共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study, we have developed a numerical method which can simulate the dynamic behaviour of a seabed ground during gas production from methane hydrate‐bearing sediments. The proposed method can describe the chemo‐thermo‐mechanical‐seismic coupled behaviours, such as phase changes from hydrates to water and gas, temperature changes and ground deformation related to the flow of pore fluids during earthquakes. In the first part of the present study, the governing equations for the proposed method and its discretization are presented. Then, numerical analyses are performed for hydrate‐bearing sediments in order to investigate the dynamic behaviour during gas production. The geological conditions and the material parameters are determined using the data of the seabed ground at Daini‐Atsumi knoll, Eastern Nankai Trough, Japan, where the first offshore production test of methane hydrates was conducted. A predicted earthquake at the site is used in the analyses. Regarding the seismic response to the earthquake which occur during gas production process, the wave profiles of horizontal acceleration and horizontal velocity were not extensively affected by the gas production. Hydrate dissociation behaviour is sensitive to changes in the pore pressure during earthquakes. Methane hydrate dissociation temporarily became active in some areas because of the main motion of the earthquake, then methane hydrate dissociation brought about an increase in the average pressure of the fluids during the earthquake. And, it was this increase in average pore pressure that finally caused the methane hydrate dissociation to cease during the earthquake. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
2.
Xuhui Zhang Jia Lin Xiaobing Lu Lele Liu Changling Liu Mingyao Li Yewang Su 《国际地质力学数值与分析法杂志》2018,42(7):931-942
Gas hydrate‐bearing sediments (GHBSs) have been considered as a potential energy resource. In this paper, the mechanical properties of GHBS are firstly investigated by the integrated test apparatus for synthesis of GHBS using silty sand as skeleton. Triaxial tests indicate an obvious transition of stress‐strain relationship from strain hardening under low hydrate saturation and strain softening under high hydrate saturation. The hypoplastic models coupled with Drucker‐Prager criterion and the Mohr‐Coulomb criterion are proposed to analyze the stress‐strain relationship of GHBS with considering the effective porosity because of the hydrate filling in the pores of GHBS. The strain hardening and softening behaviors are well predicted with less material parameters compared with the classical models. Compared with the test results, the proposed hypoplastic models are verified to be capable of capturing the salient features of the mechanical behaviors of GHBS under the conditions of little temperature change and no hydrate dissociation. 相似文献
3.
While methane hydrates (MHs) can be present in various forms in deep seabeds or permafrost regions, this paper deals with MH‐bearing sediments (MHBS) where the MH has formed bonds between sand grains. A bond model based on experimentally validated contact laws for cemented granules is introduced to describe the mechanical behavior of the MH bonds. The model parameters were derived from measured values of temperature, water pressure and MH density. Bond width and thickness adopted for each bond of the MHBS were selected based on the degree of MH saturation. The model was implemented into a 2D distinct element method code. A series of numerical biaxial standard compression tests were carried out for various degrees of MH saturation. A comparison with available experimental data shows that the model can effectively capture the essential features of the mechanical behavior of MHBS for a wide range of levels of hydrate saturation under drained and undrained conditions. In addition, the analyses presented here shed light on the following: (1) the relationship between level of cementation and debonding mechanisms taking place at the microscopic level and the observed macro‐mechanical behavior of MHBS and (2) the relationship between spatial distribution of bond breakages and contact force chains with the observed strength, dilatancy and deformability of the samples. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
4.
天然气水合物赋存在低温高压环境中,会在土颗粒间形成胶结从而增大深海能源土抗剪强度。基于损伤力学理论,将结构性砂土本构模型推广应用于深海能源土分析中,模拟计算了三轴固结排水剪切试验,再根据应力-应变曲线关系定量反演初始屈服系数与水合物饱和度之间的函数关系,并修正了原有的结构性砂土破损规律,建立了深海能源土弹塑性本构模型。另外,根据该模型模拟了另外一组深海能源土三轴剪切试验和等向固结压缩试验。计算结果表明:新建立的深海能源土本构模型可以有效模拟深海能源土剪切强度随水合物饱和度之间的增长关系;随着水合物饱和度的增加,三轴压缩试验中深海能源土峰值强度及割线模量(E50)逐渐增加,等向固结压缩试验中屈服强度增加,与试验结果有较好的一致性,表明了该模型的合理性。 相似文献
5.
Methane hydrate (MH) is a new energy resource in the 21st century. But the dissociation of MH from sediments during the MH exploration or oil/gas exploration under a hydrate layer accompanied by the softening of soils and formation of excess pore gas pressure may lead to ground failures and environmental disasters. In this study, experiments on modeling the weakening and failure of the sediment by heat‐induced dissociation of tetrahydrofuran (THF) hydrate were presented. The failure mode of gas outburst was observed. Gas outbursts is a process where gas and soils in hydrate‐dissociation zone burst out after the continuous skeleton of over‐layer is fractured during the expansion of the dissociation zone and the formation of gas zone and excess pore gas pressure. An analytical method is presented by decoupling heat transfer and soil deformation. The geometrical and mechanical similarities for gas outburst are obtained. An empirical criterion for the occurrence of outburst is proposed using the theory of thermal conduction, rigid plastic mechanics, and the experimental data. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
6.
Mechanical properties of methane hydrate‐bearing soils are complex. Their behavior undergoes a significant change when hydrates dissociate and become methane gas. On the other hand, methane hydrates are ice‐like compounds and, depending on the hydrate accumulation habits and the degree of hydrate saturation, may cement soil particles into stronger and stiffer soils. A new constitutive model is proposed that is capable of capturing essential characteristics of hydrate‐bearing soils. The core of the model includes the spatial mobilized plane concept; a transformed stress, tij; the critical state; and the subloading framework. The proposed model gives soil responses due to stress changes or hydrate saturation changes or both. The performance of the model has been found satisfactory, over a range of hydrate saturation and confining pressures, using triaxial test data from laboratory‐synthesized samples and from field samples extracted from Nankai Trough, Japan. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
7.
天然气水合物以胶结及孔隙填充等形式存在于深海能源土中,开采时因其分解会劣化地层力学特性进而引发海底事故,使得人们对能源土开采过程进行中力学特性的变化愈发重视。在前期室内试验的基础上,将一个温度-水压-力学二维微观胶结模型引入离散元商业软件PFC2D中,通过对排气、排水性较好的土体进行升温及降压法开采进行数值模拟,并将模拟结果与相同条件下的室内试验结果对比,验证了该胶结模型的适用性。进一步分析了颗粒接触分布与颗粒平均纯转动率(averaged pure rotation rate, APR)在水合物分解时的变化情况。升温分解过程中随温度升高,颗粒总接触分布各向异性程度增大;胶结接触逐渐减少并始终保持主方向为水平方向,无胶结接触增多并始终保持主方向为竖直方向;APR值逐渐增大且正负值分布逐渐趋于集中。降压分解过程中随反(水)压降低,颗粒总接触由各向同性分布逐渐发展为主方向为竖直方向的各向异性,APR值较小且分布均匀;恢复反压后,试样进一步破坏,颗粒总接触各向异性更加明显,APR值增大且正负值呈集中分布。 相似文献
8.
天然气水合物的开采会带来一系列的岩土工程问题,为了保障相关工程设施的安全,有必要建立一个合理的水合物沉积物本构模型。通过深入分析水合物沉积物力学特点,从颗粒间的作用机制出发,认为水合物沉积物的力学响应是沉积物中土体颗粒间摩擦与水合物胶结二者共同作用的结果;考虑到摩擦与接触特性不同的力学机制,分别采用修正剑桥模型和弹性损伤模型对土体骨架及水合物胶结的应力-应变关系进行描述;通过假定水合物胶结的损伤演化规律,并认为在受力变形过程中二者的应变始终相等,初步建立了一个水合物沉积物的弹塑性损伤本构模型。不同水合物饱和度沉积物应力-应变曲线的模型预测结果与室内三轴排水试验结果吻合良好,表明了所建模型的可行性和合理性。 相似文献
9.
Numerous constitutive models built on coaxial theory and validated under axi‐symmetric condition often describe the stress–stain relationships and predict the inceptions of shear banding in sands inaccurately under true triaxial condition. By adopting an elaborated Mohr–Coulomb yield function and using non‐coaxial non‐associated flow rule, a 3D non‐coaxial elasto‐plasticity model is proposed and validated by a series of true triaxial tests on loose sands. The bifurcation analysis of true triaxial tests on dense sands predicts the influence of the intermediate principal stress ratio on the onset of shear band accurately. The failure of soils is shown to be related to the formation of shear band under most intermediate principal stress ratio conditions except for those which are close to the axi‐symmetric compression condition. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
10.
天然气水合物是一种潜在的能源资源,开采过程中,水合物的分解会造成工程和地质等安全隐患。为研究降压开采过程中多因素综合影响条件下沉积物的力学性质,在自主研发的低温高压三轴仪上进行了不同围压条件下含水合物沉积物的剪切试验。试验结合常规三轴剪切及一个试样多级加荷的方法,并加入了水合物的降压分解过程。结果表明:水合物的存在可以显著提高沉积物的抗剪强度。在降压分解过程中,含水合物沉积物试样的力学强度受到有效围压和孔隙中水合物含量的综合影响。前期试样由于孔隙压力降低导致有效围压大幅增加,试样抗剪强度增大,后期由于水合物含量的大幅降低,试样在较高有效围压下抗剪强度下降。有效围压对含水合物沉积物试样的体积应变有较大的影响,较高的有效围压会导致含水合物试样产生显著的剪缩现象。 相似文献
11.
The results of a series of true triaxial tests with stress paths involving large reversals under 3D conditions are presented. These tests were performed on medium dense Santa Monica Beach sand to provide experimental evidence for the rotational kinematic hardening hypothesis presented in a companion paper and to provide stress–strain and volume change relations for experiments with 3D stress paths and large stress reversals to be predicted by the rotational kinematic hardening model. The experimental equipment and the testing procedures are briefly explained followed by a presentation of the experimental results and their sensitivity to unknown causes as well as effects of cross‐anisotropy on the sand behavior. The stress paths are presented in a σ3′‐plane and in an octahedral plane and the directions of experimental strain increment vectors are compared with those obtained from the rotational kinematic hardening model. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
12.
A rotational kinematic hardening constitutive model with the capability of predicting the behavior of soil during three‐dimensional stress reversals has been developed. An existing elasto‐plastic constitutive model, the Single Hardening Model, utilizing isotropic hardening serves as the basic framework in these formulations. The framework of the kinematic hardening model was discussed in a companion paper. The previously proposed cross‐anisotropic Single Hardening Model is added to the present kinematic hardening mechanism to capture inherent anisotropy of sands in addition to the stress reversals. This model involves 13 parameters, which can be determined from simple laboratory experiments, such as isotropic compression, drained triaxial compression and triaxial extension tests. The results from a series of true triaxial tests with large three‐dimensional stress reversals performed on medium dense cross‐anisotropic Santa Monica Beach sand are employed for comparison with predictions. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
13.
非共轴本构模型在地基承载力数值计算中若干影响因素的探讨 总被引:1,自引:0,他引:1
土体在剪切变形过程中产生主应力方向的旋转时,主应变增量方向与主应力方向之间存在着非共轴现象,然而传统的弹塑性本构模型未能考虑该现象的影响。通过在屈服面的切线方向增加一项非共轴塑性应变增量,即可实现对非共轴现象的反映。采用显式积分算法和自动分步方法,将非共轴本构模型运用到桶形基础地基承载力问题的有限元计算中,并讨论了流动法则、内摩擦角、膨胀角等因素与非共轴模型的联系。计算结果表明:采用有限元程序默认容许误差时,该本构模型可达到理想的收敛精度,并且,该模型对关联、非关联流动法则均适用。采用共轴模型进行数值计算时,不同流动法则对计算结果的影响可以忽略;采用非共轴模型时,不同流动法则的计算结果之间存在差异。非共轴现象对地基承载力-位移曲线具有软化作用,并且,该软化作用在采用非关联流动法则时变得更加明显 相似文献
14.
Fractional calculus has been successfully applied to characterize the rheological property of viscoelastic materials; however, geomaterials were seldom involved in fractional order constitutive models (FOCM), and the topic of first loading and then unloading is rarely discussed through fractional calculus. In this paper, mechanical properties are considered as a ‘spectrum’, both ends of which are elasticity and viscosity, and the fractional order can be utilized to describe such properties quantitatively. In addition to conditions such as creep, stress‐relaxation, and constant‐strain‐rate loading, stress‐strain relationship under the condition of first loading and then unloading was also derived using FOCM. FOCM is then adopted to simulate triaxial tests of geomaterials under corresponding conditions. A comparison of test and numerical results demonstrates that FOCM can reasonably describe the mechanical characteristics of geomaterials.Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
15.
A new phenomenological macroscopic constitutive model for the numerical simulation of quasi‐brittle fracture and ductile concrete behavior, under general triaxial stress conditions, is presented. The model is particularly addressed to simulate a wide range of confinement stress states, as also, to capture the strong influence of the mean stress value in the concrete failure mechanisms. The model is based on a two‐surface damage‐plastic formulation. The mechanical behavior in different domains of the stress space is separately described by means of a quasi‐brittle or ductile material response:
16.
In this paper, the problem of propagation of localized deformation associated with formation of macrocracks/shear bands is studied in both tensile and compressive regimes. The main focus here is on enhancement of the constitutive law with embedded discontinuity to provide a discrete representation of the localization phenomenon. This has been accomplished by revising the formulation and coupling it with the level‐set method for tracing the propagation path. Extensive numerical studies are conducted involving various fracture modes, ranging from brittle to frictional, and the results are compared with the experimental data as well as those obtained using XFEM methodology. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
17.
18.
The mechanical properties of cohesionless granular materials are evaluated from grain‐scale simulations. A three‐dimensional pack of spherical grains is loaded by incremental displacements of its boundaries. The deformation is described as a sequence of equilibrium configurations. Each configuration is characterized by a minimum of the total potential energy. This minimum is computed using a modification of the conjugate gradient algorithm. Our simulations capture the nonlinear, path‐dependent behavior of granular materials observed in experiments. Micromechanical analysis provides valuable insight into phenomena such as hysteresis, strain hardening and stress‐induced anisotropy. Estimates of the effective bulk modulus, obtained with no adjustment of material parameters, are in agreement with published experimental data. The model is applied to evaluate the effects of hydrate dissociation in marine sediments. Weakening of the sediment is quantified as a reduction in the effective elastic moduli. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
19.
Kyanite‐bearing paragneisses from the Manicouagan Imbricate Zone and its footwall (high‐P belt of the central Grenville Province) preserve evidence of partial melting with development of metamorphic textures involving biotite–garnet ± kyanite ± plagioclase ± K‐feldspar–quartz. Garnet in these rocks displays a variety of zoning patterns with respect to Ca. Pseudosection modelling in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) system using measured bulk rock compositions accounts for the textural evolution of two aluminous and two sub‐aluminous samples from the presumed thermal peak to conditions at which retained melt solidified. The prograde features are best explained by pseudosections calculated with compositions to account for melt loss. The intersection of isopleths of grossular content and Fe/(Fe + Mg) relating to large porphyroblasts of garnet provide constraints on the P–T conditions of the metamorphic peak. These P–T estimates are considered to be minima because of the potential for diffusional modification of the composition of garnet at high‐T and during the early stages of cooling. However, they are consistent with textural observations and pseudosection topology, with peak assemblages best preserved in rocks for which the calculated pseudosections predict only small changes in mineral proportions in the P–T interval, in which retrograde reactions are inferred to have occurred between the thermal peak and the solidus. Maximum P–T conditions (14.5–15.5 kbar and 840–890 °C) and steep retrograde P–T paths inferred for rocks from the Manicouagan Imbricate Zone are comparable with those determined for mafic rocks from the same area. In contrast, maximum P–T conditions of 12.5–13 kbar and 815–830 °C and flatter P–T paths are inferred for the rocks of the footwall to the Manicouagan Imbricate Zone. The general consistency between textures, mineral compositions and the topologies of the calculated pseudosections suggests that the pseudosection approach is an appropriate tool for inferring the P–T evolution of high‐P anatectic quartzo‐feldspathic rocks. 相似文献
20.
This paper presents a new method to derive the analytical solution for the vertical impedance of an end‐bearing pile in viscoelastic soil. The soil is assumed as a homogeneous and isotropic layer, and the pile is considered as a one‐dimensional Euler rod. Considering both the vertical and radial displacements of soil and soil–pile coupled vibration, the governing equations of the soil and pile are established. The volumetric strain of soil is obtained by transformation on the equations of soil and variable separation method. Then the vertical and radial displacements of soil are obtained accordingly. The displacement response and impedance function of pile are derived based on the continuity assumption of the displacement and stress between the pile and soil. The solution is verified by being compared with an existing solution obtained by introducing potential functions. Furthermore, a comparison with two other simplified solutions is conducted. Numerical examples are presented to analyze the vibration characteristics of the pile. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献