首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lateral heterogeneities in the mantle can be caused by thermal, chemical and non-isotropic pre-stress effects. Here, we investigate the possibility of using observations of the glacial isostatic adjustment (GIA) process to constrain the thermal contribution to lateral variations in mantle viscosity. In particular, global historic relative sea level, GPS in Laurentide and Fennoscandia, altimetry together with tide-gauge data in the Great Lakes area, and GRACE data in Laurentide are used. The lateral viscosity perturbations are inferred from the seismic tomography model S20A by inserting the scaling factor β to determine the contribution of thermal effects versus compositional heterogeneity and non-isotropic pre-stress effects on lateral heterogeneity in mantle viscosity. When β = 1, lateral velocity variations are caused by thermal effects alone. With β < 1, the contribution of thermal effect decreases, so that for β = 0, there is no lateral viscosity variation and the Earth is laterally homogeneous. These lateral viscosity variations are superposed on four different reference models which differ significantly in the lower mantle viscosity. The Coupled Laplace Finite Element method is used to predict the GIA response on a spherical, self-gravitating, compressible, viscoelastic Earth with self-gravitating oceans, induced by the ICE-4G deglaciation model.Results show that the effect of β on uplift rates and gravity rate-of-change is not simple and involves the trade-off between the contribution of lateral viscosity variations in the transition zone and in the lower mantle. Models with small viscosity contrast in the lower mantle cannot explain the observed uplift rates in Laurentide and Fennoscandia. However, the RF3S20 model with a reference viscosity profile simplified from Peltier's VM2 with the value of β around 0.2–0.4 is found to explain most of the global RSL data, the uplift rates in Laurentide and Fennoscandia and the BIFROST horizontal velocity data. In addition, the changes in GIA signals caused by changes in the value of β are large enough to be detected by the data, although uncertainty in other parameters in the GIA models still exists. This may encourage us to further utilize GIA observations to constrain the thermal effect on mantle lateral heterogeneity as geodetic and satellite gravity measurements are improved.  相似文献   

2.
We have considered the influence of ocean temperature and salinity changes, mass changes of the Greenland ice sheet (GIS) and the isostatic response of the solid earth to the most recent glacial cycle on 20th century sea-level change along the US east coast with the intention of better understanding the observed signal as well as determining the potential of the tide gauge data for constraining the recent (past 50–100 yr) mass balance of the GIS and earth viscosity structure. Our results show that the signal due to steric changes is large and displays a complex spatial variation which can account for a significant portion of the observed signal. In contrast, that due to changes in the GIS is relatively small and insensitive to the specific geometry of the mass balance model adopted. As a consequence, the tide gauge data alone are not capable of providing useful constraints on either the magnitude or form of recent GIS mass balance. Our inference of mantle viscosity structure based on the tide gauge data was affected dramatically when the steric effect was accounted for: An earth model with an upper mantle viscosity of 8 × 1019 Pa s and a lower mantle viscosity of 5 × 1022 Pa s produced the best fit to the steric-corrected data; the optimal fit to the uncorrected data was obtained for upper and lower mantle viscosities of 5 × 1020 Pa s and 1022 Pa s, respectively.  相似文献   

3.
Tide gauge recordings of the secular variation of relative sea level are known to be strongly influenced by the ongoing global process of glacial isostatic adjustment. The east coast of the North American continent is heavily instrumented with tide gauge installations, many of which have been carefully maintained for over 50 years. Since this region traverses the collapsing forebulge of the Laurentide ice sheet and since the process of collapse is extremely well constrained on the basis of radio-carbon dated relative sea level histories from a dense set of locations, the region is globally unique in enabling an accurate decontamination of the tide gauge data using the 14C records themselves. It is shown herein that the decontaminated data define a residual signal which varies only slightly along the coast and which consists of an average rate of sea level rise near 2 mm yr-1.The relative sea level histories from sites along this coast also provide an excellent basis for testing theoretical models of the global glacial isostatic adjustment process that must be employed to decontaminate the tide gauge records at sites for which 14C records are unavailable. It is demonstrated that a mantle viscosity profile determined by the formal inversion of 14C controlled relative sea level histories from sites within the margins of the northern hemisphere ice sheets that existed at last glacial maximum enables a gravitationally and topographically self-consistent global model of glacial isostatic adjustment to accurately reconcile east coast rsl data. No viscosity structure has previously been derived that was successful in this regard. The global model based on this structure is therefore expected to provide an excellent basis for the removal of glacial isostatic adjustment effects from tide gauge recordings. The viscosity structure itself is also extremely close to models of the radial variation that have previously been shown to fit the requirements of non-hydrostatic geoid anomalies. This has important geodynamic implications concerning mantle rheology as it would appear to establish that transient and therefore non-linear creep mechanisms are not involved, since short timescale and long timescale viscosities are the same.  相似文献   

4.
Based on tide gauge observations spanning almost 200 years, homogeneous time series of the mean relative sea level were derived for nine sites at the southern coast of the Baltic Sea. Our regionally concentrated data were complemented by long-term relative sea-level records retrieved from the data base of the Permanent Service for Mean Sea Level (PSMSL). From these records relative sea-level change rates were derived at 51 tide gauge stations for the period between 1908 and 2007. A minimum observation time of 60 years is required for the determination of reliable sea-level rates. At present, no anthropogenic acceleration in sea-level rise is detected in the tide gauge observations in the southern Baltic. The spatial variation of the relative sea-level rates reflects the fingerprint of GIA-induced crustal uplift. Time series of extreme sea levels were also inferred from the tide gauge records. They were complemented by water level information from historic storm surge marks preserved along the German Baltic coast. Based on this combined dataset the incidence and spatial variation of extreme sea levels induced by storm surges were analysed yielding important information for hazard assessments. Permanent GPS observations were used to determine recent crustal deformation rates for 44 stations in the Baltic Sea region. The GPS derived height change rates were applied to reduce the relative sea-level changes observed by tide gauges yielding an estimate for the eustatic sea-level change. For 13 tide gauge-GPS colocation sites a mean eustatic sea-level trend of 1.3 mm/a was derived for the last 100 years.  相似文献   

5.
《Journal of Geodynamics》2009,47(3-5):165-173
Glacial Isostatic Adjustment (GIA) modelling in North America relies on relative sea level information which is primarily obtained from areas far away from the uplift region. The lack of accurate geodetic observations in the Great Lakes region, which is located in the transition zone between uplift and subsidence due to the deglaciation of the Laurentide ice sheet, has prevented more detailed studies of this former margin of the ice sheet. Recently, observations of vertical crustal motion from improved GPS network solutions and combined tide gauge and satellite altimetry solutions have become available. This study compares these vertical motion observations with predictions obtained from 70 different GIA models. The ice sheet margin is distinct from the centre and far field of the uplift because the sensitivity of the GIA process towards Earth parameters such as mantle viscosity is very different. Specifically, the margin area is most sensitive to the uppermost mantle viscosity and allows for better constraints of this parameter. The 70 GIA models compared herein have different ice loading histories (ICE-3/4/5G) and Earth parameters including lateral heterogeneities. The root-mean-square differences between the 6 best models and the two sets of observations (tide gauge/altimetry and GPS) are 0.66 and 1.57 mm/yr, respectively. Both sets of independent observations are highly correlated and show a very similar fit to the models, which indicates their consistent quality. Therefore, both data sets can be considered as a means for constraining and assessing the quality of GIA models in the Great Lakes region and the former margin of the Laurentide ice sheet.  相似文献   

6.
Glacial Isostatic Adjustment (GIA) modelling in North America relies on relative sea level information which is primarily obtained from areas far away from the uplift region. The lack of accurate geodetic observations in the Great Lakes region, which is located in the transition zone between uplift and subsidence due to the deglaciation of the Laurentide ice sheet, has prevented more detailed studies of this former margin of the ice sheet. Recently, observations of vertical crustal motion from improved GPS network solutions and combined tide gauge and satellite altimetry solutions have become available. This study compares these vertical motion observations with predictions obtained from 70 different GIA models. The ice sheet margin is distinct from the centre and far field of the uplift because the sensitivity of the GIA process towards Earth parameters such as mantle viscosity is very different. Specifically, the margin area is most sensitive to the uppermost mantle viscosity and allows for better constraints of this parameter. The 70 GIA models compared herein have different ice loading histories (ICE-3/4/5G) and Earth parameters including lateral heterogeneities. The root-mean-square differences between the 6 best models and the two sets of observations (tide gauge/altimetry and GPS) are 0.66 and 1.57 mm/yr, respectively. Both sets of independent observations are highly correlated and show a very similar fit to the models, which indicates their consistent quality. Therefore, both data sets can be considered as a means for constraining and assessing the quality of GIA models in the Great Lakes region and the former margin of the Laurentide ice sheet.  相似文献   

7.
Since microphysics cannot say definitively whether the rheology of the mantle is linear or non-linear, the aim of this paper is to constrain mantle rheology from observations related to the glacial isostatic adjustment (GIA) process—namely relative sea-levels (RSLs), land uplift rate from GPS and gravity-rate-of-change from GRACE. We consider three earth model types that can have power-law rheology (n = 3 or 4) in the upper mantle, the lower mantle or throughout the mantle. For each model type, a range of A parameter in the creep law will be explored and the predicted GIA responses will be compared to the observations to see which value of A has the potential to explain all the data simultaneously. The coupled Laplace finite-element (CLFE) method is used to calculate the response of a 3D spherical self-gravitating viscoelastic Earth to forcing by the ICE-4G ice history model with ocean loads in self-gravitating oceans. Results show that ice thickness in Laurentide needs to increase significantly or delayed by 2 ka, otherwise the predicted uplift rate, gravity rate-of-change and the amplitude of the RSL for sites inside the ice margin of Laurentide are too low to be able to explain the observations. However, the ice thickness elsewhere outside Laurentide needs to be slightly modified in order to explain the global RSL data outside Laurentide. If the ice model is modified in this way, then the results of this paper indicate that models with power-law rheology in the lower mantle (with A  10−35 Pa−3 s−1 for n = 3) have the highest potential to simultaneously explain all the observed RSL, uplift rate and gravity rate-of-change data than the other model types.  相似文献   

8.
《Journal of Geodynamics》2009,47(3-5):104-117
Lateral heterogeneities in the mantle can be caused by thermal, chemical and non-isotropic pre-stress effects. Here, we investigate the possibility of using observations of the glacial isostatic adjustment (GIA) process to constrain the thermal contribution to lateral variations in mantle viscosity. In particular, global historic relative sea level, GPS in Laurentide and Fennoscandia, altimetry together with tide-gauge data in the Great Lakes area, and GRACE data in Laurentide are used. The lateral viscosity perturbations are inferred from the seismic tomography model S20A by inserting the scaling factor β to determine the contribution of thermal effects versus compositional heterogeneity and non-isotropic pre-stress effects on lateral heterogeneity in mantle viscosity. When β = 1, lateral velocity variations are caused by thermal effects alone. With β < 1, the contribution of thermal effect decreases, so that for β = 0, there is no lateral viscosity variation and the Earth is laterally homogeneous. These lateral viscosity variations are superposed on four different reference models which differ significantly in the lower mantle viscosity. The Coupled Laplace Finite Element method is used to predict the GIA response on a spherical, self-gravitating, compressible, viscoelastic Earth with self-gravitating oceans, induced by the ICE-4G deglaciation model.Results show that the effect of β on uplift rates and gravity rate-of-change is not simple and involves the trade-off between the contribution of lateral viscosity variations in the transition zone and in the lower mantle. Models with small viscosity contrast in the lower mantle cannot explain the observed uplift rates in Laurentide and Fennoscandia. However, the RF3S20 model with a reference viscosity profile simplified from Peltier's VM2 with the value of β around 0.2–0.4 is found to explain most of the global RSL data, the uplift rates in Laurentide and Fennoscandia and the BIFROST horizontal velocity data. In addition, the changes in GIA signals caused by changes in the value of β are large enough to be detected by the data, although uncertainty in other parameters in the GIA models still exists. This may encourage us to further utilize GIA observations to constrain the thermal effect on mantle lateral heterogeneity as geodetic and satellite gravity measurements are improved.  相似文献   

9.
Horizontal winds in the mesosphere and lower thermosphere over the Antarctic have been measured by a meteor radar at Rothera (67.5°S, 68.0°W) and MF radar at Davis (68.6°S, 78.0°E). Data from Rothera recorded over a 20-month interval in 2005–2006 and data from Davis recorded over the 13-year interval 1994–2006 are examined to investigate the monthly mean behaviour of the lunar semidiurnal tide. Both data sets show a clear signal of the 12.42-h lunar semidiurnal (M2) tide. The amplitude reaches values as large as 8 m s−1. The vertical wavelengths of the tide vary seasonally from 10 to 65 km. Comparisons of the phase of the tide measured over the two sites reveals that it does not purely consist of a migrating wavenumber 2 mode. This suggests that other, non-migrating, modes are likely to be present.  相似文献   

10.
Based on pressure tide-gauge observations, sea-level records are derived for ten sites along the coast of West Greenland. The ocean tidal signal is extracted by a harmonic tidal analysis. The accuracy of the determined tidal constants is discussed in detail. The tides account for 85% of the observed sea-level standard deviation. The tide gauge records reveal significant shallow-water tidal effects, in particular compound and overtide amplitudes reaching 5 cm. The propagation of the tidal waves into the fjords depends strongly on local conditions and is in some cases accompanied by an amplification of the tidal amplitudes. The observed tidal signals are compared to the predictions of the global ocean tide model FES2004. At the outer coast, a good agreement is found. Inside the fjords, however, the model performs worse and tide gauge observations may still be indispensable when accurate tidal signals are required.  相似文献   

11.
Predictions of present day secular variations in the Earth's long wavelength geopotential driven by glacial isostatic adjustment (GIA) have previously been analyzed to infer the radial profile of mantle viscosity and to constrain ongoing cryospheric mass balance. These predictions have been based on spherically symmetric Earth models. We explore the impact of lateral variations in mantle viscosity using a new finite-volume formulation for computing the response of 3-D Maxwell viscoelastic Earth models. The geometry of the viscosity field is constrained from seismic-to-mographic images of mantle structure, while the amplitude of the lateral viscosity variations is tuned by a free parameter in the modeling. We focus on the zonal ? harmonics for degrees = 2,…,8 and demonstrate that large-scale lateral viscosity variations of two to three orders of magnitude have a modest, 5-10%, impact on predictions of 2. In contrast, predictions of higher degree harmonics show a much greater sensitivity to lateral variation in viscosity structure. We conclude that future analyses of secular trends (for degree ? > 2) estimated from ongoing (GRACE, CHAMP) satellite missions must incorporate GIA predictions based on 3-D viscoelastic Earth models.  相似文献   

12.
A sediment budget is constructed for the slope and narrow continental shelf off the Sepik River in order to estimate the relative importance of turbid plumes versus bottom gravity transport through a near-shore submarine canyon in the dispersal of sediment across this collision margin. 210Pb geochronology and inventories of Kasten cores are consistent with the northwestward dispersal of sediment from the river mouth via hypopycnal and possible isopycnal plumes. Sediment accumulation rates are 5 cm yr−1 on the upper slope just off of the Sepik mouth, decreasing gradually to 1 cm yr−1 toward the northwest, and decreasing abruptly offshore (<0.2 cm yr−1 at 1200 m water depth). A sediment budget indicates that only about 7–15% of the Sepik River sediment discharge accumulates on the adjacent open shelf and slope. The remainder presumably escapes offshore via gravity flows through a submarine canyon, the head of which extends into the river mouth. The divergent sediment pathways observed off the Sepik River (i.e., surface and subsurface plumes versus sediment gravity flows through a canyon) may be common along high-yield collision margins of the Indo–Pacific archipelago, and perhaps are analogous to most margins during Late Quaternary low sea-level conditions.  相似文献   

13.
We present the results of a probabilistic seismic hazard assessment and disaggregation analysis aimed to understand the dominant magnitudes and source-to-site distances of earthquakes that control the hazard at the Celano site in the Abruzzo region of central Italy. Firstly, we calculated a peak ground acceleration map for the central Apennines area, by using a model of seismogenic sources defined on geological-structural basis. The source model definition and the probabilistic seismic hazard evaluation at the regional scale (central Apennines) were obtained using three different seismicity models (Gutenberg–Richter model; characteristic earthquake model; hybrid model), consistent with the available seismological information. Moreover, a simplified time-dependent hypothesis has been introduced, computing the conditional probability of earthquakes occurrence by Brownian passage time distributions.Subsequently, we carried out the disaggregation analysis, with a modified version of the SEISRISK III code, in order to separate the contribution of each source to the total hazard.The results show the percentage contribution to the Celano hazard of the various seismogenic sources, for different expected peak ground acceleration classes. The analysis was differentiated for close (distance from Celano <20 km) and distant (distance from Celano >20 km) seismogenic sources. We propose three different “scenario earthquakes”, useful for the site condition studies and for the seismic microzoning study: (1) large (M=6.6) local (Celano-epicentre distance 16 km) earthquake, with mean recurrence time of 590 years; (2) moderate (M=5.5) local (Celano-epicentre distance 7.5 km) earthquake, with mean recurrence time of 500 years; and (3) large (M=6.6) distant (Celano-epicentre distance 24 km) earthquake, with mean recurrence time of 980 years.The probabilistic and time-dependent approach to the definition of the “scenario earthquakes” changes clearly the results in comparison to traditional deterministic analysis, with effects in terms of engineering design and seismic risk reduction.  相似文献   

14.
Nearly 900 nocturnal temperature profiles (85–105 km) from the Colorado State University Na lidar at Fort Collins, CO (40.59N, 105.14W) from 1990 to 2007. After the removal of an episodic warming attributable to Mt. Pinatubo eruption, the time series is analyzed as the sum of the climatological mean, annual and semiannual oscillation, solar cycle effect and trends along with possible annual/semiannual modulation of the latter two. The direct seasonal variation is consistent with the concept of the two-level mesopause. The trends in summer and winter are comparable 90–96 km at −0.15±0.1 K/year. The summer trend turns positive above 96 km. The winter trend is negative with minimum of −0.3 K/year at 100 km but positive at 104 km. The negative trend values are a factor of five smaller than an earlier analysis of the early part of this data due to removal of an episodic event.  相似文献   

15.
Analogue models are used to investigate extension of a continental lithosphere weakened by asthenospheric melts percolating through the upper mantle, a process that has been hypothesised to control the opening of the Ligurian Tethys. Models were performed in a centrifuge apparatus and reproduced, by using materials such as sand and viscous mixtures, extension of 60-km thick, three-layer continental lithosphere floating above the asthenosphere. The percolated lithospheric mantle was assumed to be characterised by a rheological behaviour similar to that of the asthenosphere. Two sets of experiments investigated the influence on deformation of (1) the thickness of the percolated mantle and the associated strength contrast between the normal and weakened lithosphere, and (2) the lateral width of the weakened zone. Model results suggest that mantle percolation by asthenospheric melts is able to promote strong localised thinning of the continental lithosphere, provided that a significant thickness of the lithospheric mantle is weakened by migrating melts within a narrow region. Strain localisation is maximised for percolation of the whole lithospheric mantle and strong strength contrast between the normal and weakened lithosphere. Under these conditions, the thickness of the lithosphere may be reduced to less than 12 km in 3 Ma of extension. Conversely, localised thinning is strongly reduced if the thickness of the percolated zone is ≤1/3 of the thickness of the whole lithospheric mantle and/or the lithosphere is weakened over wide regions. Overall, model results support the working hypothesis that mantle percolation by asthenospheric melts is a controlling factor in the transition from distributed continental deformation to localised oceanic spreading.  相似文献   

16.
Global thunderstorm and shower cloud activity generate the global electric potential difference between the Earth's surface and the lower ionosphere. The finite conductivity of atmospheric air, which arises from cosmic ray and natural radioactive ionisation, permits a vertical conduction current density (1 pA m−2) between the lower ionosphere and the surface during fair-weather conditions; this current provides a physical link between the upper and lower atmospheres. A new instrument system is described to measure the conduction current density at the surface (the “air–Earth current”), which operates on a novel principle using two collecting electrodes of different geometry. Simultaneous measurements from two independent co-located systems using the geometrical principle show close agreement (correlation of 0.96 during 2.5 h of 5 min measurements). The sensor design described is durable and successful measurements in fair and disturbed weather have been obtained in air temperatures between −6 and 35 °C, relative humidity between 44% and 100%, fog, rain and snowfall. The uncertainty in conduction current density determinations is 0.20 pA m−2.  相似文献   

17.
The polar geomagnetic activity resulting from solar wind–magnetosphere interactions can be characterized the Polar Cap (PC) indices, PCN and PCS. PC index values are derived from polar magnetic variations calibrated on a statistical basis such that the index approximate values in units of mV/m of the interplanetary “geo-effective” (or “merging”) electric field (EM) conveyed by the solar wind. The timing and amplitude relations of the PC index to solar wind plasma and magnetic field parameters are reported. The solar wind effects are parameterized in terms of the geo-effective electric field (EM) and the dynamical pressure (PDYN). The PC index has a delayed and damped response to EM variations and display saturation-like effects for EM values exceeding 10 mV/m. Steady or slowly varying levels of solar wind dynamical pressure have little or no impact on the PC index above the effects related to EM for which the solar wind velocity is also a factor. Sharp increases in the dynamical pressure generate impulsive variations in the PC index comprising a initial negative impulse of 5–10 min duration followed by a positive impulse lasting 10–20 min. Typical amplitudes of both the negative and the positive impulses are 0.2–0.5 units. A sharp decrease in the pressure produces the inverse sequence of pulses in the PC index. Auroral substorm activity represented by the AL index level has a marked influence on the average PC/EM level at the transition from very quiet (AL0 nT) to disturbed conditions while more or less disturbed conditions (AL<100 nT) have no systematic effect on the average PC/EM values. At distinct substorm events the PC/EM ratio has a minimum (0.8) in the pre-onset phase at around 20 min before substorm onset. The average ratio gradually increases in the expansion phase to reach a maximum value (1.1) at around 40 min after substorm onset (or 20 min after the largest (negative) peak in AL). At substorm recovery during the next 2 h the PC/EM ratio decreases. Finally, we report on the application of polar magnetic variations to model the disturbance storm time (Dst) index development during magnetic storms by using the PC index as a source function to quantify the energy input to the ring current representing accumulated storm energy and characterized by the Dst index.  相似文献   

18.
A sodium resonance lidar at 589 nm has been operated in São José dos Campos, Brazil (23°S, 46°W) since 1972 mainly for studies related to the origin, chemistry and dynamics of the mesospheric sodium layer. Beginning in 1993, the improved laser capability has also enabled the processing of the Rayleigh signal from which the temperatures from 35 to 65 km are retrieved on a nightly mean basis. We used these nightly profiles to determine the monthly temperature profiles from 1993 to 2006. The mean temperature characteristics for each year and for the whole period are obtained. Seasonal thermal amplitude is small (6 K peak to peak at 40 and 60 km). Compared with the MSISE-90 model, a large difference is noted, with temperature lower than the model below the stratopause and higher above. Also the seasonal variation has a large difference with better agreement occurring around local winter, but with temperatures higher by 8–10 K at the equinoxes. The semiannual component is dominant over the annual at all altitudes. Linear trends with decreasing temperature of 1.09, 2.29 and 1.42 K/decade are observed at 40, 50 and 60 km, respectively.  相似文献   

19.
During 1990–2007, there were 894 lidar observations of nocturnal mesopause region temperatures over Fort Collins, Colorado. In an earlier analysis with data to April 1997, an unexpected episodic warming, peaking in 1993 with a maximum value over 10 K, was reported and attributed to the Mount Pinatubo eruption in June 1991. With all data, long-term temperature trends from a 7-parameter linear regression analysis including solar cycle effect and long-term trends leads to a cooling of as much as 6.8 K/decade at 100 km, consistent with some reported observations but larger than model predictions. Including the observed episodic warming response in an 11-parameter nonlinear regression analysis reduces the maximum long-term cooling trends to 1.5 K/decade at 91 km, with magnitude and altitude dependences consistent with the prediction of two models, Spectral Mesosphere/Lower Thermosphere Model (SMLTM) and Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA). In addition, the mid-latitude middle-atmospheric response to solar flux variability in Thermosphere–Ionosphere-Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperatures is presented.  相似文献   

20.
The effects on the = 2 geoid component and Earth's rotation due to internal mass anomalies are analyzed for a stratified viscoelastic mantle described by a Maxwell rheology. Our approach is appropriate for a simplified modeling of subduction. Sea-level fluctuations induced by long-term rotational instabilities are also considered. The displacement of the Earth's axis of rotation, called true polar wander (TPW) and the induced eustatic sea-level fluctuations, are extremely sensitive to viscosity and density stratification at the 670 km seismic discontinuity. Phase-change models for the transition zone generally allow for huge amount of TPW, except for large viscosity increases; the dominant contribution in Liouville equations comes from a secular term that reflects the viscous behaviour of the mantle. In chemically stratified models, TPW is drastically reduced due to dynamic compensation of the mass anomalies at the upper-lower mantle interface. When the source is embedded in the upper mantle close to the chemical density jump, transient rotational modes are the leading terms in the linear Liouville equations. Long-term rotation instabilities are valuable contributors to the third order cycles in the eustatic sea-level curves. Rates of sea-level fluctuations of the order of 0.05–0.1 mm/yr are induced by displacements of the Earth's axis of rotation compatible with paleomagnetic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号