首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
This paper provides a review of our current understanding of the processes responsible for gravity wave saturation as well as the principal effects and variability of saturation in the lower and middle atmosphere. We discuss the theoretical and observational evidence for linear and nonlinear saturation processes and examine the consequences of saturation for wave amplitude limits, momentum and energy fluxes, the diffusion of heat and constituents, and the establishment of a near-universal vertical wavenumber spectrum. Recent studies of gravity wave variability are reviewed and are seen to provide insights into the significant causes of wave variability throughout the atmosphere.  相似文献   

2.
The lunar semidiurnal tide in winds measured at around 90 km altitude has been isolated with amplitudes observed up to 4 m s–1. There is a marked amplitude maximum in October and also a considerable phase variation with season. The average variation of phase with height indicated a vertical wavelength of more than 80 km but this, and other results, needs to be viewed in the light of the considerable averaging required to obtain statistical significance. Large year-to-year variations in both amplitude and phase were also found. Some phase comparisons with the GSWM model gave reasonable agreement but the model amplitudes above a height of 100 km were much larger than those measured. An attempt to make a comparison with the lunar geomagnetic tide did not yield a statistically significant result.  相似文献   

3.
In this study a simple modelling approach was applied to identify the need for spatial complexity in representing hydrological processes and their variability over different scales. A data set of 18 basins was used, ranging between 8 and 4011 km2 in area, located in the Nahe basin (Germany), with daily discharge values for over 30 years. Two different parsimoniously structured models were applied in lumped as well as in spatially distributed according to two distribution classifications: (1) a simple classification based on the lithology expressed in three permeability types and (2) a more complex classification based on seven dominating runoff production processes. The objective of the study was to compare the performances of the models on a local and on a regional scale as well as between the models with a view to identifying the accuracy in capturing the spatial variability of the rainfall‐runoff relationships. It was shown that the presence of a specific basin characteristic or process of the distribution classification was not related with higher model performance; only a larger basin size promoted higher model performance. The results of this study also indicated that the permeability generally contained more useful information on the spatial heterogeneity of the hydrological behaviour of the natural system than did a more detailed classification on dominating runoff generation processes. Although model performance was slightly lower for the model that used permeability as a distribution classification, consistency in its parameter values was found, which was lacking with the more complex distribution classification. The latter distribution classification had a higher flexibility to optimize towards the variability of the runoff, which resulted in higher performance, however, process representation was applied inconsistently. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Recent observations suggest that there may be a causal relationship between solar activity and the strength of the winter Northern Hemisphere circulation in the stratosphere. A three-dimensional model of the atmosphere between 10–140 km was developed to assess the influence of solar minimum and solar maximum conditions on the propagation of planetary waves and the subsequent changes to the circulation of the stratosphere. Ultraviolet heating in the middle atmosphere was kept constant in order to emphasise the importance of non-linear dynamical coupling. A realistic thermo-sphere was achieved by relaxing the upper layers to the MSIS-90 empirical temperature model. In the summer hemisphere, strong radiative damping prevents significant dynamical coupling from taking place. Within the dynamically controlled winter hemisphere, small perturbations are reinforced over long periods of time, resulting in systematic changes to the stratospheric circulation. The winter vortex was significantly weakened during solar maximum and western phase of the quasi-biennial oscillation, in accordance with reported 30 mb geopotential height and total ozone measurements.  相似文献   

5.
The total ozone distribution in March 1997 showed very low values in the North Atlantic-European region, even lower than in the years before. A spatial pattern correlation between the zonally asymmetric part of total ozone and that of the 300 hPa surface geopotential of the Northern Hemisphere was applied to examine the spatial structure of the low ozone values and its dynamic dependence. A trend analysis in the North Atlantic-European region was carried out to determine to what extent the low March 1997 ozone values are related to the decadal change of meteorological parameters in the lower stratosphere, observed since the 1980s, in comparison to the interannual variability. The conclusion is that the very low ozone values above the North Atlantic-European region in March 1997 were mainly induced by dynamic processes, namely their decadal change as well as their interannual variability.  相似文献   

6.
Erythemally-weighted ultraviolet (UVery) levels measured over southern England, during anticyclonic weather between 30 April and 2 May, 1997, were almost 50 higher than normally expected for clear skies and were similar to mid-summer values for the first time since measurements began in 1990. Investigation of this episode suggests that a combination of both meteorological and chemical effects were responsible for generating record low ozone amounts for the time of year. Further, comparisons between the A band ultraviolet (315 to 400 nm wavelength) amounts, and radiative calculations confirm that the high UVery was primarily due to the reduction in total ozone. These results are contrasted with a similar period for 1998, in which near climatological ozone amounts were measured. The prospects for enhanced UVery levels in future years are briefly reviewed in the light of expected increases in stratospheric halogen levels and greenhouse gases.  相似文献   

7.
The mean flow at and around the Hebrides and Shetland Shelf slope is measured with ARGOS tracked drifters. Forty-two drifters drogued at 50 m were deployed in three circles over the Hebrides slope at 56.15°N in two releases, one on 5th December, 1995 and the second on 5–9th May, 1996. The circles span a distance of some 20 km from water depths of 200 m to 1200 m. Drifters are initially advected poleward along-slope by the Hebrides slope current at between 0.05 and 0.70 m s–1 in a laterally constrained (25–50 km wide) jet-like flow. Drifters released in winter remained in the slope current for over 2000 km whilst summer drifters were lost from the slope current beyond the Wyville-Thomson Ridge, a major topographic feature at 60°N. Dispersion from the slope region into deeper waters occurs at bathymetric irregularities, particularly at the Anton Dohrn Seamount close to which the slope current is found to bifurcate, both in summer and winter, and at the Wyville-Thomson Ridge where drifters move into the Faeroe Shetland Channel. Dispersion onto the continental shelf occurs sporadically along the Hebrides slope. The initial dispersion around the Hebrides slope is remarkably sensitive to initial position, most of the drifters released in shallower water moving onto the shelf, whilst those in 1000 m or more are mostly carried away from the slope into deeper water near the Anton Dohrn Seamount. The dispersion coefficients estimated in directions parallel and normal to the local direction of the 500 m contour, approximately the position of the slope current core, are approximately 8.8 × 103 m2 s–1 and 0.36 × 103 m2 s–1, respectively, during winter, and 11.4 × 103 m2 s–1 and 0.36 x 103 m2 s–1, respectively, during summer. At the slope there is a minimum in across-slope mean velocity, Reynolds stress, and across-slope eddy correlations. The mean across-slope velocity associated with mass flux is about 4 × 10–3 m s–1 shelfward across the shelf break during winter and 2 × 10–3 m s–1 during summer. The drifters also sampled local patterns of circulation, and indicate that the source of water for the seasonal Fair Isle and East Shetland currents are the same, and drawn from Atlantic overflows at the Hebrides shelf.  相似文献   

8.
The effect of present-day and future NOx emissions from aircraft on the NOx and ozone concentrations in the atmosphere and the corresponding radiative forcing were studied using a three-dimensional chemistry transport model (CTM) and a radiative model. The effects of the aircraft emissions were compared with the effects of the three most important anthropogenic NOx surface sources: road traffic, electricity generation and industrial combustion. From the model results, NOx emissions from aircraft are seen to cause an increase in the NOx and ozone concentrations in the upper troposphere and lower stratosphere, and a positive radiative forcing. For the reference year 1990, the aircraft emissions result in an increase in the NOx concentration at 250 hPa of about 20 ppt in January and 50 ppt in July over the eastern USA, the North Atlantic Flight Corridor and Western Europe, corresponding to a relative increase of about 50%. The maximum increase in the ozone concentrations due to the aircraft emissions is about 3-4 ppb in July over the northern mid-latitudes, corresponding to a relative increase of about 3-4%. The aircraft-induced ozone changes cause a global average radiative forcing of 0.025 W/m2 in July. According to the ANCAT projection for the year 2015, the aircraft NOx emissions in that year will be 90% higher than in the year 1990. As a consequence of this, the calculated NOx perturbation by aircraft emissions increases by about 90% between 1990 and 2015, and the ozone perturbation by about 50-70%. The global average radiative forcing due to the aircraft-induced ozone changes increases by about 50% between 1990 and 2015. In the year 2015, the effects of the aircraft emissions on the ozone burden and radiative forcing are clearly larger than the individual effects of the NOx surface sources. Taking chemical conversion in the aircraft plume into account in the CTM explicitly, by means of modified aircraft NOx emissions, a significant reduction of the aircraft-induced NOx and ozone perturbations is realised. The NOx perturbation decreases by about 40% and the ozone perturbation by about 30% in July over Western Europe, the eastern USA and the North Atlantic Flight Corridor.  相似文献   

9.
ABSTRACT

Taking a representative catchment of the Yangtze River Delta region as the study area, this research evaluated sub-daily rainstorm variability and its potential effects on flood processes based on an integrated approach of the HEC-HMS model and design storm hyetographs. The results show that the intensities of rainfall on sub-daily scale are getting more extreme. The annual maximum 1-, 2- and 3-hour rainstorms followed significant upward trends with increases of 0.32, 0.43 and 0.44 mm per year, respectively, while the annual maximum 6-, 12- and 24-h events had non-significant rising trends. The detected significant trends in short-duration rainstorms were then used to redesign storm hyetographs to drive the HEC-HMS model, the results show that these changes in short-duration rainstorm characteristics would increase the flood peak discharge and flood volume. These findings indicate that regional flood control capabilities must be improved to manage the adverse impacts of rainfall variation under changing environments.  相似文献   

10.
The continuous increase in concentration of greenhouse gases in the atmosphere is expected to cool higher levels of the atmosphere. There is some direct and indirect experimental evidence of long-term trends in temperature and other parameters in the mesosphere and lower thermosphere (MLT). Here we look for long-term trends in the annual and semiannual variations of the radio wave absorption in the lower ionosphere, which corresponds to the MLT region heights. Data from central and southeastern Europe are used. A consistent tendency to a positive trend in the amplitude of the semiannual wave appears to be observed. The reality of a similar tendency in the amplitude of the annual wave is questionable in the sense that the trend in the amplitude of the annual wave is probably induced by the trend in the yearly average values of absorption. The phases of both the annual and semiannual waves display a forward tendency, i.e. shift to an earlier time in the year. A tentative interpretation of these results in terms of changes of the seasonal variation of temperature and wind at MLT heights does not contradict the trends observed in those parameters.  相似文献   

11.
On the basis of bispectral analysis applied to the hourly data set of neutral wind measured by meteor radar in the MLT region above Bulgaria it was demonstrated that nonlinear processes are frequently and regularly acting in the mesopause region. They contribute significantly to the short-term tidal variability and are apparently responsible for the observed complicated behavior of the tidal characteristics. A Morlet wavelet transform is proposed as a technique for studying nonstationary signals. By simulated data it was revealed that the Morlet wavelet transform is especially convenient for analyzing signals with: (1) a wide range of dominant frequencies which are localized in different time intervals; (2) amplitude and frequency modulated spectral components, and (3) singular, wave-like events, observed in the neutral wind of the MLT region and connected mainly with large-scale disturbances propagated from below. By applying a Morlet wavelet transform to the hourly values of the amplitudes of diurnal and semidiurnal tides the basic oscillations with periods of planetary waves (1.5/20 days), as well as their development in time, are obtained. A cross-wavelet analysis is used to clarify the relation between the tidal and mean neutral wind variability. The results of bispectral analysis indicate which planetary waves participated in the nonlinear coupling with the atmospheric tides, while the results of cross-wavelet analysis outline their time intervals if these interactions are local.  相似文献   

12.
Meteor radars located in Bulgaria and the UK have been used to simultaneously measure winds in the mesosphere/lower-thermosphere region near 42.5°N, 26.6°E and 54.5°N, 3.9°W, respectively, over the period January 1991 to June 1992. The data have been used to investigate planetary waves and diurnal and semidiurnal tidal variability over the two sites. The tidal amplitudes at each site exhibit fluctuations as large as 300% on time scales from a few days to the intra-seasonal, with most of the variability being at intra-seasonal scales. Spectral and cross-wavelet analysis reveals closely related tidal variability over the two sites, indicating that the variability occurs on spatial scales large compared to the spacing between the two radars. In some, but not all, cases, periodic variability of tidal amplitudes is associated with simultaneously present planetary waves of similar period, suggesting the variability is a consequence of non-linear interaction. Calculation of the zonal wave number of a number of large amplitude planetary waves suggests that during summer 1991 the 2-day wave had a zonal wave number of 3, but that during January/February 1991 it had a zonal wave number of 4.  相似文献   

13.
The EISCAT VHF radar (69.4°N, 19.1°E) has been used to record vertical winds at mesopause heights on a total of 31 days between June 1990 and January 1993. The data reveal a motion field dominated by quasi-monochromatic gravity waves with representative apparent periods of 30–40 min, amplitudes of up to 2.5 m s–1 and large vertical wavelength. In some instances waves appear to be ducted. Vertical profiles of the vertical-velocity variance display a variety of forms, with little indication of systematic wave growth with height. Daily mean variance profiles evaluated for consecutive days of recording show that the general shape of the variance profiles persists over several days. The mean variance evaluated over a 10 km height range has values from 1.2 m2s–2 to 6.5 m2s–2 and suggests a semi-annual seasonal cycle with equinoctial minima and solsticial maxima. The mean vertical wavenumber spectrum evaluated at heights up to 86 km has a slope (spectral index) of -1.36 ± 0.2, consistent with observations at lower heights but disagreeing with the predictions of a number of saturation theories advanced to explain gravity-wave spectra. The spectral slopes evaluated for individual days have a range of values, and steeper slopes are observed in summer than in winter. The spectra also appear to be generally steeper on days with lower mean vertical-velocity variance.  相似文献   

14.
Interhemispheric transport is a key process affecting the accuracy of source quantification for species such as methane by inverse modelling, and is a source of difference among global three-dimensional chemistry transport models (CTMs). Here we use long-term observations of the atmospheric concentration of long-lived species such as CH3CCl3 and CFCl3 for testing three-dimensional chemistry transport models (CTMs); notably their ability to model the interhemispheric transport, distribution, trend, and variability of trace gases in the troposphere. The very striking contrast between the inhomogeneous source distribution and the nearly homogeneous trend, observed in the global ALE/GAGE experiments for both CH3CCl3 and CFCl3 illustrates an efficient interhemispheric transport of atmospherically long-lived chemical species. Analysis of the modelling data at two tropical stations, Barbados (13°N, 59°W) and Samoa (14°S, 124°W), show the close relationship between inter-hemispheric transport and cross-equator Hadley circulations. We found that cross-equator Hadley circulations play a key role in producing the globally homogeneous observed trends. Chemically, the most rapid interaction between CH3CCl3 and OH occurs in the northern summer troposphere; while the most rapid photolysis of CH3CCl3 and CFCl3, and the chemical reactions between CFCl3 and O(1D), take place in the southern summer stratosphere. Therefore, the cross-equator Hadley circulation plays a key role which regulates the southward flux of chemical species. The regulation by the Hadley circulations hence determines the amount of air to be processed by OH, O(1D), and ultraviolet photolysis, in both hemispheres. In summary, the dynamic regulation of the Hadley circulations, and the chemical processing (which crucially depends on the concentration of OH, O(1D), and on the intensity of solar insolation) of the air contribute to the seasonal variability and homogeneous growth rate of observed CH3CCl3 and CFCl3.  相似文献   

15.
Radar measurements at Aberystwyth (52.4°N, 4.1°W) of winds at tropospheric and lower stratospheric heights are shown for 12–13 March 1994 in a region of highly curved flow, downstream of the jet maximum. The perturbations of horizontal velocity have comparable amplitudes in the troposphere and lower stratosphere with downward and upward phase propagation, respectively, in these two height regions. The sense of rotation with increasing height in hodographs of horizontal perturbation velocity derived for hourly intervals show downwards propagation of energy in the troposphere and upward propagation in the lower stratosphere with vertical wavelengths of 1.7 to 2.3 km. The results indicate inertia-gravity waves propagating in a direction similar to that of the jet stream but at smaller velocities. Some of the features observed contrast with those of previous observations of inertia-gravity waves propagating transverse to the jet stream. The interpretation of the hodographs to derive wave parameters has taken account of the vertical shear of the background wind transverse to the direction of wave propagation.  相似文献   

16.
ENSO and the natural variability in the flow of tropical rivers   总被引:1,自引:0,他引:1  
This paper examines the relationship between the annual discharges of the Amazon, Congo, Paran á, and Nile rivers and the sea surface temperature (SST) anomalies of the eastern and central equatorial Pacific Ocean, an index of El Niño-Southern Oscillation (ENSO). Since river systems are comprehensive integrators of rainfall over large areas, accurate characterization of the flow regimes in major rivers will increase our understanding of large-scale global atmospheric dynamics. Results of this study reveal that the annual discharges of two large equatorial tropical rivers, the Amazon and the Congo, are weakly and negatively correlated with the equatorial Pacific SST anomalies with 10% of the variance in annual discharge explained by ENSO. Two smaller subtropical rivers, the Nile and the Paraná, show a correlation that is stronger by about a factor of 2. The Nile discharge is negatively correlated with the SST anomaly, whereas the Paraná river discharge shows a positive relation. The tendency for reduced rainfall/discharge over large tropical convection zones in the ENSO warm phase is attributed to global scale subsidence associated with major upwelling in the eastern Pacific Ocean.  相似文献   

17.
P, Fe, Mn, and S species were analyzed in water samples from the sediment-water interface collected at four seasonally different times during the course of a year at two sampling sites in the southern basin of Lake Lugano (Lago di Lugano). The results reveal the strong influence of the biogeochemical processes in the sediment on the chemical composition of the lake water above. Consumption of oxygen and nitrate under oxic to microoxic conditions in the water column as well as sequential release of reduced manganese and iron under anoxic conditions was observed as a direct or indirect consequence of microbially mediated degradation of organic matter. The seasonal pattern observed for the release and the retainment of dissolved reduced iron and manganese correlates well with the one for dissolved phosphate. Iron, manganese and phosphorus cycling are coupled tightly in these sediments. Both sediment types act as sinks for hydrogen sulfide and sulfate. An inner-sedimentary sulfur cycle is proposed to couple iron, manganese and phosphorus cycling with the degradation of organic matter. Nutrient cycling at the sediment-water interface might thus be driven by a microbially regulated electron pumping mechanism. The results contribute to a better understanding of the role of sediment processes in the lake's internal phosphorus cycle and its seasonal dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号