首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large sediment deposits on the reef front around Oahu are a possible resource for replenishing eroded beaches. High-resolution subbottom profiles clearly depict the deposits in three study areas: Kailua Bay off the windward coast, Makua to Kahe Point off the leeward coast, and Camp Erdman to Waimea off the north coast. Most of the sediment is in water depths between 20 and 100?m, resting on submerged shelves created during lowstands of sea level. The mapped deposits have a volume of about 4?×?108?m3 in water depths less than 100?m, being thickest off the mouth of channels carved into the modern insular shelf, from which most of the sediment issues. Vibracore samples contain various amounts of sediment of similar size to the sand on Oahu beaches, with the most compatible prospects located off Makaha, Haleiwa, and Camp Erdman, and the least compatible ones located in Kailua Bay. Laboratory tests show a positive correlation of abrasion with Halimeda content: samples from Kailua Bay suffered high amounts of attrition, but others were comparable to tested beach samples. The common gray color of the offshore sediment, aesthetically undesirable for sand on popular tourist beaches, was diminished in the laboratory by soaking in heated hydrogen peroxide.  相似文献   

2.
Through 10 years of support from the Minerals Management Service Association of American State Geologists' Continental Margins Program we have mapped along the Maine coast, seaward to the 100 m isobath. In all, 1,773 bottom sample stations were occupied, 3,358 km of side-scan sonar and 5,011 km of seismic reflection profiles were gathered. On the basis of these data, a surficial sediment map was created for the Maine inner continental shelf during the Year 8 project, and cores and seismic data were collected to evaluate sand thickness during Years 9 and 10. Sand covers only 8 % of the Maine shelf, and is concentrated seaward of beaches off southern Maine in water depths less than 60 m. Sand occurs in three depositional settings: (1) in shoreface deposits connected dynamically to contemporary beaches; (2) in submerged deltas associated with lower sea-level positions; and (3) in submerged lowstand shoreline positions between 50 and 60 m. Seismic profiles over the shoreface off Saco Bay, Wells Embayment, and off the Kennebec River mouth each imaged a wedge-shaped acoustic unit which tapered off between 20 and 30 m. Cores determined that this was sand that was underlain by a variable but thin (commonly 1 m) deposit of estuarine muddy sand and a thick deposit of glacial-marine mud. Off Saco Bay, more than 55 million m3 of sand exists in the shoreface, compared with about 22 million m3 on the adjacent beach and dunes. Seaward of the Kennebec River, a large delta deposited between 13 ka and the present time holds more than 300 million m3 of sand and gravel. The best sorted sand is on the surface nearshore, with increasing amounts of gravel offshore and mud beneath the surficial sand sheet. Bedforms indicate that the surficial sand is moved by waves to at least 55 m depth. Seaward of the Penobscot River, no significant sand or gravel was encountered. Muddy estuarine sediments overlie muddy glacial-marine sediment throughout the area offshore area of this river. No satisfactory explanation is offered for lack of a sandy delta seaward of Maine's largest river. Lowstand-shoreline deposits were cored in many places in Saco Bay and off the Kennebec River mouth. Datable materials from cores indicated that the lowstand occurred around 10.5 ka off the Kennebec. Cores did not penetrate glacial-marine sediment in the lowstand deposits, and seismic profiles were ambiguous about the vertical extent of sand in these units. For these reasons, no total thickness of sand was determined from the lowstand deposits, but given the area of the surficial sand, the volume is probably in the hundreds of millions of cubic meters.  相似文献   

3.
连云港海域废黄河水下三角洲北翼的沉积特征与空间分布   总被引:1,自引:0,他引:1  
秦亚超  顾兆峰 《海洋学报》2019,41(11):101-116
基于连云港海域浅地层剖面资料解释和16个站位柱状岩心的剖面观察、粒度分析、微体化石鉴定、有孔虫和腹足类纹沼螺的AMS 14C年龄,分析废黄河水下三角洲北翼的沉积结构、厚度和沉积物组成,划分沉积单元及其分布范围;识别海侵沉积区的沉积相,认识其沉积环境特征。结果表明,水下三角洲沉积体可分为三角洲前缘和前三角洲两个沉积单元,两者沿连云港海岸线呈并置关系。三角洲前缘位于埒子口至新淮河口外,为一NNE向进积、NW向倾斜的扇形楔状体,可识别出灌河叶瓣及其以东的叶瓣两个沉积中心。该沉积单元以砂质沉积为主,两个叶瓣之间的分流间湾分布有泥和砂质泥。前三角洲位于三角洲前缘西北侧,大致从埒子口外侧沿海岸带向海州湾展布。该单元为泥质沉积,厚度较薄,其北部的两个柱状岩心所揭示的沉积厚度分别为1.8 m和1.5 m。水下三角洲以北,海侵沙席分布广泛,厚度通常在20 cm左右。其分布在本区具有普遍性,只是在连云港海域被黄河泥沙所覆盖,由此也构成了废黄河水下三角洲的底界面。该界面具有侵蚀残留地貌特征。海侵沙席之下为晚更新世MIS 3阶段中早期的海陆过渡相沉积。沉积物多由黄色粉砂或砂质粉砂组成,含有较丰富的有孔虫、介形虫等,可见淡水纹沼螺。  相似文献   

4.
Backshore sediment samples from 22 beaches along the Antalya and Finike Gulfs have been studied for their grain size, chemical and heavy mineral composition. Data presented here suggest that well- to moderately-sorted (0.41 Φ–0.92 Φ) medium sand (1 Φ–2 Φ) represents dominant mean grain size in most beaches. In contrast, some beaches from the western part of the Gulf of Antalya (Göynük, Kemer-Kiriş and Beldibi) are composed of pebble- to boulder-size grained beaches which are located close to mouths of short and steep-gradient ephemeral rivers entering the sea from the Western Taurus Mountains. The heavy mineral assemblages are dominated by detrital opaque minerals (14–58% magnetite, chromite, and hematite), pyroxene (8–65% augite), amphibole (3–15% tremolite and actinolite), epidote (3–25%), garnet (2–9% pyrope and almandine) and micas (3–20 biotite, muscovite and chlorite). The very high concentrations of heavy minerals (up to 86% of bulk sediment) together with the significant concentrations of some elements found in beach sediments from the Gulf of Finike and western Gulf of Antalya (Fe: 18.40%; Cr: 10.00%; and Ti: 1.32%) are indicative of ultramafic origin, mainly derived from the ophiolitic rocks of the Antalya–Tekirova nappe on coastal hinterland.  相似文献   

5.
C. D. Storlazzi  M. E. Field   《Marine Geology》2000,170(3-4):289-316
Field measurements of beach morphology and sedimentology were made along the Monterey Peninsula and Carmel Bay, California, in the spring and summer of 1997. These data were combined with low-altitude aerial imagery, high-resolution bathymetry, and local geology to understand how coastal geomorphology, lithology, and tectonics influence the distribution and transport of littoral sediment in the nearshore and inner shelf along a rocky shoreline over the course of decades. Three primary modes of sediment distribution in the nearshore and on the inner shelf off the Monterey Peninsula and in Carmel Bay were observed. Along stretches of the study area that were exposed to the dominant wave direction, sediment has accumulated in shore-normal bathymetric lows interpreted to be paleo-stream channels. Where the coastline is oriented parallel to the dominant wave direction and streams channels trend perpendicular to the coast, sediment-filled paleo-stream channels occur in the nearshore as well, but here they are connected to one another by shore-parallel ribbons of sediment at depths between 2 and 6 m. Where the coastline is oriented parallel to the dominant wave direction and onshore stream channels are not present, only shore-parallel patches of sediment at depths greater than 15 m are present. We interpret the distribution and interaction or transport of littoral sediment between pocket beaches along this coastline to be primarily controlled by the northwest-trending structure of the region and the dominant oceanographic regime. Because of the structural barriers to littoral transport, peaks in wave energy appear to be the dominant factor controlling the timing and magnitude of sediment transport between pocket beaches, more so than along long linear coasts. Accordingly, the magnitude and timing of sediment transport is dictated by the episodic nature of storm activity.  相似文献   

6.
Two exposed, high‐energy beaches on the Kaikoura coast of New Zealand are composed of sand and gravel derived from a greywacke terrain. Both beaches can be classified as mixed beaches although the sediment varies from dominantly gravel at the ends of the beach to dominantly sand at the centre, through transition zones in which sand and gravel are mixed. Sixty‐four surface samples were analysed for grain size; two sediment parameters, mean grain size (Mz) and sorting (σI), were calculated.

A striking feature of the cumulative frequency curves is that both unimodai and bimodal distributions include median sizes over the whole range of sampled material, even though bimodal samples display two strong modes in the sand and gravel grades. The general deficiency lof sediment dn the very coarse sand and granule classes (0 to — 2 F ) noted by numerous authors in many parts of the world is apparent in the poorly‐sorted bimodal samples. However, the best‐sorted samples also occur in these two classes.

Mean grain size of samples ranges from medium sand (1.820) to medium pebbles (—4.7 F ), and sorting ranges from very well sorted (0.250) to very poorly sorted (2.69 F ). Mean erain size on the northern beach is significantly greater than on the southern beach, but values of sorting are comparable. The greater mean size on one beach compared with the other is thought to be a function of the grade of material supplied by local rivers; the similarity in sorting presumably reflects the similarity of the processes acting on the two beaches.

Mixed sand‐shingle beaches are relatively rare on a world scale but common in New Zealand. Sediment distributions along the Kaikoura beaches do not reveal a regular decrease in size away from the rivers which supply material to shore at present. Instead, the beaches are differentiated into a number of sediment zones composed of either sand, or mixed sand‐gravel, or gravel. On each beach a gravel zone is located furthest from the river outlets. Sorting generally improves toward the Kaikoura Peninsula. Explanations for these trends are not given. Variations in size and sorting across the two beaches do not show a well developed zonation because of the high level of wave energy which continually mixes the material across the beach.  相似文献   

7.
岬湾砂、砾质海岸是海岛、海岸带重要的旅游资源, 具有较高的社会经济和生态价值, 长期以来备受关注。本文以浙江朱家尖岛东岸的5个代表性岬湾海滩为例, 基于2019年台风季节早期、中期及晚期测量获得的海滩地形和沉积物数据, 结合海滩近岸的水动力数据, 分析了砂质海滩和砾石海滩这两种不同类型岬湾海滩的沉积地貌动态变化。结果表明, 朱家尖岛东岸5个海滩在台风季节出现了不同的体积变化, 大沙里、东沙、千沙、乌石塘和小乌石塘海滩的单宽体积变化分别为11.93m3·m-1、-54.41m3·m-1、-19.75m3·m-1、2.19m3·m-1和-1.96m3·m-1。砾石滩较砂质海滩更为稳定, 无人类活动干扰的砂质海滩在台风季节侵蚀更少、变化更小。台风季节大沙里、东沙、千沙、乌石塘和小乌石塘海滩表层沉积物的平均粒径分别为2.47Փ、2.24Փ、2.64Փ、-5.96Փ和-6.03Փ, 粒径粗化和离岸输运是5个海滩表层沉积物在台风季节的主要表现, 砂质海滩的沉积物粒度特征变化比砾石海滩要大。沉积物粒径、台风强度及台风期间的主要波向与海滩走向之间的关系、海岸工程这3种因素都可能对海滩在台风季节的沉积地貌动态变化产生影响。本文研究结果可为台风季节的海滩管理提供参考。  相似文献   

8.
中国东部陆架表层沉积物粒度特征及其沉积环境浅析   总被引:2,自引:0,他引:2  
对取自中国东部陆架海的209个表层沉积物样品进行了粒度分析及沉积物类型划分,探讨细颗粒沉积区分布格局与物源和环流体系的关系。结果表明,研究区底质类型主要有砂、粉砂质砂、泥质砂、砂质粉砂、砂质泥、粉砂和泥,个别站位含砾石。表层沉积物以粗颗粒砂质沉积为主,其主要分布在东海中北部、苏北浅滩、北黄海北部,其粒度特征主要为:平均粒径2~4Φ,分选差(分选系数>2),偏态极正偏(2~2.80),峰态很宽至宽(1.60~3.50);细颗粒泥质沉积主要分布在浙江沿岸至长江口外、苏北老黄河口外、南黄海中部、北黄海西南部及黄河口外的渤海海域,其粒度特征主要为:平均粒径6~7Φ,分选差至较差(分选系数1~2.5),偏态负偏(-1.50~-0.33)至近于对称(-0.33~+0.33),峰态很宽(>2.75)。从环流的流向与路径及邻近的河流物源角度,初步探讨了河流输入物质及环流体系对细颗粒沉积物沉积分布格局的影响,并初步推断了细颗粒沉积物的物源及基本输移路径。  相似文献   

9.
Offshore exploration during the 1960's for gold off southern New South Wales and for tin in Tasmanian waters did not result in the discovery of economic deposits. Although very rich gold-bearing beach placers were worked in the past, individual deposits were small and rested on bed rock; the chances of locating and exploiting similar deposits offshore appear to be remote. In the case of tin, sub-economic resources were outlined in submerged river channels at a number of places off northeastern Tasmania. Such channels can be outlined by seismic methods, but to locate workable tin deposits in the buried alluvium by drilling alone is likely to be impracticable and successful exploration may depend on the development of other geophysical prospecting techniques.

Large resources of rutile- and zircon-bearing heavy-mineral sands have been indicated off the east Australian coast by mining company work, but no economic deposits have been found to date. Studies of the morphology of the eastern shelf by the Bureau of Mineral Resources have revealed linear features believed to be related to shore lines developed during Quaternary low sea-level still stands. The most persistent of these off northern N.S.W. are about 105 m, 85 m, and between 35 and 45 m below present sea level. A widespread change of slope at a depth of 20–30 m marks the base of the main body of the present-day paralic-zone wedge of sediment, but seismic profiles indicate that a veneer of recent sediment commonly extends seawards into water depths of about 100 m. Much of the outer shelf is floored by relict sediments and extensive areas of bed rock crop out on the middle shelf.

Virtually all sub-surface data from company drilling for heavy-mineral sands relates to the present-day paralic-zone wedge of sediments; this wedge includes undisturbed sedimentary sequences deposited during pre-Holocene high sea-level periods. No large economic-grade deposits have been outlined by this work offshore, and there is reason to believe that the bulk of the heavy-mineral deposits formed during Holocene and previous high sea-level stands are located above present sea level. In addition, the best-developed submerged strand lines are in deep water probably inaccessible to mining. Nevertheless, the possibility that substantial deposits occur offshore in moderate water depths exists.

Outcrops of bed rock are extensive in the mid-shelf zone in the southern part of the area, but north of 29° S they are much less common. Significant areas with sediment thicknesses greater than 20 m in water depths of less than 60 m occur to the east of Newcastle, to the southeast of Smoky Cape, and to the north of Yamba. Two sediment sequences, an upper and a lower, are recognizable. Highest heavy-mineral values in surface sediments occur offshore from the Permo-Triassic basins. Subsurface enrichment may occur at the junction of the upper and lower sequences, or where the upper sequence overlies basement. The abundance of heavy minerals is a function of the total sediment throughput, and the intensity and direction of shore-line sorting, so that the highest potential for accumulation occurs in the northern part of the area.

The most likely prospective areas occur mainly near Cape Byron and near Sugarloaf Point. These areas have been defined on the basis of the thickness of sediments, the depth to the base of the upper sequence, the distribution of ancient strand lines, and the abundance of heavy minerals in the surface sediments.  相似文献   


10.
Storms are one of the most important controls on the cycle of erosion and accretion on beaches. Current meters placed in shoreface locations of Saco Bay and Wells Embayment, ME, recorded bottom currents during the winter months of 2000 and 2001, while teams of volunteers profiled the topography of nearby beaches. Coupling offshore meteorological and beach profile data made it possible to determine the response of nine beaches in southern Maine to various oceanographic and meteorological conditions. The beaches selected for profiling ranged from pristine to completely developed and permitted further examination of the role of seawalls on the response of beaches to storms.

Current meters documented three unique types of storms: frontal passages, southwest storms, and northeast storms. In general, the current meter results indicate that frontal passages and southwest storms were responsible for bringing sediment towards the shore, while northeast storms resulted in a net movement of sediment away from the beach. During the 1999–2000 winter, there were a greater percentage of frontal passages and southwest storms, while during the 2000–2001 winter, there were more northeast storms. The sediment that was transported landward during the 1999–2000 winter was reworked into the berm along moderately and highly developed beaches during the next summer.

A northeast storm on March 5–6, 2001, resulted in currents in excess of 1 m s−1 and wave heights that reached six meters. The storm persisted over 10 high tides and caused coastal flooding and property damage. Topographic profiles made before and after the storm demonstrate that developed beaches experienced a loss of sediment volume during the storm, while sediment was redistributed along the profile on moderately developed and undeveloped beaches. Two months after the storm, the profiles along the developed beaches had not reached their pre-storm elevation. In comparison, the moderately developed and undeveloped beaches reached and exceeded their pre-storm elevation and began to show berm buildup characteristic of the summer months.  相似文献   


11.
吴振 《海岸工程》2019,38(1):52-62
选择威海双岛湾附近海滩、国际海水浴场海滩、金海滩、青叽岛以西海滩、青叽岛以东海滩、天鹅湖海滩、桑沟湾海滩、楮岛海滩、南海新区海滩和乳山银滩十处代表性岸滩进行了海滩地貌和底质调查,结合沙滩表层样品分析测试数据,对研究区海滩地貌、沉积物粒度分布特征及海滩质量进行了综合评价。结果表明:威海海滩沉积物主要包括砾砂、粗砂、中砂、细砂四种类型,其中中砂分布最广,约占所有点位的35.6%,细砂、粗砂、砾砂分别占34.4%,26.7%和3.3%。岸滩坡度一般较缓,宽度中等以上,岸滩质量整体较好,部分岸滩受沉积物粒度影响,质量稍差。  相似文献   

12.
The island of Menorca, one of the Balearic Islands (Spain) located in the western Mediterranean, is characterised by a contrasting geology and landscape with two major geographic domains: (1) a southern region called Migjorn, comprised of Late Miocene calcarenites and limestones, and (2) a northern region known as Tramuntana, which is composed of folded and faulted Palaeozoic, Mesozoic and Tertiary (Oligocene) siliceous and calcareous rocks. Both domains are lined by numerous pocket beaches exhibiting a high variety of surficial sediment assemblages. Grain-size and compositional analyses revealed that cliff erosion and nearshore Posidonia oceanica meadows are the main sources of sediments consisting mostly of medium- to coarse-grained carbonate sands of marine biogenic origin, with variable amounts of terrigenous rock fragments and quartz. Based on distinctly different contributions of bioclastic material, biogenic carbonates and quartz, 320 sediment samples from 64 beaches were grouped into different facies associations dominated by either (1) biogenic sands, (2) biogenic sands with terrigenous contributions or (3) terrigenous sands with quartz. Nevertheless, there is a marked regional variability in sediment texture and composition. Thus, variable mixtures of carbonate and siliciclastic sediments characterise the beaches of the northern region, whereas the beaches of the southern region are composed mostly of carbonate sands of marine biogenic origin. An exception is the central sector of the south coast, which is enriched in quartz sand (~10 %); this can be related to outcrops of quartz-rich basement rock and also to rocks exposed in some northern drainage basins captured by southern streams since the Plio-Quaternary.  相似文献   

13.
The effects of stranded oil from a tanker collision off the South African coast on the meiofauna ratio and density have been monitored over a period of 1 year on two sandy beaches. The perturbation of two beaches was judged against reference beach meiofauna density behaviour. In the undisturbed beach, oil deposited in sediment depressed harpacticoid copepod numbers, while numbers of nematodes stayed similar to those of the reference levels. Removal of surface sand in the mechanically disturbed beach had a greater influence on the density of animals than oil. Both beaches showed recovery after six months, but evidence of pollution by oil of unknown origin was found.  相似文献   

14.
Erosion of sandy beaches is a worldwide problem that elicits innovative geoengineer‐ing techniques to reduce adverse impacts of shoreline retreat. Beach replenishment has emerged as the “soft”; shore‐stabilization technique of choice for mitigating beach erosion. This method of shore protection involves the addition of sand to the littoral sediment budget for sacrificial purposes. Because inland sand sources are often uneconomical or impractical to use, and known nearshore sources are limited, finding adequate quantities of suitable sand on the inner continental shelf is often vital to beach replenishment projects. The technical studies of survey and materials analysis that identify and delineate usable sand sources are sometimes almost as expensive as small‐project dredging, pumping, and placing the sand on the beach as fill. Inadequate quantity or substandard quality of shelf sand, as well as often‐prohibitive overhead expenses, thus compel shoreline managers to seek suitable sand sources offshore.

In the study area off the central‐west coast of Florida, offshore potential borrow areas (PBAs) were identified on the basis of studies conducted in reconnoitory and detailed phases. Sophisticated state‐of‐the‐art equipment used in this investigation provided more detailed subbottom mapping information than is normally obtained with conventional seismic equipment. An example of sand exploration studies was incorporated in a 215‐km2 survey of offshore areas by conducting bathymetric surveys and subbottom seismic profiling, collecting jet probes, grab samples, and vibrocores, and analyzing sediment grading in subsamples from vibrocores. These combined analyses indicated that at least 8.8 ×106 m3 of sand is available in potential borrow areas from 7.0 to 12 km offshore in water depths of 8.0 to 11.5 m. In the PBAs, mean grain size of sand falls into the range 0.13–0.53 mm, sorting averages 0.65–1.31ø, and the overall silt content varies from 3.9–8.5%. High silt contents (13–19%) mapped in some areas make these sedimentary deposits unsuitable as fill for artificial beach renourishment.  相似文献   

15.
High-resolution shallow seismic-reflection profiles obtained from the western Mersin Bay have revealed the existence of the two distinct depositional sequences (C and B) lying on a narrow and relatively steeply-sloping continental shelf which mainly receives its sediments from the ephemeral rivers. The upper Holocene sedimentary sequence (C) is characterized by stratified (simple to complex) to chaotic reflection configurations produced by the development of a prograding wedge of terrigenous sediment. Particular occurrences of slope- and front-fill facies and the lack of a sharp boundary, which has, however, been observed on the western shelf of this bay, between the Early Holocene and latest Pleistocene deposits are related to possible movement of underlying deposits due to local gravity mass movements or synsedimentary tectonics due to adjustment of the underlying evaporites in adjacent basin. The maximum thickness of the topmost sequence C is associated with the Tarsus–Seyhan delta, which lies to the northeast of the area and is prograding along the shelf. Other variations in thickness (5–40 m) of this topmost sequence are related to the variable sediment discharge along the coast, and the distance from the coast. It is at a maximum (40 m) in the nearshore area just west of the Lamas river mouth and at a minimum (5–15 m) in the offshore area.

The lower depositional pre-Holocene sequence (B) is characterized by continuous to wavy reflection configurations and how some cyclicity, suggesting coarse, heterogeneous sediments deposited under high energy conditions (fan-deltas) of Plio-Pleistocene age.

The combined interpretation of seismic reflection profiles with the available bore-hole data reveals the existence of a widespread Miocene acoustic basement (A) off the Susanoğlu–Tırtar coasts and Karapınar–Gilindirez rivers mouths. Unusual features in some profiles suggest the escape of coastal freshwater into the accumulating sediment.  相似文献   


16.
The Australian coast contains 10,685 beaches which occupy 49% of the 30,000 km coast and average 1.37 km in length. Their relatively short length is largely due to the presence of bedrock, calcarenite and laterite, which form boundaries to many of the beaches, as well as occurring as rocks, reefs and islands along and off the beaches. This geological inheritance plays a major role in Australian beach systems — determining their length and through wave refraction and attenuation influencing beach location, shape, type, morphodynamics and circulation, which in turn influence sediment transport and the backing dune and barrier systems. This paper uses a database covering every Australian beach to review the role of headlands, rocks and reefs on Australian beaches. Major effects are the short average beach length; reduction in breaker height resulting in lower energy beach types; wave refraction resulting in increased beach curvature; the presence of topographic rips on moderate and higher energy beaches and megarips during high wave conditions; and the interruption of and/or trapping of longshore sand transport leading to beach rotation.  相似文献   

17.
基于海洋站潮位观测和中国沿海海平面变化影响调查等数据,分析了辽东湾沿岸海平面变化及海岸侵蚀状况,并定量评估了未来海平面上升情景下,辽东湾两岸典型沙质海岸侵蚀影响和沙滩养护投入。分析预测和评估结果表明:1980-2017年,辽东湾沿海海平面上升速率为3.0 mm/a,其中辽东湾东岸沿海海平面上升速率明显高于西岸。2009-2017年,辽宁营口白沙湾、绥中网户、绥中南山港和绥中团山气象观测场岸段后退和下蚀较为严重,部分岸段滩肩蚀退达2~3 m/a。预计2100年,辽东湾沿海海平面上升幅度在20~48 cm之间,由海平面上升引发的辽东湾海岸侵蚀土地损失为23.1 km2,土地经济损失为1410万元。为减缓海岸侵蚀,旅游沙滩和一般沙滩养护总投入分别为11亿元和46亿元,全岸段养护成本较高,应选取旅游沙滩等重点岸段进行养护。  相似文献   

18.
本文根据实测资料,通过悬沙浓度ρ、流速v和水深H的对应分析,得出了三门湾的悬沙浓度分布遵循着ρ∝f(v~2/H)的规律;同时发现湾外海域有着良好的将悬沙输移入湾的动力条件,是三门湾悬沙来源的主要场所;经全潮单宽净输沙量计算表明:进出海域的悬沙净输移量不大,全湾的悬沙输移具有深槽输向边滩、南进北出的趋势,与口外海域的泥沙存在着活跃的交换。通过摩阻流速计算得到三门湾变化的总趋势是:深槽略受冲刷,滩涂缓慢淤涨,入湾通道处于动态平衡中。  相似文献   

19.
Extensive potassium and phosphorous-rich mineralization occurs on the outer continental shelf of the southern and west coasts of South Africa and Nambia. This article reviews the potential of exploiting these deposits in an environmentally sound manner for the manufacture of fertilizer. At present, reserves of potash and phosphate fertilizer are exploited from terresterial deposits, the majority being surface mined. The use of fertilizer in South Africa has shown no growth in the past 13 years, and, in some years, usage has even declined. On average, over the last decade, South Africa has consumed 2 million Mt of fertilizer (including nitrogen) per annum, the vast majority of phosphate fertilizer being produced by FOSKOR from the Phalaborwa Igneous Complex. Potash fertilizer is imported into South Africa. Although fertilizer consumption is expected to decrease in the short-term, there are good future prospects for the domestic and international fertilizer market. Considerable research into both glauconitic (containing K 2 O) and phosphatic deposits along the southern African continental shelf indicate that these sedimentary deposits have a complex genesis and mineralization. Of the total K 2 O reserves of 1300 million Mt on the southern African margin, 1000 million Mt is located off the southern African west coast, and the remainder situated on the Agulhas Bank. The largest glauconite concentration ( ±300 million Mt K 2 O) off southern Africa lies west of Saldanha Bay, South Africa. The distribution of P 2 O 5 off southern Africa is dominated by the vast deposit between Walvis Bay and Luderitz, Nambia. This reserve is estimated to contain 1000 million Mt of greater than 5% P 2 O 5 in a relatively small area of about 10000 km2. The phosphorite deposit south of Saldanha Bay constitutes a reserve of ±3500 million Mt of apatite and the deposit on the Agulhas Bank comprises 5500 million Mt. The phosphate deposit off Saldanha Bay occurs as an extensive, low to medium grade deposit. Although vast resources of potash and phosphatic minerals occur along the southern African outer continental shelf the expensive nature of marine exploitation may render most of these deposits, especially the phosphates, subeconomic. The low price of fertilizer andextensive natureontheonland deposits, although confined to asmallnumber of countries, mean that it will not be financially viable to extract these deposits. Assuming high grade glauconitic sand with the right composition can be located, the high market price indicates good future prospects for these potash deposits.  相似文献   

20.
Analysis of four historical bathymetric surveys over a 132-year period has revealed significant changes to the morphology of the San Francisco Bar, an ebb-tidal delta at the mouth of San Francisco Bay estuary. From 1873 to 2005 the San Francisco Bar vertically-eroded an average of 80 cm over a 125 km2 area, which equates to a total volume loss of 100 ± 52 million m3 of fine- to coarse-grained sand. Comparison of the surveys indicates the entire ebb-tidal delta contracted radially, with the crest moving landward an average of 1 km. Long-term erosion of the ebb-tidal delta is hypothesized to be due to a reduction in the tidal prism of San Francisco Bay and a decrease in coastal sediment supply, both as a result of anthropogenic activities. Prior research indicates that the tidal prism of the estuary was reduced by 9% from filling, diking, and sedimentation. Compilation of historical records dating back to 1900 reveals that a minimum of 200 million m3 of sediment has been permanently removed from the San Francisco Bay coastal system through dredging, aggregate mining, and borrow pit mining. Of this total, ∼54 million m3 of sand-sized or coarser sediment was removed from central San Francisco Bay. With grain sizes comparable to the ebb-tidal delta, and its direct connection to the bay mouth, removal of sediments from central San Francisco Bay may limit the sand supply to the delta and open coast beaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号