首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field measurements and morphodynamic simulations were carried out along a 5‐km reach of the sandy, braided, lower Tana River in order to detect temporal and spatial variations in river bed modifications and to determine the relative importance of different magnitude discharges on river bed and braid channel evolution during a time span of one year, i.e. 2008–2009. Fulfilling these aims required testing the morphodynamic model's capability to simulate changes in the braided reach. We performed the simulations using a 2‐D morphodynamic model and different transport equations. The survey showed that more deposition than erosion occurred during 2008–2009. Continuous bed‐load transport and bed elevation changes of ±1 m, and a 70–188‐m downstream migration of the thalweg occurred. Simulation results indicated that, during low water periods, modifications occurred in both the main channel and in other braid channels. Thus, unlike some gravel‐bed rivers, the sandy lower Tana River does not behave like a single‐thread channel at low discharge. However, at higher discharge, i.e. exceeding 497 m3/s, the river channel resembled a single‐thread channel when channel banks confined the flow. Although the spring discharge peaks caused more rapid modifications than slower flows, the cumulative volumetric changes of the low water period were greater. The importance of low water period flows for channel modifications is emphasized. Although the 2‐D model requires further improvements, the results were nevertheless promising for the future use of this approach in braided rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Haiyan Yang 《水文研究》2020,34(17):3702-3717
Gravel-bed braided rivers are highly energetic fluvial systems characterized by frequent in-channel avulsions, which govern the morphodynamics of such rivers and are essential for them to maintain a braided planform. However, the avulsion mechanisms within natural braided rivers remain unclear due to their complicated hydraulic and morphodynamic processes. Influenced by neighbouring channels, avulsions in braided rivers may differ from those of bifurcations in single-thread rivers, suggesting that avulsions should be studied within the context of the entire braid network. In this study, braiding evolution processes in gravel-bed rivers were simulated using a physics-based numerical model that considers graded bed-load transport by dividing sediment particles into multiple size fractions and vertical sediment sorting by dividing the riverbed into several vertical layers. The numerical model successfully produced braiding processes and avulsion activities similar to those observed in a laboratory river. Results show that bend evolution of the main channel was the fundamental process controlling the occurrence of avulsions in the numerical model, with a cyclic process of channel meandering by lateral migration that transitioned to a straight channel pattern by avulsion. The radius of bend curvature for triggering avulsions in the numerical model was measured and it was found that the highest probability for a channel bend to generate an avulsion occurs when its radius of curvature is approximately 2.0–3.3 times the average anabranch width. Other types of avulsion were also observed that did not occur specifically at meander bends, but upstream meander evolution indirectly influenced such avulsions by altering channel pattern and discharge to those locations. This study explored the processes and mechanisms of several types of avulsion, and proposed factors controlling their occurrence, namely increasing channel curvature, high shear stress, tributary discharge, riverbed gradient and upstream channel pattern, with high shear stress being a direct indicator. Furthermore, avulsions in a typical gravel-bed braided river, the Waimakariri River in New Zealand, were analysed using sequential Google Earth maps, which confirmed the conclusions derived from the numerical simulation.  相似文献   

3.
Sharad K. Jain 《水文研究》2012,26(22):3472-3476
Flow is considered to be the master variable for a river because the fluvial processes and health of its ecosystem critically depend upon flow. Increasing water withdrawals from many rivers of the world are leading to severe degradation in river ecosystems. Water is allocated for environmental needs so that a river can perform its natural functions. This article discusses the concept of environmental flow, methods to assess it, and issues in implementation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Defining and measuring braiding intensity   总被引:1,自引:0,他引:1  
Geomorphological studies of braided rivers still lack a consistent measurement of the complexity of the braided pattern. Several simple indices have been proposed and two (channel count and total sinuosity) are the most commonly applied. For none of these indices has there been an assessment of the sampling requirements and there has been no systematic study of the equivalence of the indices to each other and their sensitivity to river stage. Resolution of these issues is essential for progress in studies of braided morphology and dynamics at the scale of the channel network. A series of experiments was run using small‐scale physical models of braided rivers in a 3 m ∞ 20 m flume. Sampling criteria for braid indices and their comparability were assessed using constant‐discharge experiments. Sample hydrographs were run to assess the effect of flow variability. Reach lengths of at least 10 times the average wetted width are needed to measure braid indices with precision of the order of 20% of the mean. Inherent variability in channel pattern makes it difficult to achieve greater precision. Channel count indices need a minimum of 10 cross‐sections spaced no further apart than the average wetted width of the river. Several of the braid indices, including total sinuosity, give very similar numerical values but they differ substantially from channel‐count index values. Consequently, functional relationships between channel pattern and, for example, discharge, are sensitive to the choice of braid index. Braid indices are sensitive to river stage and the highest values typically occur below peak flows of a diurnal (melt‐water) hydrograph in pro‐glacial rivers. There is no general relationship with stage that would allow data from rivers at different relative stage to be compared. At present, channel count indices give the best combination of rapid measurement, precision, and range of sources from which measurements can be reliably made. They can also be related directly to bar theory for braided pattern development. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Physically‐based modelling of rivers has advanced in recent decades by developing separate approaches for representing single‐thread and multi‐thread channels. This paper reports on a new morphodynamic model developed with the goal of simulating river and floodplain co‐evolution within a general framework suitable for investigating diverse fluvial styles. Simulations illustrate the potential for representing meandering, braided and anabranching channels using this model. Moreover, by adopting relatively simple parameterizations of many processes, this work provides insight into what may constitute sufficient (minimal) model complexity, and highlights uncertainties that should be addressed by future research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Dynamics and functions of large wood have become integral considerations in the science and management of river systems. Study of large wood in rivers took place as monitoring of fish response to wooden structures placed in rivers in the central United States in the early 20th century, but did not begin in earnest until the 1970s. Research has increased in intensity and thematic scope ever since. A wide range of factors has prompted these research efforts, including basic understanding of stream systems, protection and restoration of aquatic ecosystems, and environmental hazards in mountain environments. Research and management have adopted perspectives from ecology, geomorphology, and engineering, using observational, experimental, and modelling approaches. Important advances have been made where practical information needs converge with institutional and science leadership capacities to undertake multi-pronged research programmes. Case studies include ecosystem research to inform regulations for forest management; storage and transport of large wood as a component in global carbon dynamics; and the role of wood transport in environmental hazards in mountain regions, including areas affected by severe landscape disturbances, such as volcanic eruptions. As the field of research has advanced, influences of large wood on river structures and processes have been merged with understanding of streamflow and sediment regimes, so river form and function are now viewed as involving the tripartite system of water, sediment, and wood. A growing community of researchers and river managers is extending understanding of large wood in rivers to climatic, forest, landform, and social contexts not previously investigated. © 2020 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Meander bends of many large, sand‐bed meandering rivers are partitioned by chute channels that convey permanent flow, and co‐exist with the mainstem for decades. As a first step toward understanding the dynamics and morphodynamic implications of these ‘bifurcate meander bends’, this study applied binary logistic regression analysis to determine whether it is possible to predict chute initiation based on attributes of meander bend character and dynamics. Regression models developed for the Strickland River, Papua New Guinea, the lower Paraguay River, Paraguay/Argentina, and the Beni River, Bolivia, revealed that the probability of chute initiation at a meander bend is a function of the bend extension rate (the rate at which a bend elongates in a direction perpendicular to the valley axis trend). Image analyses of all rivers and field observations from the Strickland suggest that the majority of chute channels form during scroll–slough development. Rapid extension is shown to favour chute initiation by breaking the continuity of point bar deposition and vegetation encroachment at the inner bank, resulting in widely‐spaced scrolls with intervening sloughs that are positively aligned with primary over‐bar flow. The rivers plot in order of increasing chute activity on an empirical meandering‐braided pattern continuum defined by potential specific stream power (ωpv) and bedload calibre (D50). Increasing stream power is considered to result in higher bend extension rates, with implications for chute initiation. In addition, chute stability is shown to depend on river sediment load relative to flow discharge (Qs/Q), such that while the Beni may plot in the region of highly braided rivers by virtue of a high potential specific stream power, the formation of stable chute channels is suppressed by the high sediment load. This tendency is consistent with previous experimental studies, and results in a planform that is transitional between single‐thread meandering and braided. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
We discuss the importance of modelling riparian vegetation and river flow interactions under differing hydrologic regimes. Modelling tools have notable implications with regard to the understanding of riverine ecosystem functioning and to promote sustainable management of water resources. We present both deterministic and stochastic approaches with different levels of simplification, and discuss their use in relation to river and vegetation dynamics at the related scale of interest. We apply such models to both meandering and braided rivers, in particular focusing on the floodplain dynamics of an alpine braided river affected by water impoundment. For this specific case we show what the expected changes in riparian vegetation may be in a ‘controlled release’ scenario for the postdam river Maggia, Switzerland. Finally, the use of these models is discussed in the context of current research efforts devoted to river restoration practice.  相似文献   

10.
11.
This study presents the first detailed field‐based analysis of the morphology of bifurcations within anabranching cobble–gravel rivers. Bifurcations divide the flow of water and sediment into downstream anabranches, thereby influencing the characteristics of the anabranches and the longevity of river islands. The history, morphology, bed grain size, and flow vectors at five bifurcations on the Renous River, New Brunswick, Canada, were studied in detail. The angles of bifurcations within five anabranching rivers in the Miramichi basin were investigated. The average bifurcation angle was 47°, within the range of values cited for braided river bifurcations. Bifurcation angle decreased when anabranches were of similar length. Shields stresses in channels upstream of bifurcations were lower than reported values for braided rivers. Stable bifurcations displayed lower Shields stresses than unstable bifurcations, contrary to experimental results from braided river bifurcations. Bifurcations in anabranching rivers are stabilized by vegetation that slows channel migration and helps to maintain a uniform upstream flow field. The morphology of stable bifurcations enhances their stability. A large bar, shaped like a shallow ramp that increases in elevation to floodplain level, forms at stable bifurcations. Floodplains at stable bifurcations accrete upstream at rates between 0·9 and 2·5 m a?1. Bars may also form within the entrance of an anabranch downstream of the bifurcation node. These bars are associated with bifurcation instability, forming after a period of stability or an avulsion. Channel abandonment occurs when a bar completely blocks the entrance to one anabranch. The stability of channels upstream of bifurcations and the location of bars at bifurcations influence bifurcation stability and the maintenance of river anabranching in the long term. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
This paper describes meandering alluvial rivers with mean annual suspended-sediment concentrations of more than 100 kgm?3 on the Loess Plateau, China, and explains their formation as caused by the effect of hyperconcentrated water flow. When the river is dominated by hyperconcentrated flow, the rate of energy expenditure required for sediment transport declines significantly. Accordingly, the river channel adjusts itself to a lower channel gradient by increasing the river length, resulting in a meandering channel. Since the stable transportation of sediment by hyperconcentrated flow is dependent on river channel boundary conditions, the latter play an important role in the formation of meanders of this kind. The paper also discusses the conditions for the discrimination of meandering and braided rivers in this area.  相似文献   

13.
Quantifying the morphology of braided rivers is a key task for understanding braided river behaviour. In the last decade, developments in geomatics technologies and associated data processing methods have transformed the production of precise, reach‐scale topographic datasets. Nevertheless, generating accurate Digital Elevation Models (DEMs) remains a demanding task, particularly in fluvial systems. This paper identifies a threefold set of challenges associated with surveying these dynamic landforms: complex relief, inundated shallow channels and high rates of sediment transport, and terms these challenges the ‘morphological’, ‘wetted channel’ and ‘mobility’ problems, respectively. In an attempt to confront these issues directly, this paper presents a novel survey methodology that combines mobile terrestrial laser scanning and non‐metric aerial photography with data reduction and surface modelling techniques to render DEMs from the resulting very high resolution datasets. The approach is used to generate and model a precise, dense topographic dataset for a 2.5 km reach of the braided Rees River, New Zealand. Data were acquired rapidly between high flow events and incorporate over 5 x 109 raw survey observations with point densities of 1600 pts m‐2 on exposed bar and channel surfaces. A detailed error analysis of the resulting sub‐metre resolution is described to quantify DEM quality across the entire surface model. This reveals unparalleled low vertical errors for such a large and complex surface model; between 0.03 and 0.12 m in exposed and inundated areas of the model, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
New Zealand's gravel‐bed rivers have deposited coarse, highly conductive gravel aquifers that are predominantly fed by river water. Managing their groundwater resources is challenging because the recharge mechanisms in these rivers are poorly understood and recharge rates are difficult to predict, particularly under a more variable future climate. To understand the river‐groundwater exchange processes in gravel‐bed rivers, we investigate the Wairau Plain Aquifer using a three‐dimensional groundwater flow model which was calibrated using targeted field observations, “soft” information from experts of the local water authority, parameter regularization techniques, and the model‐independent parameter estimation software PEST. The uncertainty of simulated river‐aquifer exchange flows, groundwater heads, spring flows, and mean transit times were evaluated using Null‐space Monte‐Carlo methods. Our analysis suggests that the river is hydraulically perched (losing) above the regional water table in its upper reaches and is gaining downstream where marine sediments overlay unconfined gravels. River recharge rates are on average 7.3 m3/s, but are highly dynamic in time and variable in space. Although the river discharge regularly hits 1000 m3/s, the net exchange flow rarely exceeds 12 m3/s and seems to be limited by the physical constraints of unit‐gradient flux under disconnected rivers. An important finding for the management of the aquifer is that changes in aquifer storage are mainly affected by the frequency and duration of low‐flow periods in the river. We hypothesize that the new insights into the river‐groundwater exchange mechanisms of the presented case study are transferable to other rivers with similar characteristics.  相似文献   

15.
The Great Plains landscape is less topographically complex than most other regions within North America, but diverse aquatic ecosystems, such as playas, pothole lakes, ox-bow lakes, springs, groundwater aquifers, intermittent and ephemeral streams, as well as large rivers and wetlands, are highly dynamic and responsive to extreme climatic fluctuations. We review the evidence for climatic change that demonstrates the historical importance of extremes in north–south differences in summer temperatures and east–west differences in aridity across four large subregions. These physical driving forces alter density stratification, deoxygenation, decomposition and salinity. Biotic community composition and associated ecosystem processes of productivity and nutrient cycling respond rapidly to these climatically driven dynamics. Ecosystem processes also respond to cultural effects such as dams and diversions of water for irrigation, waste dilution and urban demands for drinking water and industrial uses. Distinguishing climatic from cultural effects in future models of aquatic ecosystem functioning will require more refinement in both climatic and economic forecasting. There is a need, for example, to predict how long-term climatic forecasts (based on both ENSO and global warming simulations) relate to the permanence and productivity of shallow water ecosystems. Aquatic ecologists, hydrologists, climatologists and geographers have much to discuss regarding the synthesis of available data and the design of future interdisciplinary research. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
River bifurcations are critical but poorly understood elements of many geomorphological systems. They are integral elements of alluvial fans, braided rivers, fluvial lowland plains, and deltas and control the partitioning of water and sediment through these systems. Bifurcations are commonly unstable but their lifespan varies greatly. In braided rivers bars and channels migrate, split and merge at annual or shorter timescales, thereby creating and abandoning bifurcations. This behaviour has been studied mainly by geomorphologists and fluid dynamicists. Bifurcations also exist during avulsion, the process of a river changing course on a floodplain or in a delta, which may take 102–103 years and has been studied mainly by sedimentologists. This review synthesizes our current understanding of bifurcations and brings together insights from different research communities and different environmental settings. We consider the causes and initiation of bifurcations and avulsion, the physical mechanisms controlling bifurcation and avulsion evolution, mathematical and numerical modelling of these processes, and the possibility of stable bifurcations. We end the review with some open questions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This paper reports the application of a two‐dimensional hydraulic model to a braided reach of the Avoca River, New Zealand. Field measurements of water surface elevation, depth and velocity obtained at low flow were used to validate the model and to optimize the parameterization of bed friction. The main systematic trends in the measured flow variables are reproduced by the model. However, field data are characterized by greater spatial variability than model output reflecting differences in the scale of processes measured in the field and represented by the model. Additional model runs were conducted to simulate flow patterns within the study reach at five higher discharges. The purpose of these simulations was to evaluate the potential for using two‐dimensional hydraulic models to quantify the reach‐scale hydraulic characteristics of braided rivers and their dependence on discharge. Changes in flow depth and velocity with increasing discharge exhibit trends that are consistent with the results of previous field investigations, although the tendency for the wetted area of the braidplain within particular depth and velocity categories to remain fixed as discharge rises, as has been noted for several braided rivers in New Zealand, was not observed. Modelled shear stress frequency distributions fit gamma functions that incorporate a distribution shape parameter, the value of which follows clear systematic trends with rising discharge. These results illustrate both the problems of, and potential for, using two‐dimensional hydraulic models in braided river applications. This leads to something of a paradox in that while such models provide a means of generating hydraulic information that would be difficult to obtain in the field at an equivalent spatial resolution, they are, due to the problems inherent to data collection, difficult to validate conclusively. Despite this limitation, the application of spatially distributed models to investigate relationships between discharge and reach‐scale form and process variables appears to have considerable potential. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Previous analyses have identified the active width of braided rivers, the bed area over which bed load flux and short‐term morphological change occurs, as an important element of braiding dynamics and predictions of bed load flux. Here we compare theoretical predictions of active width in gravel‐bed braided rivers with observations from Sunwapta River, and from a generic physical model of gravel braided rivers, to provide general observations of the variation in active width, and to develop an understanding of the causes of variation. Bed topography was surveyed daily along a 150 m reach of the pro‐glacial Sunwapta River for a total of four weeks during summer when flow was above threshold for morphological activity. In the laboratory, detailed digital elevation models (DEMs) were derived from photogrammetric survey at regular intervals during a constant discharge run. From the field and flume observations there is considerable local and circumstantial variation in active width, but also a general trend in average active width with increasing discharge. There is also a clear relationship of active width with active braiding index (number of active branches in the braided channel network), and with dimensionless stream power, which appears to be consistent across the range of data from field and physical models. Thus there is a link between active width and the river morphology and dynamics, and the possibility of a general relationship for estimating active width from channel pattern properties or reach‐scale stream power values, from which approximate bedload flux calculations may be made. The analysis also raises questions about differences between hydraulically‐based numerical model computations of instantaneous active width and observation of time‐integrated morphological active width. Understanding these differences can give insight into the nature of bedload transport in braided rivers and the relationship to morphological processes of braiding. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In water-deficient rivers, environmental flows (e-flows) are usually sustained via inter-basin water transfer projects from water-sufficient rivers, but these projects incur tremendous costs and may lead to many negative ecological effects, such as ecological invasion. This research proposed to transfer hydropower instead of water from water-sufficient rivers, because hydropower could substitute for water to promote economic development and reduce water withdrawal from water-deficient rivers (conserved water). In addition, based on the analysis of eco-hydrological processes, the flow regime alteration plays an important role in restoring riverine ecosystem. With the goal of minimum flow regime alternation, we set up two scenarios to distribute the annual conserved water, and determined the optimal amount of transferred hydropower and the optimal use of conserved water, which could effectively sustain the e-flows. Accordingly, this paper established a computable general equilibrium model to analyse the substitution of hydropower for water in a water-deficient river basin, and determined the water withdrawal volume that could be reduced. We adopted a range-of-variability approach to measure the degree of flow regime alteration, and optimized the flow regime management scheme. The Luanhe River Basin was adopted as a study case. The results showed that: the water-hydropower equivalent decreased as the transferred hydropower into the Luanhe River Basin increased; a transferred hydropower amount of 22.46 kWh/s, equivalent to 18.30 m3/s conserved water, was optimal for the river basin; the conserved water should be distributed to the Luanhe River in the proportions of 0.55:0.1:0.35 during the wet, normal and dry seasons, respectively, which is the optimal scheme to sustain the hydrological processes of the river.  相似文献   

20.
Channel bars and banks strongly affect the morphology of both braided and meandering rivers. Accordingly, bar formation and bank erosion processes have been greatly explored. There is, however, a lack of investigations addressing the interactions between bed and bank morphodynamics, especially over short timescales. One major implication of this gap is that the processes leading to the repeated accretion of mid‐channel bars and associated widenings remain unsolved. In a restored section of the Drau River, a gravel‐bed river in Austria, mid‐channel bars have developed in a widening channel. During mean flow conditions, the bars divert the flow towards the banks. One channel section exhibited both an actively retreating bank and an expanding mid‐channel bar, and was selected to investigate the morphodynamic processes involved in bar accretion and channel widening at the intra‐event timescale. We repeatedly surveyed riverbed and riverbank topography, monitored riverbank hydrology and mounted a time‐lapse camera for continuous observation of riverbank erosion processes during four flow events. The mid‐channel bar was shown to accrete when it was submerged during flood events, which at the subsequent flow diversion during lower discharges narrowed the branch along the bank and increased the water surface elevation upstream from the riffle, which constituted the inlet into the branch. These changes of bed topography accelerated the flow along the bank and triggered bank failures up to 20 days after the flood events. Four analysed flow events exhibited a total bar expansion from initially 126 m2 to 295 m2, while bank retreat was 6 m at the apex of the branch. The results revealed the forcing role of bar accretion in channel widening and highlighted the importance of intra‐event scale bed morphodynamics for bank erosion, which were summarized in a conceptual model of the observed bar–bank interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号