首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bathymetric data available for Swiss lakes have typically only low to moderate resolution and variable quality, making them insufficient for detailed underwater geomorphological studies. This article presents results of a new bathymetric survey in perialpine Lake Lucerne using modern hydrographic equipment. A digital terrain model (DTM) of the lake floor (raster dataset with 1 m cell size) covering the Chrüztrichter and Vitznau basins documents signatures of major Holocene mass movements and relics from the glacial history of the lake. Combining the bathymetry data with reflection seismic profiles and an existing event chronology allows investigating the morphology in its geological context. Subaqueous sediment slide scars with sharp headwalls cover large areas on moderately inclined slopes. The particularly large Weggis slide complex, correlated with an historical earthquake (ad 1601), features a ~9 km long and 4–7 m high headwall and covers an area of several square kilometers. Large debris cones of prehistoric rockfalls and the deposits of recent rockfall events imaged on the almost flat basin plain document mass-movement activity on steep slopes above the lake. Six transverse moraines, visible as subaqueous ridges, as lake-floor lineaments, or only imaged on reflection seismic profiles, indicate a complex glacial-inherited morphology. As many of the documented features result from potentially catastrophic events, high-resolution bathymetry can significantly improve natural hazard assessment for lakeshore communities by extending classical hazard maps to the subaqueous domain.  相似文献   

2.
High-resolution seismic imaging and piston coring in Lake Lucerne, Switzerland, have revealed surprising deformation structures in flat-lying, unconsolidated sediment at the foot of subaqueous slopes. These deformation structures appear beneath wedges of massflow deposits and resemble fold-and-thrust belts with basal décollement surfaces. The deformation is interpreted as the result of gravity spreading induced by loading of the slope-adjacent lake floor during massflow deposition. This study investigated four earthquake-triggered lateral mass-movement deposits in Lake Lucerne affecting four sections of the lake floor with areas ranging from 0·25 to 6·5 km2 in area. Up to 6 m thick sediment packages draping the subaqueous slopes slid along the acoustic basement. The resulting failure scars typically lie in water depths of >30 m on slopes characterized by downward steepening and inclinations of >10°. From the base-of-slope to several hundred metres out onto the flat plains, the wedges of massflow deposits overlie deeply (10–20 m) deformed basin-plain sediment characterized by soft sediment fold-and-thrust belts with arcuate strikes and pronounced frontal thrusts. The intensity of deformation decreases towards the more external parts of the massflow wedges. Beyond the frontal thrust, the overridden lake floor remains mostly undisturbed. Geometrical relationships between massflow deposits and the deformed basin-plain sediment indicate that deformation occurred mainly during massflow deposition. Gravity spreading induced by the successive collapse of the growing slope-adjacent massflow wedge is proposed as the driving mechanism for the deformation. The geometry of fjord-type lakes with sharp lower slope breaks favours the deposition of thick, basin-marginal massflow wedges, that effectively load and deform the underlying sediment. In the centre of the basins, the two largest massflow deposits described are directly overlain by thick contained (mega-)turbidites, interpreted as combined products of the suspension clouds set up by subaqueous mass movements and related tsunami and seiche waves.  相似文献   

3.
Rainfall-induced debris flows involving ash-fall pyroclastic deposits that cover steep mountain slopes surrounding the Somma-Vesuvius volcano are natural events and a source of risk for urban settlements located at footslopes in the area. This paper describes experimental methods and modelling results of shallow landslides that occurred on 5–6 May 1998 in selected areas of the Sarno Mountain Range. Stratigraphical surveys carried out in initiation areas show that ash-fall pyroclastic deposits are discontinuously distributed along slopes, with total thicknesses that vary from a maximum value on slopes inclined less than 30° to near zero thickness on slopes inclined greater than 50°. This distribution of cover thickness influences the stratigraphical setting and leads to downward thinning and the pinching out of pyroclastic horizons. Three engineering geological settings were identified, in which most of the initial landslides that triggered debris flows occurred in May 1998 can be classified as (1) knickpoints, characterised by a downward progressive thinning of the pyroclastic mantle; (2) rocky scarps that abruptly interrupt the pyroclastic mantle; and (3) road cuts in the pyroclastic mantle that occur in a critical range of slope angle. Detailed topographic and stratigraphical surveys coupled with field and laboratory tests were conducted to define geometric, hydraulic and mechanical features of pyroclastic soil horizons in the source areas and to carry out hydrological numerical modelling of hillslopes under different rainfall conditions. The slope stability for three representative cases was calculated considering the real sliding surface of the initial landslides and the pore pressures during the infiltration process. The hydrological modelling of hillslopes demonstrated localised increase of pore pressure, up to saturation, where pyroclastic horizons with higher hydraulic conductivity pinch out and the thickness of pyroclastic mantle reduces or is interrupted. These results lead to the identification of a comprehensive hydrogeomorphological model of susceptibility to initial landslides that links morphological, stratigraphical and hydrological conditions. The calculation of intensities and durations of rainfall necessary for slope instability allowed the identification of deterministic hydrological thresholds that account for uncertainty in properties and observed rainfall intensities.  相似文献   

4.
Historical reports from the 17th Century document two destructive tsunamis with run‐ups exceeding 5 m, affecting proximal basins of Lake Lucerne (Switzerland). One event in ad 1601 is coeval with a strong nearby earthquake (MW ca 5·9) which caused extensive slope failures in many parts of the lake. The second event in ad 1687 is associated with an apparently spontaneous partial collapse of the Muota river delta. This study combines high‐resolution bathymetry, reflection seismic and lithological data to document the sedimentary and morphological signatures of the two subaqueous mass movements that probably generated the observed tsunamis. Such mass movements are significant as a common sedimentation process and as a natural hazard in fjord‐type lakes and similar environments. The deposits, covering large parts of the basins with thicknesses reaching >10 m, consist of two subunits: A lower ‘massflow deposit’ contains variably deformed sediments from the source areas. Its emplacement affected pre‐existing sediments, incorporating thin sediment slices into the deposit and increasing its volume. Deep‐reaching deformation near basin margins is expressed as bulges on the lake floor. An overlying ‘megaturbidite’, featuring a graded, sandy base and a thick homogeneous muddy part, was deposited from suspended particles. The source area for the ad 1601 event, gently dipping lateral slopes with an unconsolidated hemipelagic sediment cover, hosts a pronounced slide scar with sharp escarpments and sliding surfaces. The source area for the ad 1687 event on an active delta slope has been overprinted by continued sedimentation and does not show an unambiguous scar. The case studies are exemplary for end‐member types of source areas (lateral versus delta slopes) and trigger mechanisms (seismic versus aseismic); they show that morphological mapping and reconstructions of past events are key components of a hazard assessment for mass movement‐generated tsunamis.  相似文献   

5.
On October 30, 2016, a seismic event and its aftershocks produced diffuse landslides along the SP 209 road in the Nera River Gorge (Central Italy). Due to the steep slopes and the outcropping of highly fractured and bedded limestone, several rockfalls were triggered, of which the main event occurred on the slope of Mount Sasso Pizzuto. The seismic shock acted on a rock wedge that, after an initial slide, developed into a rockfall. The debris accumulation blocked the SP 209 road and dammed the Nera River, forming a small lake. The river discharge was around 3.6 m3/s; the water overtopped the dam and flooded the road. By a preliminary topographic survey, we estimated that the debris accumulation covers an area of about 16,500 m2, while the volume is around 70,000 m3. The maximum volume occupied by the pre-existing talus mobilized by the rockfall is about 20% of the total volume. Besides blocking the road, the rockfall damaged a bridge severely, while, downstream of the dam, the water flow caused erosion of a road embankment. A rockfall protection gallery, a few hundred meters downstream of the dam, was damaged during the event. Other elastic nets and rigid barriers were not sufficient to protect the road from single-block rockfalls, with volumes around 1–2 m3. Considering the geological and geomorphological conditions, as well as the high seismicity and the socioeconomic importance of the area, a review of the entire rockfall protection systems is required to ensure protection of critical infrastructure and local communities.  相似文献   

6.
There exists a transition between rockfalls, large rock mass failures, and rock avalanches. The magnitude and frequency relations (M/F) of the slope failure are increasingly used to assess the hazard level. The management of the rockfall risk requires the knowledge of the frequency of the events but also defining the worst case scenario, which is the one associated to the maximum expected (credible) rockfall event. The analysis of the volume distribution of the historical rockfall events in the slopes of the Solà d’Andorra during the last 50 years shows that they can be fitted to a power law. We argue that the extrapolation of the F-M relations far beyond the historical data is not appropriate in this case. Neither geomorphological evidences of past events nor the size of the potentially unstable rock masses identified in the slope support the occurrence of the large rockfall/rock avalanche volumes predicted by the power law. We have observed that the stability of the slope at the Solà is controlled by the presence of two sets of unfavorably dipping joints (F3, F5) that act as basal sliding planes of the detachable rock masses. The area of the basal sliding planes outcropping at the rockfall scars was measured with a terrestrial laser scanner. The distribution of the areas of the basal planes may be also fitted to a power law that shows a truncation for values bigger than 50 m2 and a maximum exposed surface of 200 m2. The analysis of the geological structure of the rock mass at the Solà d’Andorra makes us conclude that the size of the failures is controlled by the fracture pattern and that the maximum size of the failure is constrained. Two sets of steeply dipping faults (F1 and F7) interrupt the other joint sets and prevent the formation of continuous failure surfaces (F3 and F5). We conclude that due to the structural control, large slope failures in Andorra are not randomly distributed thus confirming the findings in other mountain ranges.  相似文献   

7.
This article reports on an Early Saalian proglacial lake formed between the Scandinavian Ice Sheet and the front of the Sudeten Mountains, Poland. Sediments investigated at Mys?ów point to a transition from glacifluvial to glaciolacustrine environments. The bulk of the sediments was deposited in deep‐water Gilbert‐type deltas (A–E complexes). A delta plain (topset) gradually passes into a subaerial plateau and then a clastic shoreline and the subaquatic slope of a prograding delta (foreset). The glaciolacustrine lithofacies represent a number of lake‐basin environments, from marginal subaqueous slopes to distal parts of a subaqueous fan. Glaciolacustrine and glaciodeltaic deposits locally reach ?50–70 m in thickness. Analyses of A–E complexes indicate that the lake existed for more than 130 years and that its origin and evolution were closely connected with the ice front. This case study records lake sedimentation at an ice‐sheet margin with cohesionless gravity flows, turbidity currents, debris‐avalanching and, to a much lesser degree, parapelagic suspension fall‐out and ice‐raft dumping. In the initial stage, the lake extended more than 10 km to the south, and the deposition was relatively slow. In the second stage, recession of the ice sheet caused rapid growth of a delta. The third and ultimate stage coincided with the final glacial recession, with rapid deposition occurring only on the lake bottom. The model of the glaciolacustrine environment presented here may also be applicable to many other proglacial lakes in mountain areas.  相似文献   

8.
Mapping of ice-marginal and glaciolacustrine deposits in the northern Cairngorm Mountains allows the nature of deglaciation following the Last Glacial Maximum (c.18 000 BP) to be reinterpreted. Two ice-dammed lakes were ponded between the Glenmore lobe of the Scottish ice sheet and local glaciers draining northwards from the Cairngorm Mountains. Delta progradation from the southern end of each lake reflects dominant meltwater sources and glacio-hydrological gradients. Sediment facies representing subaqueous mass-flow deposits, lakebottom rhythmites, lower and upper foresets and topsets are associated with prograding delta fronts. Moraines show that the lakes were ice dammed at both ends, evidence that active glaciers existed in the Cairngorm Mountains while ice was retreating from Strath Spey, and that deglaciation was punctuated by readvances of the ice margin. These results indicate that an ice-stagnation model of deglaciation is invalid for most of the duration of ice wastage, but instead support an active-retreat hypothesis with multiple, climatically forced readvances.  相似文献   

9.
This paper presents results of a multi-channel seismic reflection survey at Lake Van and provides constraints on the sedimentary evolution of the lake. The geophysical data of the lake confirm the existence of three physiographic provinces: a shelf, a slope, and a deep, relatively flat basin. The most prominent features identified on the shelf and slope are clinoforms, submerged channels, as well as closely spaced lake floor depressions, reflecting a highly variable lake-level history. The morphological depressions are interpreted as resulting from subaquatic erosion by channelized, sediment-laden currents into horizontally bedded fan sediments. Submerged channels on the eastern shelf are interpreted as meandering-slope channels, probably as a consequence of a lake-level fall that exposed the shelf area. Clinoforms on the Eastern fan may represent relict deltas formed during stationary or slightly rising lake-level intervals. Merging subsurface imaging interpretation with morphological studies of exposed sediments reveals lake-level fluctuations of several hundreds of meters during the past ca. ~550 ka. The lake has three prominent basins (Tatvan, Deveboynu, and the Northern basin) separated by basement ridges (e.g., the Northern ridge). The seismic units in the Tatvan and Northern basins are dominated by alternations of well-stratified and chaotic reflections, while the Deveboynu basin subsurface consists mainly of chaotic units. The chaotic seismic facies are interpreted as mass-flow deposits, probably triggered by earthquakes and/or rapid lake-level fluctuations. The moderate-to-high-amplitude, well-stratified facies seen in the deeper parts of the basins are interpreted as lacustrine deposits intercalated with tephra layers. The occurrence of a clinoform in the deepest part of the lake suggests a major flooding stage of Lake Van more than ~400 ka ago. Seismic profiles from the deepest part of the lake basin show remarkably uniform and continuous stratigraphic units without any major erosional feature following the flooding event, indicating that the lake was never completely dry afterward and therefore significantly older than previously suggested.  相似文献   

10.
《Quaternary Science Reviews》1999,18(4-5):593-609
Well-developed coarse-grained palaeo-shoreline deposits are found along the rising margins of the Konya basin, marking the former extent of a now desiccated Late Pleistocene lake. This study evaluates the depositional environments and the sequential evolution of a shoreline system that developed at the northern margin of the Konya palaeolake near Göçü. Several laterally continuous quarry sections provided an excellent opportunity for studying spatial and temporal changes of depositional environments and related lake-level fluctuations. Eight principal sedimentary facies and six major lithostratigaphic units have been identified in these deposits representing progradational and retrogradational episodes of shoreline development. The lowest sequence is an aggradational unit formed by wind-driven currents and waves in a sand-dominant lake bottom above the wave base. It is overlain by a convoluted palaeosol 14C dated to ca 28,300 bp representing a major lowering of lake levels. Following an unconformity, the next sequence is characterised by large-scale gravelly clinoforms that progressively offlap/downlap onto the underlying sequence, and correspond to progradation of a foreshore resulting from storm-originated oscillating and unidirectional currents, avalanching processes and minor subaqueous debris flows. It is overlain by an areally extensive lensoid body of structureless clays comprising a thin organic layer, abundant rootlets and freshwater mollusc shells, formed from suspension fallout in a quiet, very shallow freshwater lagoonal environment. This phase, representing a more minor lake regression, has been 14C dated to ca. 21,960–20,730 bp. The final sequences include large-scale sand waves and bars, which developed by storm-originated wave surges and strong shoreline currents, and prograding delta foresets. These sequences indicate a renewed lake transgression to higher water levels, before a final regression after 17,500 bp. Lack of tectonic deformation and the overall sedimentary characteristics of the beach system at Göçü clearly suggest that the sedimentary evolution of the system is closely related to lake-level fluctuations resulting from long- and short-term hydro-climatic changes. Successive stages of lake-level rises and large amounts of supply of coarse grained material imply a positive hydrological balance and relatively high rates of sediment discharge from the adjacent hillslopes.  相似文献   

11.
为了更精准地研究鄂尔多斯盆地西南部华庆地区上三叠统延长组长6_2-6_3油层组储层特征,运用岩心照片、测井数据、粒度分析、录井数据等资料,对延长组长6_2-6_3油层组的岩性、碎屑颗粒、构造、测井响应、生物标志以及接触关系进行了分析研究。分析了长6油层组沉积微相特征,识别出该沉积时期半深湖-深湖亚相和三角洲前缘亚相两类沉积亚相,半深湖泥、浊积岩、砂质碎屑流砂体、水下分流河道、分流间湾和席状砂6类沉积微相,并分析华庆地区延长组长6_2-6_3期沉积相发育演化过程。沉积微相精细化描述揭示了华庆地区延长组6段油层组沉积环境,为精细化勘探开发提供地质依据。  相似文献   

12.
Lake El′gygytgyn is situated in a 3·6 Myr old impact crater in North‐eastern Siberia. Its sedimentary record probably represents the most complete archive of Pliocene and Quaternary climate change in the terrestrial Arctic. In order to investigate the influence of gravitational sediment transport on the pelagic sediment record in the lake centre, two sediment cores were recovered from the lower western lake slope. The cores penetrate a sub‐recent mass movement deposit that was identified by 3·5 kHz echo sounding. In the proximal part of this deposit, deformed sediments reflect an initial debris flow characterized by limited sediment mixture. Above and in front of the debrite, a wide massive densite indicates a second stage with a liquefied dense flow. The mass movement event led to basal erosion of ca 1 m thick unconsolidated sediments along parts of its flow path. The event produced a suspension cloud, whose deposition led to the formation of a turbidite. The occurrence of the turbidite throughout the lake and the limited erosion at its base mainly suggest deposition by ‘pelagic rain’ following Stokes’ Law. Very similar radiocarbon dates obtained in the sediments directly beneath and above the turbidite in the central lake confirm this interpretation. When applying the depositional model for the Late Quaternary sediment record of Lake El′gygytgyn, the recovered turbidites allow reconstruction of the frequency and temporal distribution of large mass movement events at the lake slopes. In total, 28 turbidites and related deposits were identified in two, 12·9 and 16·6 m long, sediment cores from the central lake area covering approximately 300 kyr.  相似文献   

13.
目前对均质边坡稳定性受岩土体抗拉强度影响程度的看法不一,尤其是对不同坡度的边坡受抗拉强度的影响甚至有相反意见。基于有限差分程序FLAC3D提供的考虑张拉-剪切复合破坏的Mohr-Coulomb准则,采用强度折减法对多个典型均质边坡进行一系列数值计算,研究土体抗拉强度对不同坡度边坡稳定性的影响。结果表明:边坡越陡,土体抗拉强度对安全系数的影响越大;抗拉强度取值对直立边坡的稳定安全系数及变形破坏特征影响显著,对45°及以下边坡的影响相对较小。总体来说,对于坡角超过60°的陡坡,土体抗拉强度不同引起的边坡安全系数变化幅度可达10%以上,应在边坡稳定分析中特别注意,避免因土体抗拉强度取值过大或过小而导致计算结果偏于危险或过于保守。  相似文献   

14.
Terrestrial laser scanning (TLS) monitoring has been used to estimate the location, volume, and kinematics of a variety of small magnitude rockfalls before failure (1–1000 m3 range), and in some cases, potential failure time has been assessed through the application of inverse velocity methods. However, our current understanding of rock slope pre-failure behavior for this magnitude range and prediction ability is based on observations of a small number of failure case histories. In this study, a pre-failure deformation database was constructed for rockfall volumes exceeding 0.1 m3, observed over a 1252-day study interval at the Goldpan rock slope, British Columbia, Canada, in order to better understand the pre-failure behavior of rock slopes and provide an empirical means of estimating temporal failure ranges. Repeated TLS datasets were acquired at an average scanning interval of 2–3 months. A total of 90 rockfall events were recorded at this site, during this time period, of which 64 (71%) exhibited measurable deformation prior to failure. Classification of rockfalls by volume suggests that a scale dependency may exist, as deformation was detected for a greater proportion of rockfalls >?5 m3 (92%) than for smaller rockfalls in the range of 0.1–0.5 m3 (61%). A lower rate of pre-failure deformation detection was also reported for planar sliding failures as compared with wedge or toppling failures, suggesting that deformation was less easily detected for these failure types. This study proposes and implements a framework for rockfall assessment and forecasting that does not require continuous monitoring of deformation.  相似文献   

15.
Two Pleistocene channel fills located in two different geological settings, on Guadeloupe in the lesser Antilles and along the Coppermine River in the Northwest Territories of Canada, have different clast compositions, scale, and origin of fragmentation but have similar depositional characteristics. Massive bedding or absence of structures caused by traction, sharp non-erosive contacts, reverse coarse-tail grading, matrix-supported clasts together indicate a debris-flow mechanism in which mixtures of fine and coarse sediments moved downslope by laminar flow. Field evidence suggests subaqueous deposition for both deposits. Both bed thickness (BTh)/maximum grain size (MGS) ratios and correlations appear characteristic of subaqueous masses capable of flowing on slopes less than 1°. The two channel fills have random BTh and MGS variations, they do not thin and fine up-section. It is suggested that fills originating from laminar mass transport could normally have random BTh and MGS up-section variations. In flysch and volcaniclastic sequences, where coarse sediments interpreted as laminar flow deposits are common, up-section BTh and MGS variations may result from processes related to source, slope, and flow characteristics rather than from the environment in which the sediments accumulate (channel).  相似文献   

16.
This paper presents the laboratory test results of nailed soil slopes to study the behaviour of reinforced slopes under surcharge load. Tests were conducted on nailed soil slopes of three different slope angles (β = 30°, 45°and 60°) and nail inclinations (i = 0°, 15° and 30°). Each slope is reinforced with a number of hollow aluminium nails placed in three rows. The failure response, load-settlement, nail forces at the centre of nails and the distribution of nail forces along the length are examined during the tests. The numerical simulation of the model tests is performed by a 3-D finite element program. The numerical results are found in agreement to the corresponding experimental results. It is observed that the nails inclined at 0° to the horizontal give the maximum improvement in the load carrying capacity of the slopes followed closely by the 15° nail inclination. The maximum nail forces are observed in the topmost row of nails and decreases with the depth. The distribution of the nail forces along the nail are also found to be varying with respect to the failure surface of the slopes.  相似文献   

17.
The intercorrelation of palaeoclimate events from various studies is often hindered by a lack of precise chronological control. Tephra isochrons can overcome this problem by providing direct site linkages. This paper outlines a study of Holocene peat and diatomite deposits that accumulated within the floodplain of Lough Neagh, Northern Ireland. The Icelandic Hekla 4 tephra has been identified at the base of diatomite deposits at a number of sites and provides firm dating evidence for a widespread flooding event in the area at ca. 2300 BC . The evidence is consistent with other studies in Ireland and elsewhere for increased wetness at this time. The results demonstrate that the terrestrial deposits around Lough Neagh contain an important record of Holocene lake‐level change. Dendrochronological evidence from the Lough Neagh area provides additional information about lake‐level fluctuations over the past two millennia. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The awareness of geohazards in the subaqueous environment has steadily increased in the past years and there is an increased need to assess these hazards in a quantitative sense. Prime examples are subaqueous landslides, which can be triggered by a number of processes including earthquakes or human activities, and which may impact offshore and onshore infrastructure and communities. In the literature, a plenitude of subaqueous landslide events are related to historical earthquakes, including cases from lakes in Switzerland. Here, we present an approach for a basin-wide earthquake-triggered subaquatic landslide hazard assessment for Lake Zurich, which is surrounded by a densely populated shoreline. Our analysis is based on high-resolution sediment-mechanical and geophysical input data. Slope stabilities are calculated with a grid-based limit equilibrium model on an infinite slope, which uses Monte Carlo sampled input data from a sediment-mechanical stratigraphy of the lateral slopes. Combined with probabilistic ground-shaking forecasts from a recent national seismic hazard analysis, subaquatic earthquake-triggered landslide hazard maps are constructed for different mean return periods, ranging from 475 to 9975 years. Our results provide a first quantitative landslide hazard estimation for the lateral slopes in Lake Zurich. Furthermore, a back-analysis of a case-study site indicates that pseudostatic accelerations in the range between 0.04 and 0.08 g were needed to trigger a well-investigated subaqueous landslide, dated to ~2210 cal. years B.P.  相似文献   

19.
Accurate estimation of rockfall trajectory and motion behaviors is essential for rockfall risk assessment and the design and performance evaluation of preventive structures. Numerical simulation using discontinuous deformation analysis (DDA) is effective and helpful in rockfall analysis. Up to now, there have been many reports on application of two-dimensional (2-D) DDA programs. In this paper, the major advantages of rockfall analysis using 2-D and extensions to three-dimensional (3-D) analysis are presented. A practical 3-D DDA code is demonstrated to be capable of simulating free falling, rolling, sliding, and bouncing with high accuracy. Because rockfall trajectories and motion behaviors can be described as combinations of these four types, this demonstration indicates that the implemented code is capable of providing reliable rockfall analysis. Finally, specific tests are conducted to compare 2-D and 3-D DDA rockfall analysis in predicting trajectory and dynamic behavior. The results indicate that 3-D DDA simulations are more appropriate for rough tree-laden inclined slopes in providing detailed spatial distribution, whereas 2-D DDA simulations have better efficiency for slopes dominated by valleys and ravines. These results can help in selecting the appropriate DDA simulation for rockfall analysis.  相似文献   

20.
This paper presents a detailed analysis of the high‐resolution facies architecture of the Middle Pleistocene Porta subaqueous ice‐contact fan and delta complex, deposited on the northern margin of glacial Lake Weser (North‐west Germany). A total of 10 sand and gravel pits and more than 100 wells were examined to document the complex facies architecture. The field study was supplemented with a ground‐penetrating radar survey and a shear‐wave seismic survey. All collected sedimentological and geophysical data were integrated into a high‐resolution three‐dimensional geological model for reconstructing the spatial distribution of facies associations. The Porta subaqueous fan and delta complex consist of three fan bodies deposited on a flat lake‐bottom surface at the margin of a retreating ice lobe. The northernmost fan complex is up to 55 m thick, 6·2 km wide and 6·5 km long. The incipient fan deposition is characterized by high‐energy flows of a plane‐wall jet. Very coarse‐grained, highly scoured jet‐efflux deposits with an elongate plan shape indicate a high Froude number, probably >5. These jet‐efflux sediments are deposited in front of a large ~3·2 km long, up to 1·2 km wide, and up to 25 m deep flute‐like scour, indicating the most proximal erosion and bypass area of the jet that widens and deepens with distance downstream to the region of maximum turbulence (approximately five times the conduit diameter). Evidence for subsequent flow splitting is given by the presence of two marginal gravel fan lobes, deposited in front of 1·3 to 2·5 km long flute‐like scours, that are 0·8 to 1 km wide and 7 to 20 m deep. In response to continued aggradation, small jets developed at the periphery of these bar‐like deposits and filled in the low areas adjacent to the original superelevated regions, locally raising the depositional surface and characterized by large‐scale trough cross‐stratified sand and pebbly sand. The incision of an up to 1·2 km wide and up to 35 m deep channel into the evolving fan is attributed to a catastrophic drainage event, probably related to a lake outburst and lake‐level fall in the range of 40 to 60 m. At the mouth of this channel, highly scoured jet‐efflux deposits formed under hydraulic‐jump conditions during flow expansion. Subsequently, Gilbert‐type deltas formed on the truncated fan margin, recording a second lake‐level drop in the range of 30 to 40 m. These catastrophic lake‐level falls were probably caused by rapid ice‐lobe retreat controlled by the convex‐up bottom topography of the ice valley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号