首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The tectonic evolution of the Northern Shimanto belt, central Shikoku, Japan, was examined based on petrological and geochronological studies in the Oboke area, where mafic schists of the Kawaguchi Formation contain sodic amphibole (magnesioriebeckite). The peak P–T conditions of metamorphism are estimated as 44.5 kbar (1517 km depth), and 240270 °C based on available phase equilibria and sodic amphibole compositions. These metamorphic conditions are transitional between blueschist, greenschist and pumpellyite–actinolite facies. Phengite KAr ages of 64.8 ± 1.4 and 64.4 ± 1.4 Ma were determined for the mafic schists, and 65.0 ± 1.4, 61.4 ± 1.3 and 63.6 ± 1.4 Ma for the pelitic schists. The metamorphic temperatures in the Oboke area are below the closure temperature of the KAr phengite system, so the K–Ar ages date the metamorphic peak in the Northern Shimanto belt. In the broad sense of the definition of blueschist facies, the highest‐grade part of the Northern Shimanto belt belongs to the blueschist facies. Our study and those of others identify the following constraints on the possible mechanism that led to the exhumation of the overlying Sanbagawa belt: (i) the Sanbagawa belt is a thin tectonic slice with a structural thickness of 34 km; (ii) within the belt, metamorphic conditions varied from 5 to 25 kbar, and 300 to 800 °C, with the grade of metamorphism decreasing symmetrically upward and downward from a structurally intermediate position; and (iii) the Sanbagawa metamorphic rocks were exhumed from ~60 km depth and emplaced onto the Northern Shimanto metamorphic rocks at 15–17 km depth and 240–270 °C. Integration of these results with those of previous geological studies for the Sanbagawa belt suggests that the most probable exhumation mechanism is wedge extrusion.  相似文献   

2.
Koen de Jong   《Lithos》2003,70(3-4):91-110
In order to attempt to further constrain the age of the early Alpine tectonic evolution of the Mulhacén Complex and to explore the influence of inherited isotopes, micas from a small number of well-characterised rocks from the Sierra de los Filábres, with a penetrative tectonic fabric related to the exhumation of eclogite-facies metamorphic rocks, were selected for 40Ar/39Ar and Rb–Sr dating.

A single phengite grain from an amphibolite yielded an 40Ar/39Ar laser step heating plateau age of 86.9±1.2 Ma (2σ; 70% 39Ar released) and an inverse isochron age of 86.2±2.4 Ma with an 36Ar/40Ar intercept within error of the atmospheric value. Induction furnace step heating of a biotite separate from a gabbro relic in an eclogite yielded a weighted mean age of 173.2±6.3 Ma (2σ; 95% 39Ar released). These ages are diagnostic of excess argon (40ArXS) incorporation, as they are older than independent age estimates for the timing of eclogite-facies metamorphism and intrusion of the gabbros. 40ArXS incorporation probably resulted from restricted fluid mobility in the magmatic rocks during their metamorphic recrystallisation.

Rb–Sr whole-rock–phengite ages of graphite-bearing mica schists from Paleozoic rocks (Secano unit) show a dramatic variation (66.1±3.2, 40.6±2.6 and 14.1±2.2 Ma). An albite chlorite mica schist from the Mesozoic series of the Nevado–Lubrín unit has a whole-rock–mica–albite age of 17.2±1.9 Ma, which is within error of an 40Ar/39Ar plateau age published previously and of the youngest Rb–Sr age of the Paleozoic series obtained in this study. The significant spread in Rb–Sr ages implies that progressive partial resetting of an older isotopic system has occurred. The microstructure of the samples with pre-Miocene Rb–Sr ages reveals incomplete recrystallisation of white mica and inhibited grain growth due to the presence of graphite particles. This interpretation agrees with previously published, disturbed and slightly dome-shaped 40Ar/39Ar age spectra that may point similarly to the presence of an older isotope component. The progressively reset Rb–Sr system is a relic of Variscan metamorphism of the Paleozoic series of the Mulhacén Complex. In contrast, the origin of the ca. 17.2 Ma old sample from the Mesozoic series precludes any isotopic inheritance, in agreement with its pervasive tectono-metamorphic recrystallisation during the Miocene.

Exhumation of the eclogite-facies Mulhacén Complex occurred in two stages with contrasting rates of about 22.5 mm/year during the early phase and 9–10 mm/year during the late phase; the latter with a cooling rate in the order of 330 °C/Ma.  相似文献   


3.
在区域地质调查资料基础上,根据宏观与微观构造测量,通过分析区域岩浆活动性及其测年资料等,揭示了在辽南庄河栗子房地区存在另一个变质核杂岩构造,即栗子房变质核杂岩。该核杂岩具有3层结构和5个部分,即由新太古代变质深成岩及中生代花岗岩侵入体构成的下盘、由不同层次的构造岩组成的中部拆离断层带以及由前寒武纪沉积盖层和白垩纪伸展盆地构成的上盘。栗子房变质核杂岩形成于早白垩世,运动方向为上盘相对下盘由NWW向SEE方向运动,与辽南金州变质核杂岩和万福变质核杂岩在几何学、运动学极性和形成时间等方面具有很多相似性,形成于同一动力学背景。该变质核杂岩的厘定可为阐明华北克拉通东部晚中生代岩石圈减薄过程及岩石圈的力学和流变学属性提供依据。同时,变质核杂岩与金矿床成矿关系密切,栗子房变质核杂岩的拆离断层带附近可作为下一步金矿勘查的重点工作区,成矿潜力较大。  相似文献   

4.
On the basis of the previous regional geological survey, based on the macroscopic and microscopic structural survey, combined with the comprehensive analysis of the regional magmatic activity and dating data, the authors in this paper revealed that there is another metamorphic core complex structure in Lizifang area of Southern Liaoning, namely Lizifang metamorphic core complex. A typical three-layer structure and five parts exist in the core complex, which are the footwall composed of Neo-archean metamorphic plutonic rocks and mesozoic granite intrusive rocks, the detachment fault zone composed of different levels of tectonic rocks, and the upper plate composed of Precambrian sedimentary cap and Cretaceous extensional basin. Lizifang metamorphic core complex formed in the Early Cretaceous Epoch, and the upper plate moved from NWW to SEE relaive to the footwall, which was similar with Jinzhou metamorphic core complex and Wanfu metamorphic core complex in geometry, kinematics polarity and formation time, indicating the same dynamic background. The determination of the metamorphic core complex may provide a basis for the late Mesozoic lithospheric thinning process and the mechanical and rheological properties of the lithosphere in the east of North China Craton. At the same time, the metamorphic core complex is closely related to the mineralization of gold deposits. So the detachment fault zone of Lizifang metamorphic core complex can serve as the key work area for further gold exploration, which may possess large mineralization potential.  相似文献   

5.
abstract

Although numerous ages have been obtained for the Chinese southwestern Tianshan high pressure/ultrahigh pressure-low temperature (HP/UHP-LT) metamorphic belt in the past two decades, its exhumation history is still controversial. The poor age constraint was related to the appealing low metamorphic temperatures and excess Ar commonly present under HP/UHP conditions. This study aims to provide new age constraints on the orogen’s exhumation by obtaining 40Ar/39Ar mica ages using the conventional step-heating technique, with emphasis on the avoidance of excess Ar contamination. From a cross section along the Kekesu Valley, four samples, three from the HP-LT metamorphic belt (TK050, TK051, and TK081) and one from the southern margin of the low pressure metamorphic belt (TK097), were selected for 40Ar/39Ar dating. Phengites from garnet glaucophane schist TK050 and the surrounding rock garnet phengite schist TK051 yield comparable plateau ages of 321.4 ± 1.6 and 318.6 ± 1.6 Ma, respectively, while epidote mica schist TK081 gives a younger plateau age of 293.3 ± 1.5 Ma. Considering the chemical compositions of phengites, mineral assemblages, and microstructures in the thin slices, we suppose that the former represents the time the HP rocks retrograded from the peak stage (eclogite facies) to the (epidote)-blueschist facies, whereas the latter reflects greenschist facies overprinting. Biotite and muscovite from two-mica quartzite TK097 give similar plateau ages of 253.0 ± 1.3 and 247.1 ± 1.2 Ma, interpreted to date movement on the post collisional transcrustal South Nalati ductile shear zone. By combining our new ages with published data, a two-stage exhumation model is suggested for the Chinese southwestern Tianshan HP/UHP-LT metamorphic belt: initial fast exhumation to a depth of about 30–35 km by ~320 Ma was followed by relatively slow (~1 mm year–1) uplift to ~10 km by ~293 Ma.  相似文献   

6.
The Malpica–Tui complex (NW Iberian Massif) consists of a Lower Continental Unit of variably deformed and recrystallized granitoids, metasediments and sparse metabasites, overridden by an upper unit with rocks of oceanic affinities. Metamorphic minerals dated by the 40Ar/39Ar method record a coherent temporal history of progressive deformation during Variscan metamorphism and exhumation. The earliest stages of deformation (D1) under high-pressure conditions are recorded in phengitic white micas from eclogite-facies rocks at 365–370 Ma. Following this eclogite-facies peak-metamorphism, the continental slab became attached to the overriding plate at deep-crustal levels at ca. 340–350 Ma (D2). Exhumation was accompanied by pervasive deformation (D3) within the continental slab at ca. 330 Ma and major deformation (D4) in the underlying para-autochthon at 315–325 Ma. Final tectonothermal evolution included late folding, localized shearing and granitic intrusions at 280–310 Ma.

Dating of high-pressure rocks by the 40Ar/39Ar method yields ages that are synchronous with published Rb–Sr and Sm–Nd ages obtained for both the Malpica–Tui complex and its correlative, the Champtoceaux complex in the French Armorican Massif. The results indicate that phengitic white mica retains its radiogenic argon despite been subjected to relatively high temperatures (500–600 °C) for a period of 20–30 My corresponding to the time-span from the static, eclogite-facies M1 peak-metamorphism through D1-M2 eclogite-facies deformation to amphibolite-facies D2-M3. Our study provides additional evidence that under certain geological conditions (i.e., strain partitioning, fluid deficiency) argon isotope mobility is limited at high temperatures, and that 40Ar/39Ar geochronology can be a reliable method for dating high pressure metamorphism.  相似文献   


7.
Records of lithospheric extension and mountain-range uplift are most continuously contained within syntectonic sedimentary rocks in basins adjacent to large structural culminations. In southeastern Arizona, metamorphic core complexes form mountain ranges with the highest elevations in the region, and supposedly much less extended terranes lie at lower elevations. Adjacent to the Santa Catalina-Rincon metamorphic core complex, within the Tucson Basin, stratigraphic-sequence geometries evident in a large suite of 2-D seismic reflection data suggest a two-phase basin-evolution model controlled by the emplacement and subsequent uplift of the core complex. In its earliest stage, Phase I of basin formation was characterized by extensive faults forming relatively small-scale proto-basins, which coalesced with the larger basin-bounding detachment fault system. Synextensional sedimentation within the enlarging basin is evidenced by sediment-growth packages, derived from adjacent footwall material, fanning into brittle hanging-wall faults. During this phase, volcanism was widespread, and growth packages contain interbedded sediments and volcanic products but, paradoxically, no mylonitic clasts from the adjacent metamorphic core complex. Phase II of basin evolution begins after a significant tectonic hiatus and consists of a symmetric deepening of the central basin with the introduction of mylonitic clasts in the basin fill. This is coupled with the activation of a series of high-angle normal faults ringing the core complex. These observations suggest a two-phase model for metamorphic core complex evolution, with an initial stage of isostatic core complex emplacement during detachment faulting that resulted in little topographic expression. This was followed, after a significant tectonic hiatus, by late-stage exhumation and flexural uplift of the Santa Catalina-Rincon metamorphic core complex through younger high-angle faulting. Moreover, the geometry of upper basin fill units suggests an extremely low effective elastic thickness in the region and that flexural uplift of the core complex induced asymmetric transfer of ductile mid-crustal rocks from beneath the subsiding Tucson Basin to the uplifting mountain range.  相似文献   

8.
New eclogite localities and new 40Ar/39Ar ages within the Western Gneiss Region of Norway define three discrete ultrahigh‐pressure (UHP) domains that are separated by distinctly lower pressure, eclogite facies rocks. The sizes of the UHP domains range from c. 2500 to 100 km2; if the UHP culminations are part of a continuous sheet at depth, the Western Gneiss Region UHP terrane has minimum dimensions of c. 165 × 50 × 5 km. 40Ar/39Ar mica and K‐feldspar ages show that this outcrop pattern is the result of gentle regional‐scale folding younger than 380 Ma, and possibly 335 Ma. The UHP and intervening high‐pressure (HP) domains are composed of eclogite‐bearing orthogneiss basement overlain by eclogite‐bearing allochthons. The allochthons are dominated by garnet amphibolite and pelitic schist with minor quartzite, carbonate, calc‐silicate, peridotite, and eclogite. Sm/Nd core and rim ages of 992 and 894 Ma from a 15‐cm garnet indicate local preservation of Precambrian metamorphism within the allochthons. Metapelites within the allochthons indicate near‐isothermal decompression following (U)HP metamorphism: they record upper amphibolite facies recrystallization at 12–17 kbar and c. 750 °C during exhumation from mantle depths, followed by a low‐pressure sillimanite + cordierite overprint at c. 5 kbar and c. 750 °C. New 40Ar/39Ar hornblende ages of 402 Ma document that this decompression from eclogite‐facies conditions at 410–405 Ma to mid‐crustal depths occurred in a few million years. The short timescale and consistently high temperatures imply adiabatic exhumation of a UHP body with minimum dimensions of 20–30 km. 40Ar/39Ar muscovite ages of 397–380 Ma show that this extreme heat advection was followed by rapid cooling (c. 30 °C Myr?1), perhaps because of continued tectonic unroofing.  相似文献   

9.
辽宁南部万福变质核杂岩的发现及其区域构造意义   总被引:9,自引:1,他引:9  
根据宏观与微观构造测量,结合白垩纪沉积盆地组成与结构、区域岩浆活动性及其测年资料等的综合分析,揭示出在辽宁南部辽南变质核杂岩东侧存在另一个变质核杂岩构造,即万福变质核杂岩。该核杂岩具有典型的三层结构:拆离断层带由不同层次构造岩构成,上盘为元古宇岩石,下盘是太古宇岩石和就位于其中的同构造花岗质侵入体。万福变质核杂岩形成于早白垩世,与辽南变质核杂岩构成一个变质核杂岩对,两者在很多方面具有相似性。该变质核杂岩对的厘定可能为阐明华北晚中生代岩石圈的力学和流变学属性以及岩石圈减薄过程提供了依据。  相似文献   

10.
牡丹江地区出露的黑龙江杂岩是由变质基性岩、泥质片岩、大理岩和变硅质岩系列组成的类似于蛇绿岩层序的构造混杂岩,代表了佳木斯地块西南缘碰撞增生的产物。钠长石和绿帘石变斑晶中共生的矿物组合(钠云母+蓝闪石+多硅白云母+绿帘石)的地质温压计估算结果表明,黑龙江杂岩的峰期变质的温压条件为 T=320~480℃, p=800~1600MPa,为典型的绿帘-蓝片岩相高压变质作用。黑龙江杂岩带中泥质片岩所含的多硅白云母单矿物给出的40Ar/39Ar坪年龄为164.9Ma±0.5Ma。根据白云母中K-Ar同位素体系的封闭温度(350~430℃)接近于得到的黑龙江杂岩的峰期变质温度,可以认为40Ar/39Ar坪年龄指示了这期高压变质事件的年龄,也证实了黑龙江杂岩带中普遍存在一期中侏罗世末期的变质-热事件。  相似文献   

11.
Abstract 40Ar/39Ar data collected from hornblende, muscovite, biotite and K-feldspar constrain the P-T-t history of the Cordillera Darwin metamorphic complex, Tierra del Fuego, Chile. These data show two periods of rapid cooling, the first between c. 500 and c. 325° C at rates ≥25° C Ma-1, and the second between c. 250 and c. 200°C. For high-T cooling, 40Ar/39Ar ages are spatially disparate and depend on metamorphic grade: rocks that record deeper and hotter peak metamorphic conditions have younger 40Ar/39Ar ages. Sillimanite- and kyanite-grade rocks in the south-central part of the complex cooled latest: 40Ar/39Ar Hbl = 73–77 Ma, Ms = 67–70 Ma, Bt = 68 Ma, and oldest Kfs = 65 Ma. Thermobarometry and P-T path studies of these rocks indicate that maximum burial of 26–30 km at 575–625° C may have been followed by as much as 10 km of exhumation with heating of 25–50° C. Staurolite-grade rocks have intermediate 40Ar/39Ar ages: Hbl = 84–86 Ma, Ms = 71 Ma, Bt = 72–75 Ma, and oldest Kfs = 80 Ma. Thermobarometry on these rocks indicates maximum burial of 19–26 km at temperatures of 550–580° C. Garnet-grade rocks have the oldest ages: Ms = 72 Ma and oldest Kfs = 91 Ma; peak P-T conditions were 525–550° C and 5–7 kbar. Regional metamorphic temperatures for greenschist facies rocks south of the Beagle Channel did not exceed c. 300–325° C from 110 Ma to the present, although the rocks are only 2 km from kyanite-bearing rocks to the north. One-dimensional thermal models allow limits to be placed on exhumation rates. Assuming a stable geothermal gradient of 20–25° C km-1, the maximum exhumation rate for the St-grade rocks is c. 2.5 mm yr-1, whereas the minimum exhumation rate for the Ky + Sil-grade rocks is c. 1.0 mm yr-1. Uniform exhumation rates cannot explain the disparity in cooling histories for rocks at different grades, and so early differential exhumation is inferred to have occurred. Petrological and geochronological comparisons with other metamorphic complexes suggest that single exhumation events typically remove less than c. 20 km of overburden. This behaviour can be explained in terms of a continental deformation model in which brittle extensional faults in the upper crust are rooted to shallowly dipping ductile shear zones or regions of homogeneous thinning at mid- to deep-crustal levels. The P-T-t data from Cordillera Darwin (1) are best explained by a ‘wedge extrusion’model, in which extensional exhumation in the southern rear of the complex was coeval with thrusting in the north along the margin of the complex and into the Magallanes sedimentary basin, (2) suggest that differential exhumation occurred initially, with St-grade rocks exhuming faster than Ky + Sil-grade rocks, and (3) show variations in cooling rate through time that correlate both with local deformation events and with changes in plate motions and interactions.  相似文献   

12.
庐山变质核杂岩伸展拆离和岩浆作用的年代学约束   总被引:1,自引:3,他引:1  
庐山变质核杂岩是华南中生代岩石圈减薄事件的浅层响应。研究伸展拆离和岩浆作用在其形成过程中的相互关系,对于认识地壳浅层的伸展减薄过程和变质核杂岩的形成机制具有重要的意义。在宏观和显微构造研究的基础上,分别对基底拆离断层和玉京山岩体进行了40Ar/39Ar年代学和锆石U-Pb年代学研究,为伸展拆离和岩浆作用提供了年代学约束,主要获得了以下认识:(1)变质核杂岩核部玉京山花岗岩体的锆石LA-ICP-MSU-Pb年龄为(133.0±2.1)Ma,代表了变质核杂岩核部岩浆活动的启动时间。(2)基底拆离断层下盘韧性剪切带内的白云母40Ar/39Ar年龄(140.4±1.7)Ma代表了庐山变质核杂岩的形成时间,也代表了庐山地区岩石圈伸展减薄的时间,即岩石圈伸展减薄始于早白垩世。(3)庐山变质核杂岩是中生代不同尺度的伸展拆离和岩浆活动共同作用的结果,在地壳浅层的具体形成过程中伸展拆离早于岩浆侵位,基底拆离断层的减压效应为深部岩浆的上升侵位创造了条件,岩浆侵位造成山体的隆升,又引发了盖层的重力滑脱。  相似文献   

13.
The metamorphic core of the Himalaya in the Kali Gandaki valley of central Nepal corresponds to a 5-km-thick sequence of upper amphibolite facies metasedimentary rocks. This Greater Himalayan Sequence (GHS) thrusts over the greenschist to lower amphibolite facies Lesser Himalayan Sequence (LHS) along the Lower Miocene Main Central Thrust (MCT), and it is separated from the overlying low-grade Tethyan Zone (TZ) by the Annapurna Detachment. Structural, petrographic, geothermobarometric and thermochronological data demonstrate that two major tectonometamorphic events characterize the evolution of the GHS. The first (Eohimalayan) episode included prograde, kyanite-grade metamorphism, during which the GHS was buried at depths greater than c. 35 km. A nappe structure in the lowermost TZ suggests that the Eohimalayan phase was associated with underthrusting of the GHS below the TZ. A c. 37 Ma 40Ar/39Ar hornblende date indicates a Late Eocene age for this phase. The second (Neohimalayan) event corresponded to a retrograde phase of kyanite-grade recrystallization, related to thrust emplacement of the GHS on the LHS. Prograde mineral assemblages in the MCT zone equilibrated at average T =880 K (610 °C) and P =940 MPa (=35 km), probably close to peak of metamorphic conditions. Slightly higher in the GHS, final equilibration of retrograde assemblages occurred at average T =810 K (540 °C) and P=650 MPa (=24 km), indicating re-equilibration during exhumation controlled by thrusting along the MCT and extension along the Annapurna Detachment. These results suggest an earlier equilibration in the MCT zone compared with higher levels, as a consequence of a higher cooling rate in the basal part of the GHS during its thrusting on the colder LHS. The Annapurna Detachment is considered to be a Neohimalayan, synmetamorphic structure, representing extensional reactivation of the Eohimalayan thrust along which the GHS initially underthrust the TZ. Within the upper GHS, a metamorphic discontinuity across a mylonitic shear zone testifies to significant, late- to post-metamorphic, out-of-sequence thrusting. The entire GHS cooled homogeneously below 600–700 K (330–430 °C) between 15 and 13 Ma (Middle Miocene), suggesting a rapid tectonic exhumation by movement on late extensional structures at higher structural levels.  相似文献   

14.
The Bitterroot metamorphic core complex is an exhumed, mid-crustal, plutonic–metamorphic complex that formed during crustal thickening and subsequent extension in the hinterland of the North American Cordilleran Orogen, in the northern Idaho batholith region. Extension was accommodated mainly on the Bitterroot mylonite zone, a 500–1500-m-thick shear zone that deforms granitic intrusive rocks as young as 53–52 Ma, as well as older high-grade metamorphic rocks and plutons. Exhumation of the core complex, in Eocene time, is marked in the shear zone by the transition from amphibolite-facies mylonitization, to greenschist-facies mylonitization, chloritic brecciation, to brittle faulting that progressed from shallower crustal levels in the west to deeper crustal levels in the east from ca. 53 –30 Ma based on U–Pb, Ar–Ar, and fission-track data. Apatite and zircon fission-track data record the lower-temperature part of the exhumation history and help define when the shear zone became inactive, as well as the transition from rapid, core complex-style extension to slower basin-and-range-style extension. They indicate that the western part of the complex was exhumed to within 1–2 km of the surface by 48–45 Ma, while the eastern part of the complex was still at amphibolite-facies conditions and that the eastern part of the complex was not exhumed below 60 °C until after 30 Ma. Younger apatite fission-track ages (≤26 Ma) on the eastern range front of the Bitterroot Mountains suggest that the present topographic expression of the mylonite front was due to Miocene high-angle faulting and widening of the Bitterroot Valley.  相似文献   

15.
Combined petrographic, structural and geochronological study of the Malashan dome, one of the North Himalayan gneiss domes, reveals that it is cored by a Miocene granite, the Malashan granite, that intruded into the Jurassic sedimentary rocks of Tethys Himalaya. Two other granites in the area are referred to as the Paiku and Cuobu granites. New zircon SHRIMP U-Pb and muscovite and biotite 40Ar-39Ar dating show that the Paiku granite was emplaced during 22.2–16.2 Ma (average 19.3 ± 3.9 Ma) and cooled rapidly to 350–400 °C at around 15.9 Ma. Whole-rock granite chemistry suggests the original granitic magma may have formed by muscovite dehydration melting of a protolith chemically similar to the High Himalayan Crystalline Sequence. Abundant calcareous metasedimentary rocks and minor garnet-staurolite-biotite-muscovite ± andalusite schists record contact metamorphism by three granites that intruded intermittently into the Jurassic sediments between 18.5 and 15.3 Ma. Two stages of widespread penetrative ductile deformation, D1 and D2, can be defined. Microstructural studies of metapelites combined with geothermobarometry and pseudosection analyses yield P – T conditions of 4.8 ± 0.8 kbar at 550 ± 50 °C during a non-deformational stage between D1 and D2, and 3.1–4.1 kbar at 530–575 °C during syn- to post-D2. The pressure estimates for the syn- to post-D2 growth of andalusite suggest relatively shallow (depth of ∼15.2 km) extensional ductile deformation that took place within a shear zone of the South Tibetan Detachment System. Close temporal association between intrusion of the Malashan granite and onset of D2 suggests extension may have been triggered by the intrusion of the Malashan granite.  相似文献   

16.
渤海湾盆地周缘发育的多个变质核杂岩,很好地记录了华北克拉通东部晚中生代以来的地壳伸展过程。文中以渤海湾盆地西部献县凸起和饶阳凹陷为研究区,试图揭示盆地内部变质核杂岩的发育特征。根据井、震结合的方法,通过精细的构造解释,厘定了献县断层及其上盘的构造变形特征;利用凹陷内的钻井资料对献县凸起上发育地层的时代和岩性进行限定;结合区域上变质核杂岩的发育特征和形成背景,讨论了献县变质核杂岩的发育时间和成因演化模式。结果表明:在研究区内呈弧形展布的献县断层具有主拆离断层的特征,断层上盘的饶阳凹陷南部残留有中元古界和下古生界,且凹陷内发育有数量众多、不同倾向的次级断层;献县凸起上发育的地层为太古宇-古元古界,岩性包括角闪片麻岩、黑云二长片麻岩,局部发育有花岗片麻岩。研究认为,献县变质核杂岩具有典型变质核杂岩的基本特征,其形成时间为晚中生代(K1?),发育于华北克拉通东部岩石圈大规模减薄的背景下,并以滚动枢纽模式发展演化。  相似文献   

17.
赵英利  刘永江  李伟民    温泉波  韩国卿 《地质通报》2010,29(0203):243-253
牡丹江地区出露的黑龙江杂岩是由变质基性岩、泥质片岩、大理岩和变硅质岩系列组成的类似于蛇绿岩层序的构造混杂岩,代表了佳木斯地块西南缘碰撞增生的产物。钠长石和绿帘石变斑晶中共生的矿物组合(钠云母+蓝闪石+多硅白云母+绿帘石)的地质温压计估算结果表明,黑龙江杂岩的峰期变质的温压条件为 T=320~480℃, p=800~1600MPa,为典型的绿帘-蓝片岩相高压变质作用。黑龙江杂岩带中泥质片岩所含的多硅白云母单矿物给出的40Ar/39Ar坪年龄为164.9Ma±0.5Ma。根据白云母中K-Ar同位素体系的封闭温度(350~430℃)接近于得到的黑龙江杂岩的峰期变质温度,可以认为40Ar/39Ar坪年龄指示了这期高压变质事件的年龄,也证实了黑龙江杂岩带中普遍存在一期中侏罗世末期的变质-热事件。  相似文献   

18.
Metamorphic provinces such as the^1 Ga Grenvillian,~400 Ma Caledonide and Triassic Qinling Provinces often contain rocks with high-pressure assemblages such as eclogites,which formed at mantle depths in subduction zones.These are evidence of the accretion of terranes by subduction of oceans and collision to form large tectonostratigraphic provinces.The Mesoproterozoic Namaqua-Natal Province comprises a number of terranes thought to have been assembled by plate-tectonic processes,but they have generally yielded metamorphic pressures below 5 kbar,corresponding to<20 km,crustal depths,lacking evidence for subduction processes.The Kaaien Terrane in the Namaqua Front contains two large garbenschiefer units with the unusual paragenesis garnet-hornblende-epidote-white mica-plagioclase-ilmenite-quartz.Their protoliths are graywackes influenced by andesitic volcanism during their deposition at^1870 Ma,in a passive margin of the Rehoboth Province or Kaapvaal Craton.Prograde garnet growth dated at 11655 Ma culminated in peak metamorphic conditions of 64530C and 10.40.7 kbar,corresponding to 40 km depth.This is attributed to subduction of these rocks before collision between the overriding arc-related Areachap Terrane,the Kaaien Terrane and the Kaapvaal-Rehoboth cratonic block during the Namaqua orogeny.Exhumation of the garbenschiefer slabs was followed by rapid cooling,as the 11435 Ma argon dates of hornblende and white mica,with closure temperatures^540C and^440C respectively,are the same within error.This was probably due to tectonic juxtaposition of the garbenschiefer slab with much cooler rock units.The exhumation was accommodated along the Trooilapspan-Brakbosch Shear Zone due to ongoing transpression.Other components of the Namaqua Front have distinctly different P-T-t paths,exemplified by greenschist metamorphism in the 1300 Ma Wilgenhoutsdrift Group,and medium-pressure metamorphism in the Areachap Terrane.They were juxtaposed by late-tectonic uplift and transpressional movements.The^40 km depth of garbenschiefer peak metamorphism is the deepest yet found in the Namaqua-Natal Province and strengthens the plate tectonic model of accretion by collision of terranes at the end of a Wilson cycle.The high pressure paragenesis of the garbenschiefer was preserved due to its location in the Namaqua Front,whereas most other parts of the Namaqua-Natal Province were overprinted by 1100–1020 Ma thermal events after the collision events.  相似文献   

19.
李锦轶  肖序常  陈文 《地质通报》2000,19(3):297-302
出露在准噶尔盆地东北缘的老君庙变质岩 , 主要由绿片岩相的石英片岩构成 , 其上残存含前泥盆纪床板珊瑚和海百合茎化石的大理岩。对石英片岩中的白云母进行的4 0 Ar/ 39Ar定年 , 获得了 (4 6 1.5± 0 .2 ) Ma的坪年龄和 (4 6 2 .0± 4 .1) Ma等时线年龄 , 表明该变质岩的变质时代不晚于中奥陶世晚期 , 准噶尔盆地东部具有前晚奥陶世的陆壳基底。结合区域地质资料 , 推测准噶尔盆地的基底主体是古生代期间的陆块。  相似文献   

20.
Regional cooling in the course of Neoproterozoic core complex exhumation in the Central Eastern Desert of Egypt is constraint by 40Ar/39Ar ages of hornblende and muscovite from Meatiq, Sibai and Hafafit domes. The data reveal highly diachronous cooling with hornblende ages clustering around 580 Ma in the Meatiq and the Hafafit, and 623 and 606 Ma in the Sibai. These 40Ar/39Ar ages are interpreted together with previously published structural and petrological data, radiometric ages obtained from Neoproterozoic plutons, and data on sediment dynamics from the intramontane Kareim molasse basin. Early-stage low velocity exhumation was triggered by magmatism initiated at 650 Ma in the Sibai and caused early deposition of molasses sediments within rim synforms. Rapid late stage exhumation was released by combined effect of strike-slip and normal faulting, exhumed Meatiq and Hafafit domes and continued until 580 Ma. We propose a new model that adopts core complex exhumation in oblique island arc collision-zones and includes transpression combined with lateral extrusion dynamics. In this model, continuous magma generation weakened the crust leading to facilitation of lateral extrusion tectonics. Since horizontal shortening is balanced by extension, no major crustal thickening and no increase of potential energy (gravitational collapse) is necessarily involved in the process of core complex formation. Core complexes were continuously but slowly exhumed without creating a significant mountain topography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号