higher variability in the volume of the emerged beach and shoreline position than larger beaches. The most relevant factors influencing the evolution of the studied beaches on a decadal scale were identified as changes in sea level and the reduction in sediment inputs provided by streams due to land-use changes in the drainage basin. At the inter-annual scale, the impact of extreme events is the main factor controlling beach behaviour. These general trends can be opposite locally for beaches that receive large amounts of sediment via longshore transport from adjacent beaches.  相似文献   

5.
The Ganges-Brahmaputra-Meghna (GBM) delta plain within Bangladesh is one of the most vulnerable to relative sea level rise (RSLR) in the world especially under current anthropogenically modified (i.e., embanked) conditions. Tidal river management (TRM) as practiced in coastal regions of Bangladesh may provide an opportunity to combat RSLR by raising the land level through controlled sedimentation inside beels (depression within embanked polders) with re-opening of polders. To date, TRM has been applied to tide-dominated coastal regions, but the potential applicability of TRM for the beels within the polders of river-dominated and mixed flow (MF) regimes remains to be assessed. We apply a calibrated 2D numerical hydromorphodynamic model to quantify sediment deposition in a beel flooded through breaching of the polder dike under conditions of river-dominated, tide-dominated and MF regimes for different seasons and applying different regulation schemes for the flow into the beel. Simulation results show considerable seasonality in sediment deposition with largest deposition during the monsoon season. The potential of controlled flooding is highest in the tide-dominated region, where sediment accumulation can be up to 28 times higher than in the river-dominated region. Regulating flow into a beel increases trapping efficiency, but results in slightly lower total deposition than without regulation. We conclude that re-establishing flooding of the beel within the polder without regulating the flow into the beel through breaching of the polder dike is a promising strategy for the mixed and tide-dominated flow regions in the delta as the sediment accumulation can raise the land surface at a higher rate than RSLR and effective SLR (ESLR). In the more upstream river-dominated section of the delta, accumulation rates would be much lower, but the pressure of sea level rise on these areas is lower as well. Owing to the abundant availability of sediment, application of controlled flooding like TRM therefore provides an opportunity to counteract the impact of RSLR and ESLR by means of land raising, particularly along the tidal river reaches in the GBM delta.  相似文献   

6.
One habitat management requirement forced by 21st century relative sea‐level rise (RSLR), will be the need to re‐comprehend the dimensions of long‐term transgressive behaviour of coastal systems being forced by such RSLR. Fresh approaches to the conceptual modelling and subsequent implementation of new coastal and peri‐marine habitats will be required. There is concern that existing approaches to forecasting coastal systems development (and by implication their associated scarce coastal habitats) over the next century depend on a certain premise of orderly spatial succession of habitats. This assumption is shown to be questionable given the possible future rates of RSLR, magnitude of shoreline retreat and the lack of coastal sediment to maintain the protective morphologies to low‐energy coastal habitats. Of these issues, sediment deficiency is regarded as one of the major problem for future habitat development. Examples of contemporary behaviour of UK coasts show evidence of coastal sediment starvation resulting from relatively stable RSLR, anthropogenic sealing of coastal sources, and intercepted coastal sediment pathways, which together force segmentation of coastal systems. From these examples key principles are deduced which may prejudice the existence of future habitats: accelerated future sediment demand due to RSLR may not be met by supply and, if short‐ to medium‐term hold‐the‐line policies predominate, long‐term strategies for managed realignment and habitat enhancement may prove impossible goals. Methods of contemporary sediment husbandry may help sustain some habitats in place but otherwise, instead of integrated coastal organization, managers may need to consider coastal breakdown, segmentation and habitat reduction as the basis of 21st century coastal evolution and planning. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Tides are often considered to be the dominant hydrodynamic process within mesotidal estuaries although waves can also have a large influence on intertidal erosion rates. Here, we use a combination of hydrodynamic measurements and sediment deposition records to determine the conditions under which observed waves are ‘morphologically significant’, in which case they influence tidal and suspended sediment flux asymmetry and subsequently infilling over geomorphological timescales. Morphological significant conditions were evaluated using data from contrasting arms in a dendritic mesotidal estuary, in which the orientation of the arms relative to the prevailing wind results in a marked difference in wave conditions, deposition rates and morphology. By defining the morphological significance of waves as a product of the magnitude of bed shear stress and frequency of occurrence, even small (but frequently occurring) winds are shown to be capable of generating waves that are morphologically significant given sufficient fetch. In the arm in which fetch length is restricted, only stronger but rare storm events can influence sediment flux and therefore tides are more morphologically significant over longer timescales. Water depth within this mesotidal estuary is shown to be a critical parameter in controlling morphological significance; the rapid attenuation of short period waves with depth results in contrasting patterns of erosion occurring during neaps and accretion during springs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In the Vietnamese Mekong Delta (VMD), water levels at some stations have increased. However, the factors that cause this rise in the VMD have not been identified. We considered four factors that may have contributed to the water level rise: (1) increased runoff from upstream, (2) sea‐level rise, (3) land subsidence, and (4) decrease in flood mitigation function because of construction of high dykes. We analysed daily maximum and minimum water levels, and mean daily water levels from 24 monitoring stations from 1987 to 2006. Using daily and annual water level differences, we classified the delta into two groups: one is dominated by flows from upstream, while the other is tide dominated. We then tested the trends of annual maximum and minimum water levels using the Mann–Kendall test, and identified the slope of the trend using the method of Sen. The areas of dyke construction were estimated using the Enhanced Vegetation Index (EVI) and Land Surface Water Index (LSWI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Results show (1) river inflow has little impact on rising water levels in the VMD, (2) the influence of high dykes on water level rise could not be quantified in this study, and (3) both maximum and minimum water levels significantly increased in the tide‐dominated area. Trend of annual minimum water level can be considered as the sum sea‐level rise and land subsidence. Therefore, we attribute 6.05 mm year?1 (80%) to land subsidence and 1.42 mm year?1 (20%) to sea level rise, indicating that inundations have been severe in the VMD, caused primarily by land subsidence. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Climate change and sea‐level rise will have severe impacts on coastal water resources around the world. However, whereas the influence of marine inundation is well documented in the literature, the impact of groundwater inundation on coastal communities is not well known. Here, core analysis, groundwater monitoring, and ground penetrating radar are utilized to assess the groundwater regime of the surficial aquifer on Bogue Banks Barrier Island (USA). Then, geospatial techniques are used to assess the relative roles and extents of groundwater and marine inundation on the dune‐dominated barrier island under sea‐level rise scenarios of 0.2, 0.5, and 1.0 m above current conditions by 2100. Additionally, the effects of rising water tables on onsite wastewater treatment systems (OWTS) are modelled using the projected sea‐level rise scenarios. The results indicate that the surficial aquifer comprising fine to medium sands responds quickly to precipitation. Water‐level measurements reveal varying thicknesses of the vadose zone (>3 to 0 m) and several groundwater mounds with radial flow patterns. Results from projected sea‐level rise scenarios suggest that owing to aquifer properties and morphology of the island, groundwater inundation may occur at the same rate as marine inundation. Furthermore, the area inundated by groundwater may be as significant as that affected by marine inundation. The results also show that the proportion of land in the study area where OWTS may be perpetually compromised by rising water tables under worst case scenarios may range from ~43 to ~54% over an 86‐year‐period. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Reserves of fresh groundwater on atoll islands are extremely fragile due to climatic and anthropogenic stresses. Of major concern is the quantity of water to be available in the coming decades under the influence of variable rainfall patterns, rising sea level, environmental conditions, and expected population growth that depends on groundwater resources. In this study, a 3‐dimensional numerical modelling approach using the SEAWAT modelling code is used to estimate freshwater lens volume fluctuation for 4 representative islands in the Republic of Maldives in response to long‐term changes in rainfall, sea‐level rise (SLR), and anthropogenic stresses such as groundwater pumping and short‐term impacts from tsunami‐induced marine overwash events. This work is divided into 2 papers. This first paper presents numerical model set‐up and calibration, and the effect of future rainfall patterns and SLR on fresh groundwater reserves. The second paper focuses on marine overwash events. The results of simulated future freshwater lens volume presented in the first study contribute to efficient groundwater resources planning and management for the Maldives in the upcoming decades. Freshwater lenses in small atoll islands (area < 0.6 km2) are shown to have a strong variability trends in the upcoming decades with expected reduction in lens volume between 11% and 36% due to SLR. In contrast, freshwater lenses in larger atoll islands (area > 1.0 km2) are shown to have less variability to changing patterns with expected reduction in lens volume between 8% and 26% due to SLR. Study results can provide water resource managers with valuable findings for consideration in water security measures.  相似文献   

11.
This study is aimed to understand the hydraulic mechanism of coastal aquifer systems that include highly permeable layers (HPLs). These hydrologic conditions can be found in many volcanic islands that are composed of a series of lava flows discharged into sea or other standing body of water. In the first part, we developed a numerical model based on the geologic and hydrologic data obtained from the eastern Jeju Island, Korea, of which the aquifer contains clinker and hyaloclastite layers. The simulation results reproduced spatial location of fresh‐saline water interface, especially the abrupt decline of interface at the inland part and the thickness variation of transition zone along the cross‐section observed at the eastern Jeju coastal aquifer. We were able to find out that these phenomena are strongly related to the presence of the HPL. In the second part, quantitative analyses were conducted with the use of hypothetical models in order to understand the dynamic characteristics of coastal system that includes HPLs. A series of sensitivity studies were conducted to assess the effect of the horizontal length and vertical depth of HPL on the spatial location of the interface toe and the configuration of transition zone. Various case studies have shown that the seawater intruded into the inland more as the horizontal length of HPL was increased and its vertical depth was decreased. In other simulations including two HPLs, the vertical distance between these two HPLs primarily controlled the flow regime, flux variations, and the configuration of the transition zone. Finally, we performed simulations to evaluate the effect of a rising sea‐level. This study provides more understanding of how the presence of HPL controls the seawater intrusion processes, and the spatial configurations of fresh‐saline water interface at coastal aquifers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Reef islands on the Great Barrier Reef are influenced by a range of environmental factors. A meta‐analysis of 103 islands is presented to express variation in island size (area and volume) as a function of latitudinal and cross shelf gradients in regional oceanographic factors (exposure to incident waves, tidal range and tropical cyclone frequency) and local physical factors (position on the shelf, area, length and depth of supporting reef platform, vegetative cover). Models performed well for unvegetated sandcays (R2 = 0.89), vegetated sandcays (R2 = 0·72) and low wooded islands (R2 = 0.78), with a moderate level of variation explained when all islands were simultaneously regressed (R2 = 0.58). Future island dynamics were simulated for anticipated changes in cyclone regime, wave activity and sea level. For 38 islands mapped on the 1973 Royal Society and Universities of Queensland Expedition to the Northern Great Barrier Reef, change over the same 22 year period (1973–1995) was determined and the relative magnitude of observed and modelled changes was compared and found to be consistent through rank correlation analysis (Γ = 0.84 for unvegetated sandcays, Γ = 0.81 for vegetated sandcays). Simulations of island area or volume change from 2000 to 2100 indicated that under a 30% decrease in tropical cyclone activity, unvegetated sandcays continue to accrete at a lower rate, whereas all island types erode under a 38% increase in tropical cyclone activity. Vegetated sandcays initially accrete at higher levels of cyclone activity, entering an erosive state with a 60% increase in activity. Low wooded islands are unresponsive to environmental changes modelled. A sensitivity analysis of vegetated and unvegetated sandcays indicated that the presence of vegetation increases the tropical cyclone activity threshold at which islands begin to erode. Greatest sedimentary losses occur within the central band of high cyclone activity between Cooktown and Mackay. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
There is increasing debate these days on climate change and its possible consequences. Much of this debate has focused in the context of surface water systems. In many arid areas of the world, rainfall is scarce and so is surface runoff. These areas rely heavily on groundwater. The consequences of climate change on groundwater are long term and can be far reaching. One of the more apparent consequences is the increased migration of salt water inland in coastal aquifers. Using two coastal aquifers, one in Egypt and the other in India, this study investigates the effect of likely climate change on sea water intrusion. Three realistic scenarios mimicking climate change are considered. Under these scenarios, the Nile Delta aquifer is found to be more vulnerable to climate change and sea level rise. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Long-term and seasonal geomorphological changes at Padre Island, Texas are identified and linked with potential external drivers. Aerial and satellite images from 1950 to 2018, monthly images from 2019 to 2020, and a 2018 LiDAR data set are used to assess long-term and seasonal geomorphological changes within a 50 km2 area of Padre Island near Port Mansfield, Texas. Trends in landcover are evaluated by mapping and comparing the relative areal coverage of each facies. Vegetated dunes, absent initially, emerged in the fore-island and expanded into the back-barrier to cover 14% of the study area. The active vegetation-free back-barrier dune field steadily decreased in areal extent from 12% to 6% as vegetation spread. Nebkha dune coverage fluctuated between 4% and 7%. Expansive microbial mats colonized the wind tidal and deflation flats surrounding the vegetated dunes and back-barrier dune field giving rise to a remarkably different landscape over the 50-year period studied. An assessment of external forcing factors identifies increased rates of relative sea level rise and decreased sediment influx as the most likely primary factors driving the geomorphological changes. These changes have induced a widespread shift toward stabilization of island sediments by vegetation and microbial mats, which in turn has starved the back-barrier of sediments resulting in low rates of accretion and increased flooding. These findings highlight the sensitivity of the back-barrier and, in particular, the dune facies to changes in sea level and sediment supply, and show that microbial mats are effective at stabilizing island sediments and may be harbingers to barrier island response to rising sea level. As shown in this study, long-term monitoring of geomorphic facies changes and topography can detect important shifts in the island state that can be used to inform decision making for these sensitive coastal landscapes.  相似文献   

15.
In coastal areas, sea level rise (SLR) and changing wave climates are expected to be the main oceanic drivers of shoreline adjustments. These drivers have been shown to vary on a wide spectrum of spatial and temporal scales. Nonetheless, a general rule about how this variability impacts global shorelines remains to be articulated. Here, we discuss the impacts of wave climate changes and SLR on the evolution of a barrier spit–inlet system over the last 250 years. The distal end of the Cap Ferret barrier spit, SW France, has undergone large-scale oscillations that were well correlated with variations of the decadal average of the winter North Atlantic Oscillation (NAO) index. The local wave climate hindcast supports that increased alongshore wave energy fluxes associated with the positive phase of the NAO were responsible for the updrift retreat of the spit. By opposition, the spit has elongated downdrift when waves were less energetic and more shore normal, as during the negative phase of the NAO. In addition, lower rates of SLR appeared to be necessary for the spit to develop, as higher rates of SLR very likely forced the adjacent inlet to enlarge, at the expense of the spit. These results should help to predict and detect coastal adjustments driven by climate change and by climate variability. © 2019 John Wiley & Sons, Ltd.  相似文献   

16.
Based on an integrated analysis of high-resolution 2D/3D seismic data and drilling results, this study analyzes the tectonic-sedimentary evolution of the Qiongdongnan Basin (QDNB) since the late Miocene, and discusses the controlling factors on the formation and development of the Central Canyon System (CCS). The sediment failures caused by the relative sea level falling might have discharged deposits from the slope to the canyon. The two suits of the infillings, i.e., turbidites and mass transport complex (MTC), were derived from the northwestern source and northern source, respectively. The sediment supplies, which differ significantly among different areas, might have led to the variations observed in the internal architectures. Tectonic transformation around 11.6 Ma had provided the tectonic setting for the CCS and formed an axial sub-basin in the central part of the Changchang Depression, which could be called the rudiment of the CCS. The tectonic activity of the Red River Fault (RRF) at about 5.7 Ma might have strengthened the hydrodynamics of the deposits at the junction of the Yinggehai Basin (YGHB) and the QDNB to trigger a high-energy turbidity current. The MTC from the northern continental slope system might have been constrained by the Southern Uplift, functioning as a barrier for the infillings of the CCS. Thanks to a sufficient sediment supply during the Holocene period and the paleo-seafloor morphology, the relief of modern central canyon with the starving landform in the eastern Changchang Depression might have been accentuated by deposition of sediments and vertical growth along the canyon flanks, where collapse deposits were widely developed. Corresponding to the segmentation of the CCS, the forming mechanisms of the canyon between the three segments would be different. The turbidite channel in the head area had likely been triggered by the abundant sediment supply from the northwestern source together with the fault activity at about 5.7 Ma of the RRF. The formation and evolution of the canyon in the western segment were caused by combined effects of the turbidite channel from the northwestern source, the MTC from the northern continental slope, and the paleo-seafloor geomorphology. In the eastern segment, the canyon was constrained by the tectonic transformation occurring at approximately 11.6 Ma and the insufficient sediment supply from the wide-gentle slope.  相似文献   

17.
By analysing comprehensively the factors such as theoretical sea level, abnormal fluctuation of sea level, rising amplitude of floodtide water level and land deformation, a rising amplitude of 22-33 cm of relative sea level by the year of 2030 is forecasted in the Zhujiang Delta. From the forecasted amplitude of 30 cm, using hydraulic and hydrometric models the scope influenced by sea level rise is delimited and the reappearing periods of floodtide water level, protecting ability of embankments, design parameters of water conservancy project, drain waterlogging, saline intrusion, resource of mud beach and comprehensive prevention measures are discussed.  相似文献   

18.
Washover fans are located on small barriers in fetch-limited micro-tidal coastal environments in Denmark. These washover fans are formed during high-energy storm events and we present a method to quantify their volumes and to estimate sediment exchanges between washover fans and their adjacent morphologies. We use high resolution digital terrain models (DTMs) based on light detection and ranging (LiDAR) data. We have delineated landforms using known methods of scale analysis and geomorphometric classification. We quantified volumes of the delineated landforms and estimated the related sediment budgets. These computed volumes were compared using different pre-depositional surfaces. Finally, we assessed the sediment exchange and associated sources of sediments of the washover fans. We applied a scale analysis to determine suitable DTM resolution and focal statistics window size as input to a geomorphometric classification analysis. Landform areas and landforms were delineated using morphometric threshold values, and volumes and sediment budgets of the delineated landforms were computed using different assumptions to define the pre-depositional surface. Resulting washover fan volumes were validated against digital elevation model (DEM) of difference (DoD) derived volumes. Sediment budgets were derived from representative volumes of the washover fans and adjacent berms. We show that quantification of washover features derived from DTMs, using geomorphometric analysis is feasible and that the presented approach provides estimates of washover deposit volumes with an accuracy between 1% and 28% compared to control volumes. © 2021 John Wiley & Sons, Ltd.  相似文献   

19.
A mathematical model was used to examine the effect of Pliocene and Quaternary changes in sea level on the development of tectonically active and inactive rock coasts. The model calculated rates of mechanical wave erosion according to such factors as the deep water wave regime, bottom topography and surface roughness, and the resistance of the rocks. Subaerial terraces were truncated or eliminated by subsequent terrace formation at lower elevations, especially on steeply sloping landmasses experiencing slow rates of uplift. Submarine terraces formed during glacial stillstands were best preserved when rapid subsidence quickly carried them below the level of wave action. On slowly subsiding landmasses, submarine terraces formed during interglacials and glacial periods experienced repeated erosional modification during subsequent periods of rising and falling sea level and were generally less distinctive. On rapidly rising or subsiding (>5 mm yr‐1) landmasses, terraces that formed during interglacial stages alternated, above and below present sea level, with terraces formed during glacial stages. Despite some differences in terrace occurrence and elevational distribution, it may be difficult to distinguish profiles cut during accelerating or decelerating uplift. The amount of erosion during sea level oscillations increases with oscillation amplitude and the larger oscillations in the middle to late Quaternary were therefore more conducive to erosion than the smaller oscillations of the Pliocene and early Quaternary. The effect of oscillation amplitude may have been countered during the earlier stages of profile development, however, by steeper submarine gradients and reduced rates of wave attenuation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
楼盘施工注浆及荷载对唐山矿井水位的影响分析   总被引:3,自引:0,他引:3  
2010年唐山矿井水位上升速率明显加快,上升幅度明显高于往年同期.本文从地下水动力学和荷载效应角度,利用抽(注)水试验模型和均布荷载下半无限大的弹性空间理论模型,分析井孔附近楼盘施工注浆及建成后荷载作用对井水位的影响.结果表明,距井孔200 ~700m范围内注浆,每天注浆2500 m3,注浆270d,能引起井水位上升8~11m的变化;大面积的楼盘荷载作用可以引起井水位上升约4m的变化.通过对这些影响因素的分析,认为唐山矿井水位的上升异常与楼盘施工注浆及建成后的荷载作用有一定的相关性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号