首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Rock glaciers and large ice-debris complexes are common in many mountain ranges and are especially prominent in semi-arid mountains such as the Andes or the Tien Shan. These features contain a significant amount of ice but their occurrence and evolution are not well known. Here, we present an inventory of the ice-debris complexes for the Ak-Shiirak, Tien Shan's second largest glacierised massif, and a holistic methodology to investigate two characteristic and large ice-debris complexes in detail based on field investigations and remote sensing analysis using Sentinel-1 SAR data, 1964 Corona and recent high resolution stereo images. Overall, we found 74 rock glaciers and ice-debris complexes covering an area of 11.2 km2 (3.2% of the glacier coverage) with a mean elevation of about 3950 m asl. Most of the complexes are located south-east of the main ridge of Ak-Shiirak. Ground penetrating radar (GPR) measurements reveal high ice content with the occurrence of massif debris-covered dead-ice bodies in the parts within the Little Ice Age glacier extent. These parts showed significant surface lowering, in some places exceeding 20 m between 1964 and 2015. The periglacial parts are characterised by complex rock glaciers of different ages. These rock glaciers could be remnants of debris-covered ice located in permafrost conditions. They show stable surface elevations with no or only very low surface movement. However, the characteristics of the fronts of most rock glacier parts indicate slight activity and elevation gains at the fronts slight advances. GPR data indicated less ice content and slanting layers which coincide with the ridges and furrows and could mainly be formed by glacier advances under permafrost conditions. Overall, the ice content is decreasing from the upper to the lower part of the ice-debris complexes. Hence, these complexes, and especially the glacier-affected parts, should be considered when assessing the hydrological impacts of climate change. © 2018 John Wiley & Sons, Ltd.  相似文献   

2.
An overall acceleration of rock glacier displacement rates in the Alps has been observed in recent decades, with several cases of destabilization leading to potential geomorphological hazards. This behaviour has been attributed to the rising permafrost temperature, induced by atmospheric warming and regulated by thermo-hydrological processes. Landforms derived from the interaction of glacier remnants and permafrost are widespread in mountain areas, but are less studied and monitored than talus rock glaciers. This work presents a comparative study of a talus rock glacier and a glacial-permafrost composite landform (GPCL) in the Eastern Italian Alps. The two landforms are only 10 km apart, but have rather different elevation ranges and main slope aspects. The kinematics and ground thermal conditions were monitored from 2001 to 2015 along with geomorphological surveys, analyses of historical maps and remote sensing data. The dynamic behaviour of the rock glacier was similar to the majority of monitored rock glaciers in the Alps, with an acceleration after 2008 and a velocity peak in 2015. In contrast, the GPCL had a nearly unchanged displacement rate during the observation period. Statistical analyses of kinematic vs. nivo-meteorological variables revealed a dynamic decoupling of the two landforms after 2008 that corresponds with increased winter snow accumulation. Although the kinematics of both landforms respond to ground surface temperature variations, the collected evidence suggests a different reaction of ground surface temperature to variations in the precipitation regime. This different reaction is likely due to local topo-climatic conditions that affect snow redistribution by wind. The different reactions of the two systems to the same climatic forcing is likely a legacy of their different origins. GPCL dynamics result from interaction of permafrost and residual glacial dynamics that are associated with possible peculiarities in the internal/basal meltwater circulation, whose future response is uncertain and requires improved understanding. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

3.
A physically based snow-evolution modelling system (SnowModel) that includes four sub-models: MicroMet, EnBal, SnowPack, and SnowTran-3D, was used to simulate eight full-year evolutions of snow accumulation, distribution, sublimation, and surface melt from glaciers in the Zackenberg river drainage basin, in north-east Greenland. Meteorological observations from two meteorological stations were used as model inputs, and spatial snow depth observations, snow melt depletion curves from photographic time lapse, and a satellite image were used for model testing of snow and melt simulations, which differ from previous SnowModel tests methods used on Greenland glaciers. Modelled test-period-average end-of-winter snow water equivalent (SWE) depth for the depletion area differs by a maximum of 14 mm w.eq., or ∼6%, more than the observed, and modelled test-period-average snow cover extent differs by a maximum of 5%, or 0·8 km2, less than the observed. Furthermore, comparison with a satellite image indicated a 7% discrepancy between observed and modelled snow cover extent for the entire drainage basin. About 18% (31 mm w.eq.) of the solid precipitation was returned to the atmosphere by sublimation. Modelled mean annual snow melt and glacier ice melt for the glaciers in the Zackenberg river drainage basin from 1997 through 2005 (September–August) averaged 207 mm w.eq. year−1 and 1198 mm w.eq. year−1, respectively, yielding a total averaging 1405 mm w.eq. year−1. Total modelled mean annual surface melt varied from 960 mm w.eq. year−1 to 1989 mm w.eq. year−1. The surface-melt period started between mid-May and the beginning of June and lasted until mid-September. Annual calculated runoff averaged 1487 mm w.eq. year−1 (∼150 × 106 m3) (1997–2005) with variations from 1031 mm w.eq. year−1 to 2051 mm w.eq. year−1. The model simulated a total glacier recession averaging − 1347 mm w.eq. year−1 (∼136 × 106 m3) (1997–2005), which was almost equal to previous basin average hydrological water balance storage studies − 244 mm w.eq. year−1 (∼125 × 106 m3) (1997–2003). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Surface temperature increases since the 1990s have often been associated with an increase in the speed of rock glaciers. Evidence of similar links on the centennial to millennial scale are, however, still lacking due to less focus to date on the medium‐ and long‐term kinematics of these landforms. In order to assess (palaeo)climatic variations in rock glacier kinematics, we analysed the movements of the Stabbio di Largario rock glacier in the southern Swiss Alps using three different timescales. The Schmidt hammer exposure‐age dating (SHD) was applied to study long‐term kinematics in order to extrapolate the minimal age of the formation of the rock glacier, which may have started its development after the Mid‐Holocene climate optimum, and to detect possible accelerations of the horizontal surface velocity during the Medieval Warm Period. Georeferentiation and orthorectification of six historical photographs of the rock glacier taken between ad 1910 and today were analysed using monoplotting to detect the rock glacier displacement on the decennial scale from the end of the Little Ice Age. Finally, differential global positioning system (dGPS) monitoring data available since ad 2009 were used to assess annual and seasonal creep rates of the rock glacier at present. Our results show a link between the periods of increase in mean air temperature on different timescales and variations in rock glacier kinematics and provide important new insights into rock glacier development and evolution on the long‐term scale. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The ability to continuously monitor the dynamic response of periglacial landforms in a climate change context is of increasing scientific interest. Satellite radar interferometry provides information on surface displacement that can be related to periglacial processes. Here we present a comparison of two‐dimensional (2D) surface displacement rates and geomorphological mapping at periglacial landform and sediment scale from the mountain Nordnesfjellet in northern Norway. Hence, 2D Interferometric Synthetic Aperture Radar (InSAR) results stem from a 2009–2014 TerraSAR‐X dataset from ascending and descending orbits, decomposed into horizontal displacement vectors along an east–west plane, vertical displacement vectors and combined displacement velocity. Geomorphological mapping was carried out on aerial imagery and validated in the field. This detailed landform and sediment type mapping revealed an altitudinal distribution dominated by, weathered bedrock blockfields, surrounded primarily by slightly, to non‐vegetated solifluction landforms at the mountain tops. Below, an active rockslide and associated rockfall deposits are located on the steep east‐facing side of the study area, whereas glacial sediments dominate on the gentler western side. We show that 2D InSAR correctly depicts displacement rates that can be associated with typical deformation patterns for flat‐lying or inclined landforms, within and below the regional permafrost limit, for both wet and dry areas. A net lowering of the entire landscape caused by general denudation of the periglacial landforms and sediments is here quantified for the first time using radar remote sensing. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

6.
局部地形下入射波散射效应对场地地震响应的影响是目前众多学者所关注的问题.其影响主要由入射波频率、入射角度、地形几何形状、介质性质等几个因素所制约,所反应出来的散射效应主要体现在地表位移变化上.本文归纳了凹陷地形、凸起地形、沉积谷地以及复合地形这四类局部地形入射波散射效应对场地地震响应的影响,对目前研究成果进行了评述,并针对数学技术、工程应用、模型建立等7个方面指出了现今存在的问题和今后发展的方向.  相似文献   

7.
In extensively glaciarized permafrost areas such as Northern Victoria Land, rock glaciers are quite common and are considered postglacial cryotic landforms. This paper reveals that two rock glaciers in Northern Victoria Land (at Adélie Cove and Strandline) that are located close to the Italian Antarctic Station (Mario Zucchelli Station) should have the same origin, although they were previously mapped as Holocene periglacial landforms and subsequently considered ice‐cored and ice‐cemented rock glaciers, respectively. In fact, by integrating different geophysical investigations and borehole stratigraphy, we show that both landforms have similar internal structures and cores of buried glacier ice. Therefore, this kind of rock glacier is possibly related to the long‐term creep of buried ice rather than to permafrost creep alone. This interpretation can be extended to the larger part of the features mapped as rock glaciers in Antarctica. In addition, a high‐reflective horizon sub‐parallel to the topographic surface was detected in Ground Probing Radar (GPR) data over a large part of the study area. Combining all the available information, we conclude that it cannot be straightforwardly interpreted as the base of the active layer but rather represents the top of a cryo‐lithological unit characterized by ice lenses within sediments that could be interpreted as the transition zone between the active layer and the long‐term permafrost table. More generally, knowledge of the subsurface ice content and, in particular, the occurrence of massive ice and its depth is crucial to make realistic and affordable forecasts regarding thermokarst development and related feedbacks involving GHG emissions, especially in the case of cryosoils rich in carbon content. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
The acceleration of surface velocities observed over the last two decades on monitored rock glaciers worldwide is a widespread signal of the probable control of warming air temperatures on long-term permafrost creep. Yet, the actual consequences of this acceleration on sediment availability in high mountain catchments have never been properly estimated at the pluri-decadal scale. The present study evaluates the sediment transfer activity between five rock glaciers located in the western European Alps and the headwaters of the torrential channels they are respectively connected to. It reposes on the orthorectification of aerial images available generally from the 1960s to the mid-2010, to reconstruct time-series of (i) horizontal surface velocities and (ii) frontal erosion rates. Values of horizontal velocity are retrieved by tracking the displacement of boulders on the surface of rock glaciers between consecutive images while erosion rates affecting the fronts are calculated by combining these values of displacement with the geometry of the front (mean width and rock glacier thickness) derived from recent high-resolution digital elevation models. Results confirm the general acceleration of rock glaciers surface velocities since the 1970s and indicate that this accelerating trend is causing an increase in the erosion rates calculated at the front of most studied rock glaciers. In some cases and over specific periods however, the acceleration resulted in the advance of the whole landforms over their own sediments, leading to a comparatively low sediment export towards the torrents.  相似文献   

9.
Mechanical processes operating on the slope surface or at depth control the dynamics of alpine landforms and hold critical information of their geomorphological characteristics, yet they often lack systematic quantification and in-depth interpretation. This study aims to address a long-standing issue concerning geomorphological classification from a kinematic perspective. A group of periglacial landforms consisting of several lobes were discovered in the East Kunlun Mountains of China 30 years ago but were ambiguously classified as rock glaciers and later as gelifluction deposits. Here, we use satellite Interferometric Synthetic Aperture Radar to quantitatively characterize the spatial and temporal changes of the surface movement of these landforms. We observe that: (1) its 17 lobes show a pattern of landform-scale and uniform surface movement, especially during May to October; (2) the lobes move at a spatial mean downslope velocity of 10 to 60 cm/yr and a maximum velocity as high as 100 cm/yr in summer; (3) the landforms are nearly inactive from winter to late spring. Based on these observations, we postulate that the movement of the lobes are driven by deep-seated permafrost creep which typically occurs in rock glaciers. The debris of Lobe No.4 is composed of both boulders and pebbles supported by fine-grained matrix generated from the in situ weathering process. It develops a talus-like oversteepened front around 40° and a convex transverse profile perpendicular to the creep direction, which are also characteristic features of a rock glacier. Piecing these observations together, we identify Lobe No.4 as a debris-mantled-slope-connected rock glacier, with the gelifluction process occurring on the surface as small-scale and discrete events. © 2020 John Wiley & Sons, Ltd.  相似文献   

10.
Sidewall erosion because of rockfalls is one of the most efficient erosional processes in the highest parts of mountain ranges; it is therefore important to quantify sidewall erosion to understand the long-term evolution of mountainous topography. In this study, we analyse how the 10Be concentration of supraglacial debris can be used to quantify sidewall erosion in a glaciated catchment. We first analyse, in a glaciated catchment, the cascade of processes that move a rock from a rockwall to a supraglacial location and propose a quantitative estimate of the number of rockfalls statistically mixed in a supraglacial sand sample. This model incorporates the size of the rockwall, a power law distribution of the size of the rockfalls and the mean glacial transport velocity. In the case of the Bossons glacier catchment (Mont Blanc massif), the 10Be concentrations obtained for supraglacial samples vary from 1.97 ± 0.24 to 23.82 ± 1.68 × 104 atoms g−1. Our analysis suggests that part of the 10Be concentration dispersion is related to an insufficient number of amalgamated rockfalls that does not erase the stochastic nature of the sidewall erosion. In the latter case, the concentration of several collected samples is averaged to increase the number of statistically amalgamated rockfalls. Variable and robust 10Be-derived rockwall retreat rates are obtained for three distinct rockfall zones in the Bossons catchment and are 0.19 ± 0.08 mm year−1, 0.54 ± 0.1 mm year−1 and 1.08 ± 0.17 mm year−1. The mean 10Be retreat rate for the whole catchment (ca. 0.65 mm year−1) is close to the present-day erosion rate derived from other methods. © 2019 John Wiley & Sons, Ltd.  相似文献   

11.
On the west side of the military road to Tibet in the Kunlun Shan, a major body of diamicton is moving slowly downslope from the ridge crest at 4800 m in a northerly and easterly direction. The material is derived from Middle Pleistocene till deposits and the underlying Pliocene alluvial gravels. More than 10 per cent of the material is composed of boulders longer than 2 m, 45 per cent has long axes between 0·5 and 2 m, while the matrix is a poorly sorted sandy loam. The mean annual air temperature is −7°C to −5°C and the mean annual precipitation is under 300 mm a−1. The diamicton lacks a vegetation cover, in contrast to meadow tundra on the surrounding slopes. The diamicton mantles the north slope of the ridge, but splits into at least 16 separate tongues which are moving down fluvially graded valleys. The average slope of the landform is about 19°, while the mean slope of the fronts of the tongues is 21°. With one exception, the slope of the fronts does not exceed 25°, unlike true rock glaciers. The diamicton is up to 40 m thick in valley 4. The active layer was 12 to 30 cm deep in July at 4780 m, increasing to 1·5 to 2 m at about 4650 m. Ice contents in the permafrost may reach 57 per cent but 30 per cent is more usual The larger boulders act as braking blocks on the upper slopes of the landform and are frozen into the permafrost. The lower parts of the landform move at under 3 cm a−1, whereas the fine-grained material in the active layer moves past the braking blocks on the upper slopes at up to 30 cm a −1. There is no direct evidence for flowage of the icy diamicton forming the deposit. It is therefore best referred to as a gelifluction slope deposit, and is the longest and most spectacular of such deposits described so far in the world. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
Cataclysmic releases from the glacially dammed Lake Missoula, producing exceptionally large floods, have resulted in significant erosional processes occurring over relatively short time spans. Erosional landforms produced by the cataclysmic Missoula floods appear to follow a temporal sequence in many areas of eastern Washington State. This study has focused on the sequence observed between Celilo and the John Day River, where the erosional features can be physically quantified in terms of stream power and geomorphic work. The step-backwater calculations in conjunction with the geologic evidence of maximum flow stages, indicate a peak discharge for the largest Missoula flood of 10 × 106m3s−1. The analysis of local flow hydraulics and its spatial variation were obtained calculating the hydrodynamic variables within the different segments of a cross-section. The nature and patterns of erosional features left by the floods are controlled by the local hydraulic variations. Therefore, the association of local hydraulic parameters with erosional and depositional flood features was critical in understanding landform development and geomorphic processes. The critical stream power required to initiate erosion varied for the different landforms of the erosional sequence, ranging from 500 W m−2 for the streamlined hills, up to 4500 W m−2 to initiate processes producing inner channels. Erosion is possible only during catastrophic floods exceeding those thresholds of stream power below which no work is expended in erosion. In fact, despite the multiple outbursts which occurred during the late Pleistocene, only a few of them had the required magnitude to overcome the threshold conditions and accomplish significant geomorphic work. © 1997 by John Wiley & Sons, Ltd.  相似文献   

13.
Large (>0.1 km2) gully–mass movement complexes (badass gullies) are significant contributors to the sediment cascade in New Zealand's steepland East Coast Region catchments. The scale of change taking place in these gully systems allows significant evolution in morphology and sediment dynamics to be tracked at annual to decadal timescales. Here we document changes in two adjacent badass gullies in Waipaoa catchment (Tarndale and Mangatu) to infer sediment generation processes and connectivity using a morphological budgeting approach. A baseline dataset for this study is provided by a LiDAR-derived digital elevation model (DEM) in 2005. We produced new DEMs and orthophoto mosaics using photogrammetry in 2017, 2018, and 2019 to quantify gully morphodynamics and associated volumes of sediment erosion and deposition in both systems as they co-evolved. Results indicate ongoing rapid development of both gully complexes. Severe erosion took place at the gully heads with lowering and migration (up to 25 m vertically and laterally) of the topographic divide separating the two gullies between 2005 and 2019. Over the same period, net lowering of each gully system was ~250 mm year−1. Key sediment-generating processes included surface erosion, deep-seated landslides, and debris flows. Longer term, the overall contribution of sediment from both badass gullies to the Waipaoa catchment has been declining. In the mid-20th century, both gullies yielded in excess of 300 kt year−1. From 2005 to 2019, 80 kt year−1 was yielded from Tarndale and 110 kt year−1 from Mangatu. Our most recent surveys demonstrated considerable variability in sediment yield, ranging from 76 kt year−1 (2017–2018) to 291 kt year−1 (2018–2019). The annual variability observed reflects the complex morphodynamics of discrete hillslopes and tributary fans in these badass gully systems and underlines the importance of integrating decadal and annual surveys when assessing system trajectory. © 2020 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Rock glaciers, a feature associated with at least discontinuous permafrost, provide important topoclimatic information. Active and inactive rock glaciers can be used to model current permafrost distribution. Relict rock glacier locations provide paleoclimatic information to infer past conditions. Future warmer climates could cause permafrost zones to shrink and initiate slope instability hazards such as debris flows or rockslides, thus modeling change remains imperative. This research examines potential past and future permafrost distribution in the Colorado Front Range by calibrating an existing permafrost model using a standard adiabatic rate for mountains (0·5 °C per 100 m) for a 4 °C range of cooler and warmer temperatures. According to the model, permafrost currently covers about 12 per cent (326·1 km2) of the entire study area (2721·5 km2). In a 4 °C cooler climate 73·7 per cent (2004·4 km2) of the study area could be covered by permafrost, whereas in a 4°C warmer climate almost no permafrost would be found. Permafrost would be reduced severely by 93·9 per cent (a loss of 306·2 km2) in a 2·0 °C warmer climate; however, permafrost will likely respond slowly to change. Relict rock glacier distribution indicates that mean annual air temperature (MAAT) was once at least some 3·0 to 4·0 °C cooler during the Pleistocene, with permafrost extending some 600–700 m lower than today. The model is effective at identifying temperature sensitive areas for future monitoring; however, other feedback mechanisms such as precipitation are neglected. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Since 2000, 18 High Asia glaciers have been surveyed for black carbon (BC) deposition 22 times, and numerous snow samples and ice cores have been collected by researchers. However, most of the results were interpreted individually in papers. Here, we assemble the data and discuss the distribution of BC deposition and its impacts on the melting of the glaciers through radiative forcing. We find that BC distribution on the surfaces of High Asia glaciers primarily depends upon their elevations (i.e., higher sites have lower concentrations) and then upon regional BC emissions and surface melting conditions. BC concentrations in High Asia glaciers are similar to the Arctic and western American mountains but are significantly less than heavy industrialized areas such as northern China. Although Himalayan glaciers, which are important due to their water resources, are directly facing the strong emissions from South Asia, their mean BC is the lowest due to high elevations. A new finding indicated by ice core records suggested that great valleys in the eastern Himalayan section are effective pathways for BC entering the Tibetan Plateau and make increasing BC trends in the local glaciers. On average, BC deposition causes a mean forcing of ∼6 W m−2 (roughly estimated 5% of the total forcing) in High Asia glaciers and therefore may not be a major factor impacting the melting of most glaciers.  相似文献   

17.
Erosion of soil by water is facilitated by both diffusive and fluvial processes. Here we examine three different soil redistribution processes operating at very different spatial and temporal scales in the monsoonal tropics of northern Australia. The first process, rainsplash, operates across the entire catchment. This process, while subject to annual and seasonal variations in rainfall amount and intensity, can be considered a constant forcing and redistributes on average 9 t ha−1 year−1 (range −0.9 to 19 t ha−1 year−1). The second process, bioturbation, where in this study soil is disturbed by feral pigs (wild boar), occurs in selected areas throughout each year. Pigs exhume 3 to 36.0 t ha−1 year−1 (average ~11 t ha−1 year−1). The effect of this disturbance may last for many years afterwards. The third process is the disturbance of the soil surface by tree throw and creation of pit–mound topography (also a form of bioturbation), together with the resultant placement of the tree superstructure (above ground biomass) on the ground, which may form debris dams. Tree throw at the scale examined here is likely to occur only once every 50–100 years, with the influence of this single event lasting for at least 10 years post event. Tree throw in a single event exhumed ~5 t ha−1 (1.1–9.5 t ha−1) of soil. In contrast to rainsplash, pig disturbance and tree throw events are largely point-based phenomena. Field observation suggests that it takes many years for the disturbance from both pigs and tree throw to be removed. We find here that in terms of relative soil redistribution, rainsplash has the largest influence, with any erosional disturbance by pigs and tree throw being within the variability of rainsplash. However, the disruption of surface flow by the pig digs and tree throw disrupts sedimentological and hydrological connectivity.  相似文献   

18.
Rock glaciers contain valuable information about the spatial and temporal distribution of permafrost. The wide distribution of these landforms in high mountains promotes them as useful archives for the deciphering of the environmental conditions during their formation and evolution. However, age constraints are needed to unravel the palaeoclimatic context of rock glaciers, but numerical dating is difficult. Here, we present a case study assessing the potential of luminescence techniques (OSL, IRSL) to date the inner sand-rich layer of active rock glaciers. We focus on the signal properties and the resetting of the signal prior to deposition by investigating single grains. While most quartz shows low signal intensities and problematic luminescence characteristics, K-feldspar exhibits much brighter and well-performing signals. Most signals from plagioclases do not show suitable properties. Luminescence signals far below saturation indicate distinct but differential bleaching. The finite mixture model was used to determine the prominent populations in the equivalent dose distributions. The luminescence ages represent travel times of grains since incorporation into the rock glacier and hence, minimum ages of rock glacier formation. Luminescence ages between 3 ka and 8 ka for three rock glaciers from the Upper Engadine and Albula region (Swiss Alps) agree well with independent age estimates from relative and semi-quantitative approaches. Therefore, luminescence seems to have the potential of revealing age constraints about processes related to the formation of rock glaciers, but further investigations are required for solving some of the problems remaining and reducing the dating uncertainties.  相似文献   

19.
Proglacial lakes are becoming ubiquitous at the termini of many glaciers worldwide due to continued climate warming and glacier retreat, and such lakes have important consequences for the dynamics and future stability of these glaciers. In light of this, we quantified decadal changes in glacier velocity since 1991 using satellite remote sensing for Breiðamerkurjökull, a large lake-terminating glacier in Iceland. We investigated its frontal retreat, lake area change and ice surface elevation change, combined with bed topography data, to understand its recent rapid retreat and future stability. We observed highly spatially variable velocity change from 1991 to 2015, with a substantial increase in peak velocity observed at the terminus of the lake-terminating eastern arm from ~1.00 ± 0.36 m day−1 in 1991 to 3.50 ± 0.25 m day−1 in 2015, with mean velocities remaining elevated from 2008 onwards. This is in stark comparison to the predominately land-terminating arms, which saw no discernible change in their velocity over the same period. We also observed a substantial increase in the area of the main proglacial lake (Jökulsárlón) since 1982 of ~20 km2, equating to an annual growth rate of 0.55 km2 year−1. Over the same period, the eastern arm retreated by ~3.50 km, which is significantly greater than the other arms. Such discrepancies between the different arms are due to the growth and, importantly, depth increase of Jökulsárlón, as the eastern arm has retreated into its ~300 m-deep reverse-sloping subglacial trough. We suggest that this growth in lake area, forced initially by rising air temperatures, combined with the increase in lake depth, triggered an increase in flow acceleration, leading to further rapid retreat and the initiation of a positive feedback mechanism. These findings may have important implications for how increased melt and calving forced by climate change will affect the future stability of large soft-bedded, reverse-sloped, subaqueous-terminating glaciers elsewhere. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

20.
航空像片在活断层研究中的应用   总被引:2,自引:1,他引:2       下载免费PDF全文
江娃利 《地震地质》1991,13(4):323-331
航片判读活断层的依据是断层地形学。航片判读活断层的关键是找出变位地形。变位地形是指由构造作用形成,非自然侵蚀作用所能形成的地形。航片判读变位地形的可信度分为三类。垂河向陡坎、背河向陡坎及反坡向陡坎被认为是可信度工的第四纪活动的变位地形。判读走滑断层的变位方向及变位量,需注意地貌面上的线性地物。利用不同变位基准的不同变位量可判读断层活动期次。本文通过中日航片判读活断层的14个实例,对变位地形的识别予以说明  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号