首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Greece, in particular the western and southern parts close to the subduction zone of the Hellenic Trench, experiences strong earthquakes and subsequent tsunamis. Nevertheless, field evidence of tsunamis from the late Holocene is extremely rare. Our research along the coastlines of the western and southern Peloponnesus resulted in new findings of tsunami impacts in the form of clusters and ridges of large boulders and thick tsunamigenic sand layers encountered in vibracores. Many boulders contained attached marine organisms, which prove that they were transported from the foreshore environment against gravity by extreme wave events. The attached organisms, which have been dated by 14C-AMS, suggest that historical tsunami events of great energy occurred around 1300 cal AD. A wood fragment found at the base of tsunami deposits in a vibracore from Cape Punta was dated to ~ 250 cal AD.  相似文献   

2.
We assess the tsunami hazard posed to New Zealand by the Kermadec and southern New Hebrides subduction margins. Neither of these subduction zones has produced tsunami large enough to cause significant damage in New Zealand over the past 150?years of well-recorded history. However, as this time frame is short compared to the recurrence interval for major tsunamigenic earthquakes on many of the Earth’s subduction zones, it should not be assumed that what has been observed so far is representative of the long term. For each of these two subduction zones we present plate kinematic and fault-locking results from block modelling of earthquake slip vector data and GPS velocities. The results are used to estimate the current rates of strain accumulation on the plate interfaces where large tsunamigenic earthquakes typically occur. We also review data on the larger historical earthquakes that have occurred on these margins, as well as the Global CMT catalogue of events since 1976. Using this information we have developed a set of scenarios for large earthquakes which have been used as initial conditions for the COMCOT tsunami code to estimate the subsequent tsunami propagation in the southwest Pacific, and from these the potential impact on New Zealand has been evaluated. Our results demonstrate that there is a significant threat posed to the Northland and Coromandel regions of New Zealand should a large earthquake (M w ?8.5) occur on the southern or middle regions of the Kermadec Trench, and that a similarly large earthquake on the southern New Hebrides Trench has the potential to strongly impact on the far northern parts of New Zealand close to the southern end of the submarine Three Kings Ridge. We propose logic trees for the magnitude–frequency parameters of large earthquakes originating on each trench, which are intended to form the basis for future probabilistic studies.  相似文献   

3.
Abstract A tsunamigenic sand layer is present in coastal sequences of the Masuda Plain, southwest Japan. The radiometric age of the layer has been estimated at 930 ± 80 years BP. It is proposed that the deposit is the product of a large historic tsunami believed to have occurred in the Japan Sea on 16 June 1026 AD.  相似文献   

4.
Stromboli is an Italian volcanic island known for its persistent state of activity, which leads to frequent mass failures and consequently to frequent tsunamis ranging from large (and rare) catastrophic events involving the entire southern Tyrrhenian Sea to smaller events with, however, extremely strong local impact. Most of tsunamigenic landslides occur in the Sciara del Fuoco (SdF) zone, which is a deep scar in the NW flank of the volcano, that was produced by a Holocene massive flank collapse and that is the accumulation area of all the eruptive ejecta from the craters. Shallow-water bathymetric surveys around the island help one to identify submarine canyons and detachment scars giving evidence of mass instabilities and failures that may have produced and might produce tsunamis. The main purpose of this paper is to call attention to tsunami sources in Stromboli that are located outside the SdF area. Further, we do not touch on tsunami scenarios associated with gigantic sector collapses that have repeat times in the order of several thousands of years, but rather concentrate on intermediate size tsunamis, such as the ones that occurred in December 2002. Though we cannot omit tsunamis from the zone of the SdF, the main emphasis is on the elaboration of preliminary scenarios for three more possible source areas around Stromboli, namely Punta Lena Sud, Forgia Vecchia and Strombolicchio, with the aim of purposeful contributing to the evaluation of the hazard associated with such events and to increase the knowledge of potential threats affecting Stromboli and the nearby islands of the Aeolian archipelago. The simulations show that tsunami sources outside of the SdF can produce disastrous effects. As a consequence, we recommend that the monitoring system that is presently operating in Stromboli and that is focussed on the SdF source area be extended in order to cover even the other sources. Moreover, a synoptic analysis of the results from all the considered tsunami scenarios leads to a very interesting relation between the tsunami total energy and the landslide potential energy, that could be used as a very effective tool to evaluate the expected tsunami size from estimates of the landslide size.  相似文献   

5.
Sources of Tsunami and Tsunamigenic Earthquakes in Subduction Zones   总被引:1,自引:0,他引:1  
—We classified tsunamigenic earthquakes in subduction zones into three types earth quakes at the plate interface (typical interplate events), earthquakes at the outer rise, within the subducting slab or overlying crust (intraplate events), and "tsunami earthquakes" that generate considerably larger tsunamis than expected from seismic waves. The depth range of a typical interplate earthquake source is 10–40km, controlled by temperature and other geological parameters. The slip distribution varies both with depth and along-strike. Recent examples show very different temporal change of slip distribution in the Aleutians and the Japan trench. The tsunamigenic coseismic slip of the 1957 Aleutian earthquake was concentrated on an asperity located in the western half of an aftershock zone 1200km long. This asperity ruptured again in the 1986 Andreanof Islands and 1996 Delarof Islands earthquakes. By contrast, the source of the 1994 Sanriku-oki earthquake corresponds to the low slip region of the previous interplate event, the 1968 Tokachi-oki earthquake. Tsunamis from intraplate earthquakes within the subducting slab can be at least as large as those from interplate earthquakes; tsunami hazard assessments must include such events. Similarity in macroseismic data from two southern Kuril earthquakes illustrates difficulty in distinguishing interplate and slab events on the basis of historical data such as felt reports and tsunami heights. Most moment release of tsunami earthquakes occurs in a narrow region near the trench, and the concentrated slip is responsible for the large tsunami. Numerical modeling of the 1996 Peru earthquake confirms this model, which has been proposed for other tsunami earthquakes, including 1896 Sanriku, 1946 Aleutian and 1992 Nicaragua.  相似文献   

6.
The stratigraphy of tsunami deposits along the Japan Sea, southwest Hokkaido, northern Japan, reveals tsunami recurrences in this particular area. Sandy tsunami deposits are preserved in small valley plains, whereas gravelly deposits of possible tsunami origin are identified in surficial soils covering a Holocene marine terrace and a slope talus. At least five horizons of tsunami events can be defined in the Okushiri Island, the youngest of which immediately overlies the Ko‐d tephra layer (1640 AD) and was likely formed by the historical Oshima‐Ohshima tsunami in 1741 AD. The four older tsunami deposits, dated using accelerator mass spectrometry 14C, were formed at around the 12th century, 1.5–1.6, 2.4–2.6, and 2.8–3.1 ka, respectively. Tsunami sand beds of the 1741 AD and circa 12th century events are recognized in the Hiyama District of Hokkaido Island, but the older tsunami deposits are missing. The deposits of these two tsunamis are found together at the same sites and distributed in regions where wave heights of the 1993 tsunami (Hokkaido Nansei‐oki earthquake, Mw = 7.7) were less than 3 m. Thus, the 12th century tsunami waves were possibly generated near the south of Okushiri Island, whereas the 1993 tsunami was generated towards the north of the island. The estimated recurrence intervals of paleotsunamis, 200–1100 years with an average of 500 years, likely represents the recurrence interval of large earthquakes which would have occurred along several active faults offshore of southwest Hokkaido.  相似文献   

7.
The most recent high magnitude seismic events, e.g. the Mw 8.2 Iquique earthquake (April 1st, 2014) and the Mw 8.8 Maule earthquake (February 27th, 2010) are reminders of the pronounced vulnerability of the Chilean coast to the impact of natural hazards like earthquakes and tsunamis. Therefore it is crucial to understand the complex tsunami history of Chile which can be deciphered by studying the geological record of former tsunamis in the form of tsunami deposits.At the coastal locality of Tirúa (Central Chile) six distinct, successive tsunamigenic sand layers are intercalated in fine grained floodplain sediments. We present the optically stimulated luminescence (OSL) analysis of quartz from samples of this sedimentological river marsh profile of 1.5 m depth.After the assessment of the applicability of OSL to these samples, it could be noted that despite of an expected low OSL sensitivity of the quartz from the South American Cordillera, most of the sampled quartz yielded a detectable natural signal. After performance tests according to the SAR-protocol, the measurements of the different tsunami sand layers were conducted with small (2.5 mm) aliquots of quartz with the preheat temperature 180 °C. The calculation of De was provided by applying both the central age and minimum age models. All samples are heterogeneous in their De distributions due to incomplete or absent significant bleaching during transport by tsunami. The resulting ages of the tsunami sediments yield an offset of nearly 200 years for CAM ages and less than 50 years for MAM ages, consequently favouring MAM ages for true burial age determination. In some tsunami sand layers and their surrounding river marsh sediments age inversions occur. They were caused by the initial deposition of well bleached sediments derived from beach and dunes followed by older sediments redeposited from beach and intertidal environments during tsunami flow. Despite the offset and age inversion six different tsunami events were dated in the Tirúa profile. Three of these events extend the historical record to pre-Columbian time with the oldest tsunami dated to over 1500 years before present.  相似文献   

8.
Sediments left by coastal flooding have been observed worldwide and have been variously ascribed to the action of storm surges and tsunami waves. To date, no study has attempted to unequivocally establish on stratigraphical, sedimentological, and palaeoecological grounds the means by which these two different processes might be distinguished in coastal sedimentary sequences. This paper examines the evidence for historical storm surges and tsunamis and shows that both high magnitude events have been documented over the past 250 years in southwest England. Sand layers of varying thickness are present within Holocene lagoonal and peat sequences of several shallow lakes of the Scilly Isles. Detailed analysis of Big Pool, St Agnes, indicates that the basal peats date from around 1000 BP. Within the basal peats are numerous thin sand layers. Above the basal peat is an extensive sand layer 15 to 40 cm thick. The base of this latter layer probably dates from the early to mid 18th century. Particle size, grain surface morphology, diatom, and mineral magnetic studies are used to try and determine the most likely mode of deposition. The results of all analyses are inconclusive, but the weight of evidence suggests that the increasing frequency of thin sand layers in the upper part of the basal peat may be related to the increasing frequency and intensity of Atlantic storms during the Little Ice Age superimposed upon a rising sea level. The thick sand layer may have been deposited by the tsunami wave generated by the Lisbon earthquake of November 1,1755. Due to the difficulties in distinguishing depositional processes in coastal environments known to have been affected by storm surges and tsunami waves, it is suggested that generally accepted sedimentological techniques are inadequate for discriminating depositional processes in coastal environments.  相似文献   

9.
Jijel has been hit by a strong earthquake in 1856 that triggered a destructive tsunami. Field geological investigations show that the marine terrace deposits (Tyrrhenian or likely Eutyrrhenian) exhibit several types of soft sediment deformation features including sismoslumps, thixotropic bowls, thixotropic wedges, and diapir-like structures. In addition, paleo-liquefaction features represented by neptunian and injection dikes have been observed in the sand dune deposits (Aterian or Würm). Furthermore, typical paleo-earthquake-induced ground failures including lateral spreading, paleo-landslides, and sand volcanoes have been observed in recent, likely, Holocene deposits. Such features, remarkably comparable to present-day earthquake-induced ground failures showing clearly repetitive occurrence of past events may constitute a precious material for future paleo-seismic investigation. The various features have been interpreted herein as seismites associated to strong earthquakes produced likely by the potentially active faults previously identified in the area.  相似文献   

10.
Tsunami deposits provide a basis for reconstructing Holocene histories of great earthquakes and tsunamis on the Pacific Coast of southwest Japan. The deposits have been found in the past 15 years at lakes, lagoons, outcrops, and archaeological excavations. The inferred tsunami histories span 3000 years for the Nankai and Suruga Troughs and nearly 10,000 years for the Sagami Trough. The inferred histories contain recurrence intervals of variable length. The shortest of these —100–200 years for the Nankai Trough, 150–300 years for the Sagami Trough — resemble those known from written history of the past 1000–1500 years. Longer intervals inferred from the tsunami deposits probably reflect variability in rupture mode, incompleteness of geologic records, and insufficient research. The region's tsunami history could be clarified by improving the geologic distinction between tsunami and storm, dating the inferred tsunamis more accurately and precisely, and using the deposits to help quantify the source areas and sizes of the parent earthquakes.  相似文献   

11.
Re-evaluation of magnitude-geographical criterion of tsunami prediction is one of the main directions of improvement of the tsunami warning service acting on the coast of the Russian Far East. The main directions of this work are a careful analysis of the tsunami warnings issued by the service during the period of its operation (since 1958), determining of reasons for false alarms and missed warnings, delineation of tsunamigenic areas threatening the Far East coast of Russia, optimal selection of magnitude thresholds for each tsunamigenic zone, evaluation of the expected ratio between real/missed/false warnings, determination of the degree of influence of other source parameters (focus depth, source mechanism), and evaluation of probability of occurrence for nonseismic tsunamis. The present paper considers the results of operations for prediction of tsunamis from submarine earthquakes that occurred in the Kuril-Kamchatka zone, Sea of Japan, and Sea of Okhotsk during the last 52 years.  相似文献   

12.
基于强震台网的我国沿海海啸走时预警   总被引:5,自引:1,他引:4  
经济快速发展的中国沿海地区,面临着潜在海啸袭击危险。海啸传播走时分析是海啸预警系统的重要组成部分。本文基于强震台网提供的地震要素,从理论上讨论海啸预警时间计算方法。在球坐标系下,建立了远洋海啸传播模型,采用差分技术,实现远洋海啸传播数值模拟,首次针对我国主要城市进行了海啸走时计算,分析了我国沿海走时特点,指出了未来发生在太平洋的远洋海啸对我国的长江三角洲会有较大影响。本文计算海啸走时方法可以为我国建设的新一代基于数值海啸预警系统提供技术支持。  相似文献   

13.
 A discontinuous pumiceous sand, a few centimeters to tens of centimeters thick, is located up to 15 m above mean high tide within Holocene peat along the northern Bristol Bay coastline of Alaska. The bed consists of fine-to-coarse, poorly to moderately well-sorted, pumice-bearing sand near the top of a 2-m-thick peat sequence. The sand bed contains rip-up clasts of peat and tephra and is unique in the peat sequence. Major element compositions of juvenile glass from the deposit and radiocarbon dating of enclosing peat support correlation of the pumiceous sand with the caldera-forming eruption of Aniakchak Volcano. The distribution of the sand and its sedimentary characteristics are consistent with emplacement by tsunami. The pumiceous sand most likely represents redeposition by tsunami of climactic fallout tephra and beach sand during the approximately 3.5 ka Aniakchak caldera-forming eruption on the Alaska Peninsula. We propose that a tsunami was generated by the sudden entrance of a rapidly moving, voluminous pyroclastic flow from Aniakchak into Bristol Bay. A seismic trigger for the tsunami is unlikely, because tectonic structures suitable for tsunami generation are present only south of the Alaska Peninsula. The pumiceous sand in coastal peat of northern Bristol Bay is the first documented geologic evidence of a tsunami initiated by a volcanic eruption in Alaska. Received: 3 December 1997 / Accepted: 11 April 1998  相似文献   

14.
Known tsunamis of volcanic origin are reviewed and classified according to their causes. Earthquakes accompanying eruptions (excluding tectonic events which apparently triggered eruptions), pyroclastic flows, and submarine explosions have each accounted for about 20% of cases. Ten causes of volcanic tsunamis are discussed. From the risk point of view, those due to landslides are particularly dangerous. Eruptions at calderas are more likely to generate tsunamis than eruptions elsewhere. Of those killed directly by volcanic eruptions, nearly a quarter have died as a result of tsunamis. By transfer of energy to sea waves, a violent eruption, which would be comparatively harmless on land, extends greatly the radius over which destruction occurs. Krakatoa, 1883, is the only eruption sequence for which sufficient data exist for a detailed study of tsunamis. The times at which air and water waves generated by this sequence were recorded have been reread, and new origin times have been calculated and compared with observations made at the time. Origin times of successive pairs of air and water waves agree closely, except in some cases in which the tsunami arrived up to 15 minutes early, thus giving an apparent origin time 15 minutes before that of the corresponding air wave. This is explained by postulating that these tsunamis did not originate at the focus of the explosions, but at distances along the path towards the tide gauge, equivalent to those which would be covered by a tsunami in the time interval observed. The calculated point at which the largest recorded tsunami originated coincides with the outer edge of a bank of volcanic debris laid down during the eruption. This is interpreted as part of an unwelded ignimbrite deposit, the violent emplacement of which, within a minute or so of the explosion, generated the tsunami. A satisfactory correlation is established between explosions and deposits laid down by the eruptions, as described from a geological section close to the source vent. An outline is given of a proposed numerical index to define tsunamigenic potential at a given volcano. Such an index could be used to calculate the expected amplitudes of tsunamis at particular places in the vicinity, and hence could serve as a basis for tsunami risk contingency planning.  相似文献   

15.
The size of major tsunamigenic earthquakes which occurred in the Japan Sea is quantified on the basis of seismic and tsunamigenic source parameters. The tsunami magnitude Mt is determined from the instrumental tsunami-wave amplitudes. The Mt values thus obtained are on average 0.2 units larger than the values of moment magnitude Mw, though the Mt scale has originally been adjusted to agree with Mw. Moreover, the volume of displaced water at the source is on average 2.3 times as large as that for the Pacific events with a comparable Mw. Nevertheless, the observed height of the sea-level disturbance at the source is found consistent with the amount of crustal deformation computed for the seismic fault models. These results indicate that the tsunami source potential itself is large for Mw in comparison with the Pacific events. The large source potential is explained in terms of the effective difference both in the rigidity of the source medium and in the geometry of the fault motion. For the Japan Sea events, the Mt scale still provides the physical measure of the tsunami potential, and Mt minus 0.2 corresponds to Mw. This predicts that the maximum amplitude of tsunami waves from Japan Sea earthquakes is at least two times as large as that from Pacific earthquakes with a comparable Mw.  相似文献   

16.
We develop stochastic approaches to determine the potential for tsunami generation from earthquakes by combining two interrelated time series, one for the earthquake events, and another for the tsunami events. Conditional probabilities for the occurrence of tsunamis as a function of time are calculated by assuming that the inter-arrival times of the past events are lognormally distributed and by taking into account the time of occurrence of the last event in the time series. An alternative approach is based on the total probabilitiy theorem. Then, the probability for the tsunami occurrence equals the product of the ratio, r (= tsunami generating earthquakes/total number of earthquakes) by the conditional probability for the occurrence of the next earthquake in the zone. The probabilities obtained by the total probability theorem are bounded upwards by the ratio r and, therefore, they are not comparable with the conditional probabilities. The two methods were successfully tested in three characteristic seismic zones of the Pacific Ocean: South America, Kuril-Kamchatka and Japan. For time intervals of about 20 years and over the probabilities exceed 0.50 in the three zones. It has been found that the results depend on the approach applied. In fact, the conditional probabilities of tsunami occurrence in Japan are slightly higher than in the South America region and in Kuril-Kamchatka they are clearly lower than in South America. Probabilities calculated by the total probability theorem are systematically higher in South America than in Japan while in Kuril-Kamchatka they are significantly lower than in Japan. The stochastic techniques tested in this paper are promising for the tsunami potential assessment in other tsunamigenic regions of the world.  相似文献   

17.
The new scale Mt of tsunami magnitude is a reliable measure of the seismic moment of a tsunamigenic earthquake as well as the overall strength of a tsunami source. This Mt scale was originally defined by Abe (1979) in terms of maximum tsunami amplitudes at large distances from the source. A method is developed whereby it is possible to determine Mt at small distances on the basis of the regional tsunami data obtained at 30 tide stations in Japan. The relation between log H, maximum amplitude (m) and log Δ, a distance of not less than 100 km away from the source (km) is found to be linear, with a slope close to 1.0. Using three tsunamigenic earthquakes with known moment magnitudes Mw, for calibration, the relation, Mt = log H + log Δ + D, is obtained, where D is 5.80 for single-amplitude (crest or trough) data and 5.55 for double-amplitude (crest-to-trough) data. Using a number of tsunami amplitude data, Mt is assigned to 80 tsunamigenic earthquakes that occurred in the northwestern Pacific, mostly in Japan, during the period from 1894 to 1981. The Mt values are found to be essentially equivalent to Mw for 25 events with known Mw. The 1952 Kamchatka earthquake has the largest Mt, 9.0. Of all the 80 events listed, at least seven unusual earthquakes which generated disproportionately-large tsunamis for their surface-wave magnitude Ms are identified from the relation. From the viewpoint of tsunami hazard reduction, the present results provide a quantitative basis for predicting maximum tsunami amplitudes at a particular site.  相似文献   

18.
Regional source tsunamis pose a potentially devastating hazard to communities and infrastructure on the New Zealand coast. But major events are very uncommon. This dichotomy of infrequent but potentially devastating hazards makes realistic assessment of the risk challenging. Here, we describe a method to determine a probabilistic assessment of the tsunami hazard by regional source tsunamis with an “Average Recurrence Interval” of 2,500-years. The method is applied to the east Auckland region of New Zealand. From an assessment of potential regional tsunamigenic events over 100,000 years, the inundation of the Auckland region from the worst 100 events is modelled using a hydrodynamic model and probabilistic inundation depths on a 2,500-year time scale were determined. Tidal effects on the potential inundation were included by coupling the predicted wave heights with the probability density function of tidal heights at the inundation site. Results show that the more exposed northern section of the east coast and outer islands in the Hauraki Gulf face the greatest hazard from regional tsunamis in the Auckland region. Incorporating tidal effects into predictions of inundation reduced the predicted hazard compared to modelling all the tsunamis arriving at high tide giving a more accurate hazard assessment on the specified time scale. This study presents the first probabilistic analysis of dynamic modelling of tsunami inundation for the New Zealand coast and as such provides the most comprehensive assessment of tsunami inundation of the Auckland region from regional source tsunamis available to date.  相似文献   

19.
20.
To evaluate the potential of optical dating (OSL) in establishing a proper tsunami chronology for Phra Thong Island (SW Thailand), the method was applied to a suite of tsunamigenic and littoral sandy deposits, for which independent age control was available. Small aliquots of coarse grained quartz were used for measurements, and processed statistically by means of appropriate age models. Based on the equivalent dose distributions, the well bleached littoral deposits were analysed with the central age model (CAM); the tsunamigenic samples revealed poor bleaching, thus, the minimum age model (MAM) was applied. The cross-check with independent age data showed good agreement between luminescence ages and the existing radiocarbon chronology for the littoral deposits. The poorly bleached deposits of the 2004 Indian Ocean tsunami revealed residuals of less than 40 years, which are insignificant for older deposits and demonstrate the general suitability of the dating technique for tsunamites on Phra Thong. Afterwards, the approach was extended to tsunamigenic and littoral sediments of unknown age. Since those revealed properties similar to their reference deposits, the procedures of statistical De determination were adopted. The resulting ages were in agreement with the stratigraphical position and (largely) with the wider chronological context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号