首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Christian Horrebow and his colleagues of Copenhagen, Denmark, actively observed sunspots from 1761 to 1777. These observations were examined by Thiele in 1859 and by d'Arrest in 1873 with markedly different conclusions. Thiele reported nearly twice as many sunspot groups as d'Arrest. To resolve this discrepancy, we have reexamined Horrebow's original notebooks. We find slightly more sunspot groups then did d'Arrest. Thiele apparently called individual sunspots sunspot groups, so he would call a bipolar group two groups. d'Arrest seems to have missed counting some of the smaller sunspot groups. A correct interpretation of Horrebow's observations is required in efforts to reconstruct solar activity. Wolf gave a sunspot number for 1769 of 106.1. On the basis of our re-examination of Horrebow's drawings and other observers, we deduce a sunspot number of about 80.5 for 1769.  相似文献   

2.
Letfus  V. 《Solar physics》2000,194(1):175-184
We revised relative sunspot numbers in the time interval 1700–1748 for which Wolf derived their annual means. The frequency of daily observations, counting simultaneously the number of sunspots and the number of sunspot groups necessary for determinating Wolf's relative sunspot numbers, is in this time interval very low and covers, on average, 4.8% of the number of all days only. There also exist incomplete observations not convenient to determine relative sunspot numbers. To enlarge the number of daily relative sunspot numbers we used the nonlinear, two-step interpolation method derived earlier by Letfus (1996, 1999). After interpolation, the mean value increased to 13.8%. Waldmeier (1968) found that the scaling factor k can be derived directly from the observed number of spots f and from the number of sunspot groups g. From the observations made at Zürich (Wolf and his assistants, Wolfer), at Peckeloh, and at Moncalieri during the years 1861–1928, we derived a new, more correct empirical relation. The resulting annual relative sunspot numbers are given in Table II. However, only for 26 years (53.0%) from the total number of 49 years was it possible to derive annual relative sunspot numbers. The observations were missing for the other years. This corresponds with results of Wolf, which gives the annual relative sunspot numbers for all 49 years. For the years when the data were missing, he marked these values as interpolated or very uncertain ones. Most of the observations originate from two data series (Kirch, Plantade), for which Wolf derived a higher scaling factor (k=2.0) than followed from the newly derived relation (k=1.40). The investigated time interval covers four solar cycles. After our results, the height of the first cycle (No. –4), given by Wolf, should be lowered by about two-thirds, the following two cycles (Nos. –3 and –2) lowered by one-third, as given by Wolf, and only the height of the fourth one (No. –1) should be unchanged. The activity levels of the cycles, as represented by group sunspot numbers, are lower by about one-fourth and, in the case of the first one (No. –4) even by two-thirds of the levels derived by us. The group sunspot numbers, derived from a much greater number of observations, have also greater credibility than other estimates. The shapes of the cycles, as given by Wolf, can be considered only as their more or less idealized form.  相似文献   

3.
Long-term homogeneous observations of solar activity or many solar cycles are essential for investigating many problems in solar physics and climatology. The one key parameter used in most long-term studies is the Wolf sunspot number, which is susceptible to observer bias, particularly because it is highly sensitive to the observer's ability to see the smallest sunspots. In this paper we show how the Wolf sunspot number can be derived from the number of sunspot groups alone. We utilize this approach to obtain a Group Wolf number. This technique has advantages over the classical method of determining the Wolf number because corrections for observer differences are reduced and long-term self-consistent time series can be developed. The level of activity can be calculated to an accuracy of ± 5% using this method. Applying the technique to Christian Horrebow's observations of solar cycles 1, 2, and 3 (1761–1777), we find that the standard Wolf numbers are nearly homogeneous with sunspot numbers measured from 1875 to 1976 except the peak of solar cycle 2 is too low by 30%. This result suggests that further analyses of early sunspot observations could lead to significant improvements in the uniformity of the measurements of solar activity. Such improvements could have important impacts upon our understanding of long-term variations in solar activity, such as the Gleissberg cycle, or secular variations in the Earth's climate.  相似文献   

4.
5.
In the bookHistoria Coelestis Brittannica, John Flamsteed (1725) lists his daily solar observations from 1676 onwards. Coupled with his comments in thePhilosophical Transactions of the Royal Society and his letters to William Derham in the Cambridge University Library, it is possible to reconstruct a daily chronology of his solar and sunspot observations from 1676 to 1700. These observations are important because, coupled with daily logs of observations by Picard, La Hire, Eimmart, and others, a detailed record of the observations during a portion of the Maunder Minimum can be constructed. For example, for 1691, a typical year, the longest gap between observations is only four days. Flamsteed's observations are also important because they add to the data gathered by Wolf, Spoerer, Maunder, Eddy, and others in their study of solar activity in the seventeenth century. Flamsteed's observations are summarized here and a sample of his observations is presented.  相似文献   

6.
In this paper, we construct a time series known as the Group Sunspot Number. The Group Sunspot Number is designed to be more internally self-consistent (i.e., less dependent upon seeing the tiniest spots) and less noisy than the Wolf Sunspot Number. It uses the number of sunspot groups observed, rather than groups and individual sunspots. Daily, monthly, and yearly means are derived from 1610 to the present. The Group Sunspot Numbers use 65941 observations from 117 observers active before 1874 that were not used by Wolf in constructing his time series. Hence, we have calculated daily values of solar activity on 111358 days for 1610–1995, compared to 66168 days for the Wolf Sunspot Numbers. The Group Sunspot Numbers also have estimates of their random and systematic errors tabulated. The generation and preliminary analysis of the Group Sunspot Numbers allow us to make several conclusions: (1) Solar activity before 1882 is lower than generally assumed and consequently solar activity in the last few decades is higher than it has been for several centuries. (2) There was a solar activity peak in 1801 and not 1805 so there is no long anomalous cycle of 17 years as reported in the Wolf Sunspot Numbers. The longest cycle now lasts no more than 15 years. (3) The Wolf Sunspot Numbers have many inhomogeneities in them arising from observer noise and this noise affects the daily, monthly, and yearly means. The Group Sunspot Numbers also have observer noise, but it is considerably less than the noise in the Wolf Sunspot Numbers. The Group Sunspot Number is designed to be similar to the Wolf Sunspot Number, but, even if both indices had perfect inputs, some differences are expected, primarily in the daily values.  相似文献   

7.
Group Sunspot Numbers: A New Solar Activity Reconstruction   总被引:1,自引:0,他引:1  
In this paper, we construct a time series known as the Group Sunspot Number. The Group Sunspot Number is designed to be more internally self-consistent (i.e., less dependent upon seeing the tiniest spots) and less noisy than the Wolf Sunspot Number. It uses the number of sunspot groups observed, rather than groups and individual sunspots. Daily, monthly, and yearly means are derived from 1610 to the present. The Group Sunspot Numbers use 65941 observations from 117 observers active before 1874 that were not used by Wolf in constructing his time series. Hence, we have calculated daily values of solar activity on 111358 days for 1610–1995, compared to 66168 days for the Wolf Sunspot Numbers. The Group Sunspot Numbers also have estimates of their random and systematic errors tabulated. The generation and preliminary analysis of the Group Sunspot Numbers allow us to make several conclusions: (1) Solar activity before 1882 is lower than generally assumed and consequently solar activity in the last few decades is higher than it has been for several centuries. (2) There was a solar activity peak in 1801 and not 1805 so there is no long anomalous cycle of 17 years as reported in the Wolf Sunspot Numbers. The longest cycle now lasts no more than 15 years. (3) The Wolf Sunspot Numbers have many inhomogeneities in them arising from observer noise and this noise affects the daily, monthly, and yearly means. The Group Sunspot Numbers also have observer noise, but it is considerably less than the noise in the Wolf Sunspot Numbers. The Group Sunspot Number is designed to be similar to the Wolf Sunspot Number, but, even if both indices had perfect inputs, some differences are expected, primarily in the daily values.  相似文献   

8.
We discuss, on the basis of general relativity, the density distribution of stars around a black hole at the centre of a globular cluster. We show that the radial density profile depends on the ratio of specific heats γ and the results by Peebles and by Bahcall and Wolf are particular cases with γ 4/3. We give also the projected density profiles, obtained by numerical integration, for ready comparison with observations.  相似文献   

9.
V. Letfus 《Solar physics》2002,205(1):189-200
We derived daily relative sunspot numbers and their monthly and annual means in the first half of the seventeenth century. The series of observations collected by Wolf were recorded in the years 1611–1613 and 1642–1644. We used a nonlinear two-step interpolation method derived earlier (Letfus, 1996, 1999) to enlarge the number of daily data. Before interpolation the relative monthly frequency of observations in 24 months of the first time interval 1611–1613 was 49.4% and in 22 months of the second interval 1642–1644 was 49.9%. After interpolation the relative frequency increased in the first time interval to 91.3%, in the second time interval to 82.6%. Most data series in the years 1611–1613 overlap one another and also overlap with a series, for which Wolf estimated a scaling factor converting relative sunspot numbers on the Zürich scale. We derived the scaling factors of all individual series of observations also from the ratios of observed numbers of sunspots to the numbers of sunspot groups (Letfus, 2000). The differences between almost all scaling factors derived in one and the other way are not substantial. All data series were homogenized by application of scaling factors and parallel data in the overlapping parts of data series were averaged. Resulting daily relative sunspot numbers and their monthly and annual means in the years l61l–1613 are given in Table I and those in the years 1642–1644 in Table II. The annual means of these data are compared with analogous data obtained otherwise.  相似文献   

10.
We study the X-ray and extreme ultraviolet (EUV) behaviour of the flare star Wolf 630AB (V1054 Oph, Gl 644AB, HD 152751) using the ROSAT all-sky survey data from 1990 August. The simultaneous X-ray and EUV observations revealed a complex and unusual series of interplay. Indeed, the star was in a state of almost continuous flare activity for the two days of the X-ray observations. We saw a total of five X-ray flares (plus a subflare) and at least as many flares were also seen in the EUV data.
We suggest that the series of flares observed on Wolf 630AB originated in a single (probably complex) active region and illustrate, in a unique way, the evolution of flare activity in the stellar corona of a very active dMe star.  相似文献   

11.
We emphasize in this paper the importance of the UV range for our knowledge of massive stars and the fundamental role played by past and present space-based UV capabilities (IUE, HST, FUSE and others). Based on a review of the work developed in the last years and the state of the art situation for quantitative spectroscopy of massive stars, we present crucial advances which could be addressed by hypothetical future space-based UV missions. Advantages and unique data that these missions could provide are explained in the context of our present knowledge and theories on massive stars in the Milky Way and nearby galaxies. It is argued that these studies are our key to a correct interpretation of observations of more distant objects.  相似文献   

12.
In the bookMachina Coelestis (1679), Johannes Hevelius lists his daily solar observations from 1653 to 1679. He mentions 19 sunspot groups during this interval, of which 14 are unique to Hevelius and five are confirmed by other observers. There are an additional 9 sunspot groups during this interval that were not observed by Hevelius. In five cases he was not observing, but in the other four cases he did observe but failed to comment upon sunspots. The spots he missed or failed to observe tend to occur near the end of his career. This suggests Hevelius occasionally missed sunspots but usually was a reliable observer. These observations are important because they provide us the only known daily listing of solar observations during the early years of the Maunder Minimum. They are also important because they were overlooked by Wolf, Spoerer, Maunder, Eddy, and others in their study of solar activity in the seventeenth century. They provide us the best record of the sunspot maximum of 1660 when one sunspot lasted at least 86 days as it traversed the solar disk four times. The same region was active for seven solar rotations.  相似文献   

13.
Over the last decade, considerable progress has been achieved in the theory of light scattering by morphologically complex objects, which extends the potential of correct interpretation of photometric and polarimetric observations. This especially concerns the backscattering domain, where the opposition effects in brightness and polarization are observed. Although the equations of radiative transfer and weak localization (coherent backscattering) are rigorously valid only for sparse media, the results of exact computer solutions of the Maxwell equations for a macroscopic volume filled with randomly positioned particles show that their application area can be wider. In particular, the observations can be correctly interpreted if the packing density of particles in the medium reaches 20–30%. The recently suggested approximate solution of the coherent backscattering problem allowed interesting effects in the spectra of Saturn’s satellites to be explained. In the densely packed media, the effects that are impossible in the sparse media and caused by the near-field contribution can be observed. To calculate the characteristics of radiation reflected by such a medium, it is not sufficient to solve the radiative transfer and weak localization equations, even if they are written in a form without the far-zone limitations. Nowadays, the influence of the interaction of particles in the near field can be analyzed only for the restricted ensembles of particles. It shows that the substantial increase of the packing density essentially changes the phase functions of intensity and polarization in the backscattering domain. This allows the packing density of particles in the medium and their absorbing properties to be estimated from the shape of the phase curves measured. However, the task of quantitative interpretation of the measurements of radiation reflected by a densely packed medium, in terms of sizes of particles, their refractive index, and packing density, still remains unsolved.  相似文献   

14.
15.
We study the rotation of the sector structure of the solar magnetic field by using Stanford magnetographic observations from 1975 until 2000 and magnetic synoptic Hα-maps obtained from 1904 until 2000. The two independent series of observations yielded the same rotation periods of the two-sector (26.86 days) and four-sector (13.64 days) structures. We introduce a new index of the solar rotation, SSPM(t). The spectral power density of the sector structure of the magnetic field is shown to exhibit a 22-year cyclicity. The two-and four-sector structures of the magnetic field rotate faster at the maxima of even 11-year sunspot cycles. This phenomenon may be called the Gnevyshev-Ohl rule for the solar rotation. The 11-year sector-structure activity cycles are shown to lead the 11-year sunspot cycles (Wolf numbers) by 5.5 years. A 55-year component with the slowest rotation in the 18th cycle (1945–1955) was distinguished in the sector-structure rotation.  相似文献   

16.
17.
We present the detailed analysis of fourteen cool stars, nine of which have been associated by Eggen with four moving groups from the kinematics and the photometric properties; the five remaining stars are characterized by a large-spatial velocity. From the scatter of the chemical composition among the program stars belonging to a same group, we discuss that the moving groups Her, Wolf 630, and Kapteyn could really exist, and that Groombridge 1830 do not. No peculiar abundance relative to iron is found except a possible relative overabundance of Ni for the most metal-poor stars in this sample. The results of the detailed analyses are discussed in terms of the chemical abundances of our Galaxy.Based on observations collected at European Southern Observatory, La Silla, Chile and Observatoire de Haute-Provence, France.  相似文献   

18.
In this work a new information resource located at http://www.gao.spb.ru/database/esai and hereinafter referred to as ESAI (“Extended time series of Solar Activity Indices”) is presented. ESAI includes observational, synthetic and simulated sets to study solar magnetic field variations and their influence on the Earth. ESAI extends the ordinary lengths of some traditional indices, parameterizing time variations of physically different characteristics of solar activity. In particular, long-term sets of the following indices are presented: sunspot areas, the Wolf numbers, polar faculae numbers, sunspot mean latitudes and north-south asymmetry of hemispheres for different components of activity. Some methods for making correct conclusions from incomplete data and some criteria to estimate the reliability of the obtained information are discussed.  相似文献   

19.
The long term variations of solar equatorial velocity are considered, as determined by spectroscopic observations of several authors since 1900. By eliminating Storey's observations covering the period 1914–1932 which seem to be affected by casual errors, a computer analysis picks out a period of about 34 yr in the velocity variation.An interpretation is given of this period in the framework of the interaction of non-axisymmetric convection with rotation.  相似文献   

20.
Abstract. Some very small particles of metal, revealed by polishing a chunk of Wolf Creek meteoritic iron oxide, appear to consist entirely of moderately shocked kamacite. The apparent lack of surviving taenite tentatively suggests that the Wolf Creek crater was formed by a hexahedrite, although medium octahedrites have recently been found within 4000 meters of the crater. Macrosegregation of nickel within the Wolf Creek meteoroid could account for the discrepancy. Further research on surviving metal is indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号