首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Until now, alpine glacial meltwaters have been assumed to consist of two components, dilute quickflow and concentrated delayed flow, the mixing of which has been regarded as chemically conservative for the major dissolved ions and electrical conductivity. Dye tracing results suggest that this two-component model adequately represents the sub-glacial hydrology of the Haut Glacier d'Arolla, Switzerland. However, laboratory dissolution experiments in which various concentrations of glacial rock flour are placed in dilute solutions show that this rock flour is highly reactive and suggest that bulk meltwaters may acquire significant amounts of solute through rapid chemical reactions with suspended sediment which occur after mixing of the two components. This view is supported by detailed analysis of variations in the hydrochemistry of meltwaters draining from the Haut Glacier d'Arolla over three diurnal cycles during the 1989 melt season. Variations in the composition of bulk meltwaters are controlled by two main factors: dilution of the delayed flow component by quickflow, and the extent of post-mixing reactions. The latter depends on the suspended sediment concentration in bulk meltwaters and on the duration of contact between these waters and suspended sediment. Seasonal changes in the magnitude of these factors result in changes in the character and causes of diurnal variations in meltwater chemistry. In June, these variations reflect discharge-related variations in residence time within a distributed subglacial drainage system; in July, when a channelized drainage system exists beneath the lower glacier, they primarily reflect the dilution of delayed flow by quickflow; in August, when suspended sediment concentrations are particularly high, they reflect varying degrees of solute acquisition by post-mixing reactions with suspended sediment that take place in arterial channels at the glacier bed.  相似文献   

2.
The magnitude and processes of solute acquisition by dilute meltwater in contact with suspended sediment in the channelized component of the hydroglacial system have been investigated through a suite of controlled laboratory experiments. Constrained by field data from Haut Glacier d'Arolla, Valais, Switzerland the effects of the water to rock ratio, particle size, crushing, repeated wetting and the availability of protons on the rate of solute acquisition are demonstrated. These ‘free-drift’ experiments suggest that the rock flour is extremely geochemically reactive and that dilute quickflow waters are certain to acquire solute from suspended sediment. These data have important implications for hydrological interpretations based on the solute content of glacial meltwater, mixing model calculations, geochemical denudation rates and solute provenance studies.  相似文献   

3.
There are still relatively few hydrochemical studies of glacial runoff and meltwater routing from the high latitudes, where non-temperate glacier ice is frequently encountered. Representative samples of glacier meltwater were obtained from Scott Turnerbreen, a ‘cold-based’ glacier at 78° N in the Norwegian high Arctic archipelago of Svalbard, during the 1993 melt season and analysed for major ion chemistry. Laboratory dissolution experiments were also conducted, using suspended sediment from the runoff. Significant concentrations of crustal weathering derived SO2−4 are present in the runoff, which is characterized by high ratios of SO2−4: (SO2−4+HCO3) and high p(CO2). Meltwater is not routed subglacially, but flows to the glacier terminus through subaerial, ice marginal channels, and partly flows through a proglacial icing, containing highly concentrated interstitial waters, immediately afront the terminus. The hydrochemistry of the runoff is controlled by: (1) seasonal variations in the input of solutes from snow- and icemelt; (2) proglacial solute acquisition from the icing; and (3) subaerial chemical weathering within saturated, ice-cored lateral moraine adjoining drainage channels at the glacier margins, sediment and concentrated pore water from which is entrained by flowing meltwater. Diurnal variations in solute concentration arise from the net effects of variable sediment pore water entrainment and dilution in the ice marginal streams. Explanation of the hydrochemistry of Scott Turnerbreen requires only one major subaerial flow path, the ice marginal channel system, in which seasonally varying inputs of concentrated snowmelt and dilute icemelt are modified by seepage or entrainment of concentrated pore waters from sediment in lateral moraine, and by concentrated interstitial waters from the proglacial icing, supplied by leaching, slow drainage at grain intersections or simple melting of the icing itself. The ice marginal channels are analogous neither to dilute supra/englacial nor to concentrated subglacial flow components. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
Research over the last decade has shown that the suspended sediment loads of many rivers are dominated by composite particles. These particles are also known as aggregates or flocs, and are commonly made up of constituent mineral particles, which evidence a wide range of grain sizes, and organic matter. The resulting in situ or effective particle size characteristics of fluvial suspended sediment exert a major control on all processes of entrainment, transport and deposition. The significance of composite suspended sediment particles in glacial meltwater streams has, however, not been established. Existing data on the particle size characteristics of suspended sediment in glacial meltwaters relate to the dispersed mineral fraction (absolute particle size), which, for certain size fractions, may bear little relationship to the effective or in situ distribution. Existing understanding of composite particle formation within freshwater environments would suggest that in‐stream flocculation processes do not take place in glacial meltwater systems because of the absence of organic binding agents. However, we report preliminary scanning electron microscopy data for one Alpine and two Himalayan glaciers that show composite particles are present in the suspended sediment load of the meltwater system. The genesis and structure of these composite particles and their constituent grain size characteristics are discussed. We present evidence for the existence of both aggregates, or composite particles whose features are largely inherited from source materials, and flocs, which represent composite particles produced by in‐stream flocculation processes. In the absence of organic materials, the latter may result solely from electrochemical flocculation in the meltwater sediment system. This type of floc formation has not been reported previously in the freshwater fluvial environment. Further work is needed to test the wider significance of these data and to investigate the effective particle size characteristics of suspended sediment associated with high concentration outburst events. Such events make a major contribution to suspended sediment fluxes in meltwater streams and may provide conditions that are conducive to composite particle formation by flocculation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
The development of large erosive subglacial forms in unconsolidated sediments is generally attributed to the eroding power of subglacial meltwater flowing under high pressure conditions. Most explanations, however, differ in the source of meltwater and the speed at which it erodes the subglacial bed. Based on the geometry of deep tunnel valleys and glacial basins in northwestern Europe, a reconstruction of subglacial hydrological conditions during the development of subglacial depressions is made. It is demonstrated that the flow of subglacial meltwater in subglacial channels under high glaciostatic pressures is only capable of eroding large volumes of sediment as long as there is imminent glaciohydrological instability. For the thick aquifers in northwestern Europe, this instability is achieved when large quantities of supraglacial meltwater are available. Furthermore, a theoretical definition is given for maximum depression depth to be reached by subglacial erosion. It is shown that this maximum depth is strongly related to average air temperatures during deglaciation and that glacier bed lowering is to be expected during any final phase of glaciations. The theoretical framework presented enables a tentative comparison between large-scale glacial morphology of different glaciations in northwestern Europe.  相似文献   

6.
Bulk runoff and meteorological data suggest the occurrence of two meltwater outburst events at Finsterwalderbreen, Svalbard, during the 1995 and 1999 melt seasons. Increased bulk meltwater concentrations of Cl? during the outbursts indicate the release of snowmelt from storage. Bulk meltwater hydrochemical data and suspended sediment concentrations suggest that this snowmelt accessed a chemical weathering environment characterized by high rock:water ratios and long rock–water contact times. This is consistent with a subglacial origin. The trigger for both the 1995 and 1999 outbursts is believed to be high rates of surface meltwater production and the oversupply of meltwater to areas of the glacier bed that were at the pressure melting point, but which were unconnected to the main subglacial drainage network. An increase in subglacial water pressure to above the overburden pressure lead to the forcing of a hydrological connection between the expanding subglacial reservoir and the ice‐marginal channelized system. The purging of ice blocks from the glacier during the outbursts may indicate the breach of an ice dam during connection. Although subglacial meltwater issued continually from the glacier terminus via a subglacial upwelling during both melt seasons, field observations showed outburst meltwaters were released solely via an ice‐marginal channel. It is possible that outburst events are a seasonal phenomenon at this glacier and reflect the periodic drainage of meltwaters from the same subglacial reservoir from year to year. However, the location of this reservoir is uncertain. A 100 m high bedrock ridge traverses the glacier 6·5 km from its terminus. The overdeepened area up‐glacier from this is the most probable site for subglacial meltwater accumulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
ABSTRACT

Glacier-melt-induced changes in runoff are of concern in northwestern China where glacier runoff is a major source for irrigation, industries and ecosystems. Samples were collected in different water mediums such as precipitation, glacial ice/snowcover, meltwater, groundwater and streamwater for the analysis of stable isotopes and solute contents during the 2009 runoff season in the Laohugou Glacial Catchment. The multi-compare results of δ18O values showed that significant difference existed in different water mediums. Source waters of streamflow were determined using data of isotopic and geochemical tracers and a three-component hydrograph separation model. The results indicated that meltwater dominated (69.9 ± 2.7%) streamflow at the catchment. Precipitation and groundwater contributed 17.3 ± 2.3% and 12.8 ± 2.4% of the total discharge, respectively. According to the monthly hydrograph, the contribution of snow and glacier meltwater varied from 57.4% (September) to 79.1% (May), and that of precipitation varied from 0% (May) to 34.6% (September). At the same time, the monthly contribution of groundwater kept relatively steady, varying from 9.7% (June) to 20.9% (May) in the runoff season. Uncertainties for this separation were mainly caused by the variation of tracer concentrations. It is suggested that the end-member mixing analysis (EMMA) method can be used in the runoff separation in an alpine glacial catchment.
Editor Z.W. Kundzewicz; Associate editor Not assigned  相似文献   

8.
Unlike temperate and polythermal proglacial streams, the proglacial streams in Taylor Valley (TV), Antarctica, are derived primarily from glacier surface melt with no subglacial or groundwater additions. Solute responses to flow reflect only the interaction of glacial meltwater with the valley floor surrounding the stream channel. We have investigated the major, minor and trace element 24‐h variations of two proglacial melt streams, Andersen Creek and Canada Stream, originating from the Canada Glacier in TV, Antarctica. Both streams exhibited diel mid‐austral summer diurnal flow variation, with maximum flow being more than 50 times the minimum flow. Dissolved (< 0.4 µm) major, minor and trace solute behaviors through diel periods were strongly controlled by the availability of readily solubilized material on the valley floor and hyporheic‐biological exchanges. Anderson Creek had generally greater solute concentrations than Canada Stream because of its greater receipt of eolian sediment. Andersen Creek also acquired greater solute concentrations in the rising limb of the hydrograph than the falling limb because of dissolution of eolian material at the surface of the stream channel coupled with minimal hyporheic‐biological exchange. Conversely, Canada Stream had less available eolian sediment, but a greater hyporheic‐biological exchange, which preferentially removed trace and major solutes in the rising limb and released them in the falling limb. Given the dynamic nature of discharge, eolian, and hyporheic‐biological processes, solute loads in TV streams are difficult to predict. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The molecular characteristics of dissolved organic matter (DOM) reflect both its source material and its biogeochemical history. In glacial systems, DOM characteristics might be expected to change over the course of a melt season as changes in the glacier drainage system cause the mobilization of DOM from different OM pools. To test this hypothesis we used Principal Components Analysis (PCA) of synchronous fluorescence spectra to detect and describe changes in the DOM in meltwater from a glacier system in the Coast Mountains of northern British Columbia, Canada. For most of the melt season, the dominant component of subglacially routed meltwater DOM is characterized by a tyrosine‐like fluorophore. This DOM component is most likely derived from supraglacial snowmelt. During periods of high discharge, a second component of DOM is present which is humic in character and similar to DOM sampled from a nearby non‐glacial stream. This DOM component is inferred to be derived from a moss‐covered soil environment that has been glacially overrun. It is probably entrained into glacial melt waters when the supraglacial meltwater flux exceeds the capacity of the principal subglacial drainage channels and water floods areas of the glacier bed that are normally isolated from the subglacial drainage system. Another source of DOM also appears to be mobilized during periods of high air temperatures. It is characterized by both humic and proteinaceous fluorophores and may be derived from the drainage of supraglacial cryoconite holes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Stream–subsurface exchange strongly influences the transport of contaminants, fine particles, and other ecologically relevant substances in streams. We used a recirculating laboratory flume (220 cm long and 20 cm wide) to study the effects of particle size, overlying velocity, and biofilm formation on stream–subsurface exchange of particles. Sodium chloride was used as a non‐reactive dissolved tracer and 1‐ and 5‐µm fluorescent microspheres were used as particulate tracers. Surface–subsurface exchange was observed with a clean sand bed and a bed colonized by an autotrophic–heterotrophic biofilm under two different overlying velocities, 0·9 and 5 cm s?1. Hydrodynamic interactions between the overlying flow and sand bed resulted in a reduction of solute and particle concentrations in the water column, and a corresponding accumulation of particles in both the sediments and in the biofilm. Increasing overlying velocity and particle size resulted in faster removal from the overlying water due to enhanced mass transfer to the bed. The presence of the biofilm did not affect solute exchange under any flow condition tested. The presence of the biofilm significantly increased the deposition of particles under an overlying velocity of 5 cm s?1, and produced a small but statistically insignificant increase at 0·9 cm?1. The particles preferentially deposited within the biofilm matrix relative to the underlying sand. These results demonstrate that hydrodynamic transport conditions, particle size, and biofilm formation play a key role in the transport of suspended particles, such as inorganic sediments, particulate organic matter, and pathogenic microorganisms in freshwater ecosystems, and should be taken into consideration when predicting the fate and transport of particles and contaminants in the environment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
王欣  丁永建  张勇 《湖泊科学》2019,31(3):609-620
冰川融水通过热量、水、物质传输对山地冰冻圈冰湖水文效应产生影响,引起广泛关注.本文从山地冰冻圈冰湖的水量、物理化学性质、生物等方面系统总结冰川融水对冰湖水文效应的影响.冰川融水被冰湖滞留能在一定程度上延缓区域冰川水资源的亏损,但也直接导致了潜在危险性冰湖数量和危险程度增大.冰川融水对冰湖物理性质的影响主要表现在降低湖水温度、影响透明度/浊度、改变湖水密度、造成湖水热力分层现象等方面,对冰湖化学性质的影响主要表现在增加湖水中的氮素、溶解有机物、持久性有机污染物、各类离子和重金属等,进而影响冰湖生物的分布、组成、结构和功能.深入系统地开展冰川融水及其变化对冰湖水文效应研究,对冰川水文与水资源、山地冰冻圈生态环境研究具有重要意义.  相似文献   

12.
This paper adopts standard tests developed in temperate catchment research to determine the total phosphorus (TP) and the algal available (base‐extractable) phosphorus (NaOH–P) content of a wide range of glaciofluvial sediments from the Northern Hemisphere. We find that the TP content of these sediments is broadly similar to the P content of major rock types in Earth's crust (230–670 µgP/g) and so the TP yields of glacier basins may be high owing to the efficacy of suspended sediment evacuation by glacial meltwaters. We show that this is best achieved where subglacial drainage systems are present. The NaOH–P pool of the sediments is found to be low (1–23 µgP/g) relative to the TP pool and also to the NaOH–P pool of suspended sediments in temperate, non‐glacierized catchments. This most probably reflects the restricted duration of intimate contact between dilute meltwaters and glacial suspended sediments during the ablation season. Thus, despite the high surface‐area:volume ratio of glacial suspended sediments, the potential for P adsorption to mineral surfaces following release by dissolution is also low. Further, sorption experiments and sequential extraction tests conducted using glacial suspended sediments from two Svalbard catchments indicate that the generation of reactive secondary minerals (e.g. Fe‐ and other hydroxides) with a strong capacity to scavenge P from solution (and thereby promote the continued dissolution of P) may also be limited by the short residence times. Most P is therefore associated with poorly weathered, calcite/apatite‐rich mineral phases. However, we use examples from the Svalbard glacier basins (Austre Brøggerbreen and Midre Lovénbreen) to show that the high sediment yields of glaciers may result in appreciable NaOH–P loading of ice‐marginal receiving waters. Again, the importance of subglacial drainage is highlighted, as it produces a major, episodic release of NaOH–P at Midre Lovénbreen that results in a yield (8·2 kg NaOH–P/km2/year) more than one order of magnitude greater than that at Austre Brøggerbreen (where subglacial drainage is absent and the yield is 0·48 kg NaOH‐P/km2/year). Therefore, as since both detrimental and beneficial effects of sediment‐bound P loading in ice marginal receiving waters are possible (i.e. either reduced primary productivity owing to increased turbidity or P fertilization following desorption) there is a pressing need to assess the ambient P status of such environments and also the capacity for ice‐marginal ecosystems to adapt to such inputs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Recent understanding of chemical weathering in glacierized catchments has been focused on mid-latitude, Alpine catchments; comparable studies from the high latitudes are currently lacking. This paper attempts to address this deficiency by examining solute provenance, transport and denudation in a glacierized catchment at 78°N in the Svalbard High Arctic archipelago. Representative samples of snow, glacier ice, winter proglacial icing and glacier meltwater were obtained from the catchment during spring and summer 1993 and analysed for major ion chemistry. Seasonal variations in the composition of glacier meltwater occur and are influenced by proglacial solute acquisition from the icing at the very start of the melt season, and subsequently by a period of discharge of concentrated snowmelt caused by snowpack elution; weathering within the ice-marginal channels that drain the glacier, particularly carbonation reactions, continues to furnish solute to meltwater when suspended sediment concentrations increase later in the melt season. Partitioning the solute flux into its various components (sea-salt, crustal, aerosol and atmospheric sources) shows that c. 25% of the total flux is sea salt derived, consistent with the maritime location of the glacier, and c. 71% is crustally derived. Estimated chemical denudation, 160 meq m−2 a−1 sea salt-corrected cation equivalent weathering rate, is somewhat low compared with other studied glacierized catchments (estimates in the range 450–1000 meq m−2 a−1), which is probably attributable to the relatively short melt season and low specific runoff in the High Arctic. A positive relationship was identified between discharge and CO2 drawdown owing to carbonation reactions in turbid meltwater. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Subglacial water flow drives the excavation of a variety of bedrock channels including tunnel valleys and inner gorges. Subglacial floods of various magnitudes – events occurring once per year or less frequently with discharges larger than a few hundred cubic metres per second – are often invoked to explain the erosive power of subglacial water flow. In this study we examine whether subglacial floods are necessary to carve bedrock channels, or if more frequent melt season events (e.g. daily production of meltwater) can explain the formation of substantial bedrock channels over a glacial cycle. We use a one‐dimensional numerical model of bedrock erosion by subglacial meltwater, where water flows through interacting distributed and channelized drainage systems. The shear stresses produced drive bedrock erosion by bed‐ and suspended‐load abrasion. We show that seasonal meltwater discharge can incise an incipient bedrock channel a few tens of centimetres deep and several metres wide, assuming abrasion is the only mechanism of erosion, a particle size of D=256 mm and a prescribed sediment supply per unit width. Using the same sediment characteristics, flood flows yield wider but significantly shallower bedrock channels than seasonal meltwater flows. Furthermore, the smaller the shear stresses produced by a flood, the deeper the bedrock channel. Shear stresses produced by seasonal meltwater are sufficient to readily transport boulders as bedload. Larger flows produce greater shear stresses and the sediment is carried in suspension, which produces fewer contacts with the bed and less erosion. We demonstrate that seasonal meltwater discharge can excavate bedrock volumes commensurate with channels several tens of metres to a few hundred metres wide and several tens of metres deep over several thousand years. Such simulated channels are commensurate with published observations of tunnel valleys and inner gorges. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
The sediment yields of Alpine catchments are commonly determined from streamload measurements made some distance downstream from glaciers. However, this approach indiscriminately integrates erosion processes occurring in both the glacial and proglacial areas. A specific method is required to ascertain the respective inputs from (i) subglacial and supraglacial sediments, (ii) proglacial hillslopes and (iii) proglacial alluvial areas or sandurs. This issue is addressed here by combining high‐resolution monitoring (2 min) of suspended sediment concentrations at different locations within a catchment with discharge gauging and precipitation data. This methodological framework is applied to two proglacial streams draining the Bossons glacier (Mont Blanc massif, France): the Bossons and Crosette streams. For the Bossons stream, discharge and suspended load data were acquired from June to October 2013 at 1.15 and 1.5 km from the glacial terminus, respectively upstream and downstream from a small valley sandur. These hydro‐sedimentary data are compared with the Crosette stream dataset acquired at the outlet of the Bossons glacier subglacial drainage system. A fourfold analysis focusing on seasonal changes in streamload and discharge, multilinear regression modelling, evaluation of the sandur flux balance and probabilistic uncertainty assessment is used to determine the catchment sediment budget and to explain the proglacial sediment dynamics. The seasonal fluctuation of the sediment signal observed is related to the gradual closing of the subglacial drainage network and to the role of the proglacial area in the sediment cascade: the proglacial hillslopes appear to be disconnected from the main channel and the valley sandur acts as a hydrodynamic sediment buffer both daily and seasonally. Our findings show that an understanding of proglacial sediment dynamics can help in evaluating paraglacial adjustment and subglacial erosion processes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Research on suspended sediment transport in the catchments of the Old Mill reservoir and Slapton Lower Ley, South Devon, has attempted to discriminate changing catchment sources on the basis of downcore variations in the mineral magnetic properties of lake, reservoir and floodplain sediments. Here, we examine these downcore variations and also explore the variability in catchment sources and the influence of topographic controls on mineral magnetic signatures of topsoils and subsoils. Particle size controls on the mineral magnetic signatures are explored by an analysis of a fractionated sediment sample, whilst the possible impact of diagenesis is assessed by an examination of the Mn profiles in the lake and reservoir sediments. From this analysis it is evident that the mineral magnetic signatures of well sorted floodplain deposits are more likely to reflect the particle size composition of the transported material. By contrast, the mineral magnetic record in the sediment of Slapton Ley appears to be most strongly influenced by dissolution of magnetic minerals. The sediment of the Old Mill reservoir provides the only suitable record for the application of a simple mixing model which is developed in order to quantify changes in the relative contribution of topsoil and subsoil through time. The research has important implications for attempting to reconstruct sediment sources in highly eutrophic lakes and emphasizes the uncertainty in the application of simple mixing models. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
Summary Magnetic property variations in marine, lacustrine and loess-paleosol sequences have proved to be useful proxies in climate change studies. However in order to correctly interpret the record of the magnetic property variations it is absolutely necessary to have a good understanding of the cause of the observed variations. Most of the ambiguity in loess-paleosol studies is in distinguishing the role of pedogenesis from other climatic factors. Studying the mineral magnetic properties of the protected cave sediments which have not undergone pedogenesis allows us to determine the degree to which detrital input is climatically driven. These results will help us better understand the variations observed in the surficial loess-paleosol sequences. This study reports mineral magnetic data collected from entrance facies sediments deposited during the early Wurmian glacial stage in the Kůlna Cave. The entrance facies sediments consist of loess-like silts with varying amount of talus. The magnetic susceptibility record from these sediments shows higher values in layers originating in colder climates which is different to that commonly observed in surficial loess deposits. Higher values of magnetic susceptibility in Kůlna sediments are probably due to higher concentrations of ferromagnetic minerals (magnetite and maghemite) and due to an increased proportion of superparamagnetic grains. The magnetic mineralogy and the grainsize distribution (grains larger than superparamagnetic) appear not to change throughout the studied profiles. Higher magnetic susceptibility accompanied by an increase in the superparamagnetic fraction observed in the sediments deposited during colder periods can be explained by an increased input from a pedogenic source when the vegetation cover was reduced and the erosion rate increased.  相似文献   

19.
Abstract

Suspended sediment concentrations in the meltwater of Pindari Glacier were determined at regular intervals in four ablation seasons. The late ablation periods (September 1994 and October 1995) were characterized by a reduced level of sediment concentration, while the sampling periods of early ablation (May 1994 and July 1995) showed very high concentrations of suspended sediment in the meltwater. Grain size distribution shows the dominance of medium and coarse silt fractions of the mean size of the suspended sediments between 4.35 and 5.82 ø. Clay size constitutes about 7% of the total size population. The majority of the samples are poorly sorted, symmetrically to finely skewed and mesokurtic in nature. The grain shows texture of mechanical and chemical origin, in which mechanical texture is predominant on most of the grains. It was observed that the grains were mostly subangular to subrounded in shape with variable size ranges. Bulk sediment chemistry consists mostly (>70%) of the five elements, Si, Al, K, Fe and Mg. Iron (Fe) and Mn are dominant heavy metals and sediments show the elemental abundance in the order of Fe > Mn > Zn > Cu > Ni > Pb. The Chemical Index of Alteration (CIA) of suspended sediments (57) is relatively higher than in the case of average unweathered upper continental crust (~50) indicating a higher degree of weathering due to glacier grinding and crushing action. Quartz is the most dominant mineral, followed by mica, illite, feldspar and kaolinite.  相似文献   

20.
Drumlins are landforms essential to understanding of ice sheet movement over soft beds, sediment transport along the ice/bed interface, and the formation of a wide range of glacial deposits. Although investigated more than any other glacial landform, the origin of drumlins remains contentious. Using high-resolution LiDAR imagery and field data, we investigate the geomorphology and internal composition of one of the biggest drumlin fields in the North European Lowland. The Stargard drumlin field consists of over 1300 drumlins and related streamlined subglacial bedforms in a terminal part of a major Weichselian palaeo-ice stream of the southern Scandinavian Ice Sheet. The drumlins are typically 600-800 m long, 200-250 m wide, 3-6 m high and have axial elongation ratios ~2 but in some cases exceeding 15. Several subzones inferred from drumlin morphometry exist reflecting different ice flow dynamics. The most elongated drumlins occur in areas where ice moved down-slope and where thick fine-grained deposits of low hydraulic conductivity occur in the substratum. The largest portion of land occupied by drumlins and the greatest frequency density of drumlins occur where the ice moved up-slope. Stargard drumlins are composed of a wide variety of glacial deposits including various types of tills and meltwater sediments, which range from undisturbed to heavily deformed. There is no correlation between the deposits in the drumlins and the drumlin forms indicating that the deposits pre-date the drumlinizing process. It is suggested that the drumlin field was generated by a combination of direct glacial erosion and subglacial meltwater erosion by removing antecedent material from the inter-drumlin areas and streamlining the resultant bumps. Our data support the search for a unifying theory of drumlin formation and suggest erosion as the most plausible single mechanism generating drumlin landscapes. © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号