首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Constraining the pressure of crystallisation of large silicic magma bodies gives important insight into the depth and vertical extent of magmatic plumbing systems; however, it is notably difficult to constrain pressure at the level of detail necessary to understand shallow magmatic systems. In this study, we use the recently developed rhyolite-MELTS geobarometer to constrain the crystallisation pressures of rhyolites from the Taupo Volcanic Zone (TVZ). As sanidine is absent from the studied deposits, we calculate the pressures at which quartz and feldspar are found to be in equilibrium with melt now preserved as glass (the quartz +1 feldspar constraint of Gualda and Ghiorso, Contrib Mineral Petrol 168:1033. doi: 10.1007/s00410-014-1033-3. 2014). We use glass compositions (matrix glass and melt inclusions) from seven eruptive deposits dated between ~320 and 0.7 ka from four distinct calderas in the central TVZ, and we discuss advantages and limitations of the rhyolite-MELTS geobarometer in comparison with other geobarometers applied to the same eruptive deposits. Overall, there is good agreement with other pressure estimates from the literature (amphibole geobarometry and H2O–CO2 solubility models). One of the main advantages of this new geobarometer is that it can be applied to both matrix glass and melt inclusions—regardless of volatile saturation. The examples presented also emphasise the utility of this method to filter out spurious glass compositions. Pressure estimates obtained with the new rhyolite-MELTS geobarometer range between ~250 to ~50 MPa, with a large majority at ~100 MPa. These results confirm that the TVZ hosts some of the shallowest rhyolitic magma bodies on the planet, resulting from the extensional tectonic regime and thinning of the crust. Distinct populations with different equilibration pressures are also recognised, which is consistent with the idea that multiple batches of eruptible magma can be present in the crust at the same time and can be tapped simultaneously by large eruptive events.  相似文献   

2.
Large pyroclastic rhyolites are snapshots of evolving magma bodies, and preserved in their eruptive pyroclasts is a record of evolution up to the time of eruption. Here we focus on the conditions and processes in the Oruanui magma that erupted at 26.5 ka from Taupo Volcano, New Zealand. The 530 km3 (void-free) of material erupted in the Oruanui event is comparable in size to the Bishop Tuff in California, but differs in that rhyolitic pumice and glass compositions, although variable, did not change systematically with eruption order. We measured the concentrations of H2O, CO2 and major and trace elements in zoned phenocrysts and melt inclusions from individual pumice clasts covering the range from early to late erupted units. We also used cathodoluminescence imaging to infer growth histories of quartz phenocrysts. For quartz-hosted inclusions, we studied both fully enclosed melt inclusions and reentrants (connecting to host melt through a small opening). The textures and compositions of inclusions and phenocrysts reflect complex pre-eruptive processes of incomplete assimilation/partial melting, crystallization differentiation, magma mixing and gas saturation. ‘Restitic’ quartz occurs in seven of eight pumice clasts studied. Variations in dissolved H2O and CO2 in quartz-hosted melt inclusions reflect gas saturation in the Oruanui magma and crystallization depths of ∼3.5–7 km. Based on variations of dissolved H2O and CO2 in reentrants, the amount of exsolved gas at the beginning of eruption increased with depth, corresponding to decreasing density with depth. Pre-eruptive mixing of magma with varying gas content implies variations in magma bulk density that would have driven convective mixing. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

3.
We have experimentally investigated the kinetics of melting of an aplitic leucogranite (quartz+sodic plagioclase of ≈Ab90+K-feldspar+traces of biotite) at 690, 740, and 800°C, all at 200 MPa H2O. Leucogranite cylinders, 3.5 mm in diameter and 7 mm in length, were run in the presence of excess H2O using cold-seal pressure vessels for 11–2,925 h. At 690 and 740°C and any experimental time, and 800°C and short run times, silicate glass (melt at run conditions) occurs as interconnected films along most of the mineral boundaries and in fractures, with the predominant volume occurring along quartz/feldspars boundaries and quartz/plagioclase/K-feldspar triple junctions. Glass film thickness is roughly constant throughout a given experimental charge and increases with experimental temperature and run duration. The results indicate that H2O-saturated partial melting of a quartzo-feldspathic protolith will produce an interconnected melt phase even at very low degrees (<5 vol%) of partial melting. Crystal grain boundaries are therefore completely occluded with melt films even at the lowest degrees of partial melting, resulting in a change in the mechanism of mass transport through the rock from advection of aqueous vapor to diffusion through silicate melt. At 690 and 740°C the compositions of glasses are homogeneous and (at both temperatures) close to, but not on, the H2O-saturated 200 MPa haplogranite eutectic; glass compositions do not change with run duration. At 800°C glasses are heterogeneous and plot away from the minimum, although their molar ratios ASI (=mol Al2O3/CaO+Na2O+K2O) and Al/Na are constant throughout the entire charge at any experimental time. Glass compositions within individual 800°C experiments form linear trends in (wt%) normative quartz–albite–orthoclase space. The linear trends are oriented perpendicular to the 200 MPa H2O haplogranite cotectic line, reflecting nearly constant albite/orthoclase ratio versus variable quartz/feldspar ratio, and have endpoints between the 800°C isotherms on the quartz and feldspar liquidus surfaces. With increasing experimental duration the trends migrate from the potassic side of the minimum toward the bulk rock composition located on the sodic side, due to more rapid (and complete) dissolution of K-feldspar relative to plagioclase. The results indicate that partial melting at or slightly above the solidus (690–740°C) is interface reaction-controlled, and produces disequilibrium melts of near-minimum composition that persist metastably for up to at least 3 months. Relict feldspars show no change in composition or texture, and equilibration between melt and feldspars might take from a few to tens of millions of years. Partial melting at temperatures well above the solidus (800°C) produces heterogeneous, disequilibrium liquids whose compositions are determined by the diffusive transport properties of the melt and local equilibrium with neighboring mineral phases. Feldspars recrystallize and change composition rapidly. Partial melting and equilibration between liquids and feldspars might take from a few to tens of years (H2O-saturated conditions) at these temperatures well above the solidus.  相似文献   

4.
The Bishop Tuff, one of the most extensively studied high-silica rhyolite bodies in the world, is usually considered as the archetypical example of a deposit formed from a magma body characterized by thermal and compositional vertical stratification—what we call the Standard Model for the Bishop magma body. We present here new geothermometry and geobarometry results derived using a large database of previously published quartz-hosted glass inclusion compositions. Assuming equilibrium between melt and an assemblage composed of quartz, ±plagioclase, ±sanidine, +zircon, ±fluid, we use Zr contents in glass inclusions to derive quartz crystallization temperatures, and we use (1) silica contents in glass, (2) projection of glass compositions onto the haplogranitic (quartz-albite-orthoclase) ternary, and (3) phase equilibria calculations using rhyolite-MELTS, to constrain crystallization pressures. We find crystallization temperatures of ~740–750 °C for all inclusions from both early- and late-erupted pumice. Crystallization pressures for both early- and late-erupted inclusions are also very similar to each other, with averages of ~175–200 MPa. We find no evidence of late-erupted inclusions having been entrapped at higher temperatures or pressures than early-erupted inclusions, as would be expected by the Standard Model. We argue that the thermal gradient inferred from Fe–Ti oxides—the backbone of the Standard Model—does not reflect equilibrium pre-eruptive conditions; we also note that H2O–CO2 systematics of glass inclusions yields overlapping pressure ranges for early- and late-erupted inclusions, similar to the results presented here; and we show that glass inclusion and phenocryst compositions show bimodal distributions, suggestive of compositional separation between early- and late-erupted populations. These findings are inconsistent with the Standard Model. The similarity in crystallization conditions and the compositional separation between early- and late-erupted magmas suggest that two laterally juxtaposed independent magma reservoirs existed in the same region at the same time and co-erupted to form the Long Valley Caldera and the Bishop Tuff. This hypothesis would explain the lack of mixing between early- and late-erupted crystal populations in pumice clasts; it could also explain the inferred eruption pattern—which resulted in early-erupted magmas being deposited only to the south of the caldera—if the early-erupted magma body resided to the south and the late-erupted magma body was located to the north. Our alternative model is consistent with the patchy distribution of thermal anomalies and the inference of co-eruption of distinct magma types in active volcanic areas such as the central Taupo Volcanic Zone.  相似文献   

5.
The addition of phosphorus to H2O-saturated and initially subaluminous haplogranitic (Qz–Ab–Or) compositions at 200 MPa(H2O) promotes expansion of the liquidus field of quartz, a marked decrease of the solidus temperature, increased solubility limits of H2O in melt at low phosphorus concentrations, and fractionation of melt out of the haplogranite plane (projected along an Or28 isopleth) toward a peralkaline, silica-poor but quartz-saturated minimum composition. The partition coefficient for P2O5 between aqueous vapor and melt with an ASI (aluminum saturation index, mol Al/[mol Na+K])=1 is negligible (0.06), and consequently so are the effects of phosphorus on other melt-vapor relations involving major components. Phosphorus becomes more soluble in vapor, however, as the concentration of a NaPO3 component increases via the fractionation of melt by crystallization of quartz and feldspar. The experimental results here corroborate existing concepts regarding the interaction of phosphorus with alkali aluminosilicate melt: phosphorus has an affinity for alkalis and Al, but not Si. Phosphorus is incorporated into alkali feldspars by the exchange component AlPSi-2. For subaluminous compositions (ASI=1), the distribution coefficient of phosphorus between alkali feldspar and melt, D[P]Af/m, is 0.3. This value increases to D[P]Af/m=1.0 at a melt ASI value of 1.3. The increase in D[P]Af/m with ASI is expected from the fact that excess Al promotes the AlPSi-2 exchange. With this experimental data, the P2O5 content of feldspars and whole rocks can reveal important facets of crystallization and phosphorus geochemistry in subaluminous to peraluminous granitic systems.  相似文献   

6.
The products of the 1974 eruption of Fuego, a subduction zone volcano in Guatemala, have been investigated through study of silicate melt inclusions in olivine. The melt inclusions sampled liquids in regions where olivine, plagioclase, magnetite, and augite were precipitating. Comparisons of the erupted ash, groundmass, and melt inclusion compositions suggest that the inclusions represent samples of liquids present in a thermal boundary layer of the magma body. The concentrations of H2O and CO2 in glass inclusions were determined by a vacuum fusion manometric technique using individual olivine crystals (Fo77 to Fo71) with glass inclusion compositions that ranged from high-alumina basalt to basaltic andesite. Water, Cl, and K2O concentrations increased by a factor of two as the olivine crystals became more iron-rich (Fo77 to Fo71) and as the glass inclusions increased in SiO2 from 51 to 54 wt.% SiO2. The concentration of H2O in the melt increased from 1.6 wt.% in the least differentiated liquid to about 3.5% in a more differentiated liquid. Carbon dioxide is about an order of magnitude less abundant than H2O in these inclusions. The gas saturation pressures for pure H2O in equilibrium with the melt inclusions, which were calculated from the glass inclusion compositions using the solubility model of Burnham (1979), are given approximately by P(H2O)(Pa)=(SiO2−48.5 wt.%) × 1.45 × 107. The concentrations of water in the melt and the gas saturation pressures increased from about 1.5% to 3.5% and from 300 to 850 bars, respectively, during pre-eruption crystallization.  相似文献   

7.
Glass (melt) inclusions in quartz, plagioclase and K-feldspar phenocrysts in Toba Tuff ignimbrites all exhibit highly evolved, rhyolitic compositions, identical to glass forming the matrix of the rocks. About 4% H2O is present, dissolved in the glass, suggesting a water saturation pressure ( \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) ) of about 1 kbar. Melt compositions are consistent with phase relations for the condition \(P_{{\text{H}}_{\text{2}} {\text{O}}}\) =P total = 1 kbar. The residual rhyolitic melt formed as the result of fractional crystallisation from a more basic, possibly rhyodacitic melt, leading to the development of zoned feldspars. Water saturation in the melt probably arose as a result of this process. Melt temperatures prior to eruption and quenching were probably less than 800° C. However, hot-stage homogenisation experiments yield entrapment temperatures significantly higher (>900° C). This discrepancy is not clearly understood but indicates care must be taken in the interpretation of such experiments. Ignimbritic magmas at Toba, from pressure estimates, appear to have been erupted from about 3–4 kms depth and represent the silicic cap to a batholithic body consolidating beneath the Toba caldera.  相似文献   

8.
Vapor-undersaturated fractional crystallization experiments with Macusani glass (macusanite), a peraluminous rhyolite obsidian, at 200 MPa yield mineralogical fabrics and zonation, and melt fractionation trends that closely resemble those found in zoned granitic pegmatites and other granitoids of comparable composition (typically peraluminous, Li-Be-Ta-rich deposits). The zonation from the edge of charges inward is characterized by: (1) fine-grained sodic feldspar-quartz border zones; (2) a fringe of very coarse-grained graphic quartz-feldspar intergrowths that flair radially toward melt and terminate with nearly monophase K-feldspar; (3) cores of very coarse-grained, nearly monominerallic quartz or virgilite (LiAlSi5O12)±mica; and (4) late-stage, fine-grained albite+mica intergrowths that are deposited from alkaline, Na-rich interstitial melt at vapor saturation. Similar experimental products have been observed in compositionally simpler, less evolved systems. Liquid lines of descent from initially H2O-undersaturated runs are marked by a decrease in SiO2, and increases in Na/K, B, P, F, H2O, and a variety of trace lithophile cations. These trends are believed to be governed by three factors: (1) disequilibrium growth of feldspars (±quartz) via metastable supersaturation; (2) fractionation of melt toward SiO2-depleted, Na-rich compositions due to increases in B, P, and F; and (3) changes in nucleation and growth rates, mostly as a function of the H2O content of melt (X w m ). In contrast, experiments that are cooled below the liquidus from the field of melt+aqueous vapor (London et al. 1988) fail to replicate pegmatitic characteristics in most respects. On the basis of these and other experiments, we suggest that the formation of pegmatite fabrics stems primarily from fractional crystallization in volatile-rich melts, and that enrichments in normally trace lithophile elements result from melt differentiation trends toward increasingly alkaline, silica-depleted compositions. Although vapor saturation at near-solidus and subsolidus conditions may promote extensive recrystallization, an aqueous vapor phase does not appear to be necessary for the generation of most of the salient characteristics of pegmatites.  相似文献   

9.
We present new equilibrium mixed-volatile (H2O–CO2) solubility data for a phonotephrite from Erebus volcano, Antarctica. H2O–CO2-saturated experiments were conducted at 400–700 MPa, 1,190 °C, and ~NNO + 1 in non-end-loaded piston cylinders. Equilibrium H2O–CO2 fluid compositions were determined using low-temperature vacuum manometry, and the volatile and major element compositions of the glassy run products were determined by Fourier transform infrared spectroscopy and electron microprobe. Results show that the phonotephrite used in this study will dissolve ~0.8 wt% CO2 at 700 MPa and a fluid composition of $ X_{{{\text{H}}_{ 2} {\text{O}}}} $ ~0.4, in agreement with previous experimental studies on mafic alkaline rocks. Furthermore, the dissolution of CO2 at moderate to high $ X_{{{\text{H}}_{ 2} {\text{O}}}}^{\text{fluid}} $ in our experiments exceeds that predicted using lower-pressure experiments on similar melts from the literature, suggesting a departure from Henrian behavior of volatiles in the melt at pressures above 400 MPa. With these data, we place new constraints on the modeling of Erebus melt inclusion and gas emission data and thus the interpretation of its magma plumbing system and the contributions of primitive magmas to passive and explosive degassing from the Erebus phonolite lava lake.  相似文献   

10.
Thermodynamic models are vital tools to evaluate magma crystallization and storage conditions. Before their results can be used independently, however, they must be verified with controlled experimental data. Here, we use a set of hydrothermal experiments on the Late-erupted Bishop Tuff (LBT) magma to evaluate the rhyolite-MELTS thermodynamic model, a modified calibration of the original MELTS model optimized for crystallization of silicic magmas. Experimental results that are well captured by rhyolite-MELTS include a relatively narrow temperature range separating the crystallization of the first felsic mineral and the onset of the ternary minimum (quartz plus two feldspars), and extensive crystallization over a narrow temperature range once the ternary minimum is reached. The model overestimates temperatures by ~40 °C, a known limitation of rhyolite-MELTS. At pressures below 110 MPa, model and experiments differ in the first felsic phase, suggesting that caution should be exercised when applying the model to very low pressures. Our results indicate that for quartz, sanidine, plagioclase, magnetite, and ilmenite to crystallize in equilibrium from LBT magma, magma must have been stored at ≤740 °C, even when a substantial amount of CO2 occurs in the coexisting fluid. Such temperatures are in conflict with the hotter temperatures retrieved from magnetite–ilmenite compositions (~785 °C for the sample used in the experiments). Consistent with other recent studies, we suggest that the Fe–Ti oxide phases in the Late Bishop Tuff magma body are not in equilibrium with the other minerals and thus the retrieved temperature and oxygen fugacity do not reflect pre-eruptive storage conditions.  相似文献   

11.
There are three populations of fluid inclusions in quartz from the Sybille Monzosyenite: early CO2, secondary CO2, and rare secondary brines. The oldest consist of low density CO2 (0.70) inclusions that appear to be co-magmatic. The densities of these inclusions are consistent with the inferred crystallization conditions of the Sybille Monzosyenite, namely 3 kilobars and 950–1000° C. The other types of inclusions are secondary; they contain CO2 (0.50) and secondary brine inclusions that form trains radiating out from a decrepitated inclusion. The sites of these decrepitated inclusions are now marked by irregularly shaped fluid inclusions and solid inclusions of salt and carbonate. Rather than fluid inclusions, feldspar contain abundant solid inclusions. These consist of magmatic minerals, hedenbergite, hornblende, ilmenite, apatite, and graphite, intimately associated with K, Na chlorides. We interpret these relations as follows: The Sybille Monzosyenite formed from a magma that contained immiscible droplets of a halide-rich melt along with a CO2 vapor phase. The salt was trapped along with the other obvious magmatic minerals during growth of the feldspars. CO2 may have also been included in the feldspars but it probably leaked later during exsolution of the feldspars and was not preserved. Both the saline melt and the CO2 vapor were trapped in the quartz. The melt inclusions in the quartz later decrepitated, perhaps due to progressive exsolution of fluids, to produce the secondary H2O and CO2 inclusions. These observations indicate that the Sybille Monzosyenite, which is a markedly anhydrous rock, was actually vapor-saturated. Rather than being H2O, however, the vapor was CO2-rich and possibly related to an immiscible chloride-rich melt.  相似文献   

12.
The Iceland Deep Drilling Project Well 1 was designed as a 4- to 5-km-deep exploration well with the goal of intercepting supercritical hydrothermal fluids in the Krafla geothermal field, Iceland. The well unexpectedly drilled into a high-silica (76.5 % SiO2) rhyolite melt at approximately 2.1 km. Some of the melt vesiculated while extruding into the drill hole, but most of the recovered cuttings are quenched sparsely phyric, vesicle-poor glass. The phenocryst assemblage is comprised of titanomagnetite, plagioclase, augite, and pigeonite. Compositional zoning in plagioclase and exsolution lamellae in augite and pigeonite record changing crystallization conditions as the melt migrated to its present depth of emplacement. The in situ temperature of the melt is estimated to be between 850 and 920 °C based on two-pyroxene geothermometry and modeling of the crystallization sequence. Volatile content of the glass indicated partial degassing at an in situ pressure that is above hydrostatic (~16 MPa) and below lithostatic (~55 MPa). The major element and minor element composition of the melt are consistent with an origin by partial melting of hydrothermally altered basaltic crust at depth, similar to rhyolite erupted within the Krafla Caldera. Chondrite-normalized REE concentrations show strong light REE enrichment and relative flat patterns with negative Eu anomaly. Strontium isotope values (0.70328) are consistent with mantle-derived melt, but oxygen and hydrogen isotope values are depleted (3.1 and ?118 ‰, respectively) relative to mantle values. The hydrogen isotope values overlap those of hydrothermal epidote from rocks altered by the meteoric-water-recharged Krafla geothermal system. The rhyolite melt was emplaced into and has reacted with a felsic intrusive suite that has nearly identical composition. The felsite is composed of quartz, alkali feldspar, plagioclase, titanomagnetite, and augite. Emplacement of the rhyolite magma has resulted in partial melting of the felsite, accompanied locally by partial assimilation. The interstitial melt in the felsite has similar normalized SiO2 content as the rhyolite melt but is distinguished by higher K2O and lower CaO and plots near the minimum melt composition in the granite system. Augite in the partially melted felsite has re-equilibrated to more calcic metamorphic compositions. Rare quenched glass fragments containing glomeroporphyritic crystals derived from the felsite show textural evidence for resorption of alkali feldspar and quartz. The glass in these fragments is enriched in SiO2 relative to the rhyolite melt or the interstitial felsite melt, consistent with the textural evidence for quartz dissolution. The quenching of these melts by drilling fluids at in situ conditions preserves details of the melt–wall rock interaction that would not be readily observed in rocks that had completely crystallized. However, these processes may be recognizable by a combination of textural analysis and in situ analytical techniques that document compositional heterogeneity due to partial melting and local assimilation.  相似文献   

13.
Graphic intergrowths of alkali feldspar+quartz, and plagioclase+quartz, occur together in pegmatites in the eastern part of the Czechoslovak Moldanubicum. They form zones between the finer-grained wall zone and the central blocky feldspar+quartz core. The normative Or-Pig-Q compositions of the graphic intergrowths and the Or-Ab-An contents of their feldspars show broad variations generally, but have a restricted range within individual pegmatites. At two localities studied in more detail, coexisting feldspars show gradual changes in composition, from the margins up to the innermost graphic pegmatite, compatible with fractional crystallization along the feldspar solidus-solvus intersection in the Or-Ab-An-Q-H2O system, at different vapour pressures in different pegmatites. Two models are demonstrated for low and high pressure cases. The feldspar compositions from central blocky zones deviate from the magmatic fractional crystallizations paths; this corresponds with the general assumption that they crystallized from supercritical gaseous fluids.In these and in similar pegmatites, coexisting alkali feldspar+quartz and plagioclase + quartz intergrowths are interpreted as the last products of cotectic crystallization from an ultimately fractionated granitic magma. Positive correlation of Ab solid solution and quartz content in the potassic intergrowths suggests that these characteristics may be indicative of the relative pressure and temperature effective during their crystallization, when compared in pegmatites of the same bulk composition.  相似文献   

14.
Re-equilibration processes of natural H2O–CO2–NaCl-rich fluid inclusions quartz are experimentally studied by exposing the samples to a pure H2O external fluid at 600 °C. Experimental conditions are selected at nearly constant pressure conditions (309 MPa) between fluid inclusions and pore fluid, with only fugacity gradients in H2O and CO2, and at differential pressure conditions (394–398 MPa, corresponding to an internal under-pressure) in addition to similar CO2 fugacity gradients and larger H2O fugacity gradients. Modifications of fluid inclusion composition and density are monitored with changes in ice dissolution temperature, clathrate dissolution temperature and volume fraction of the vapour phase at room temperature. Specific modification of these parameters can be assigned to specific processes, such as preferential loss/gain of H2O and CO2, or changes in total volume. A combination of these parameters can clearly distinguish between modifications according to bulk diffusion or deformation processes. Bulk diffusion of CO2 according to fugacity gradients is demonstrated at constant pressure conditions. The estimated preferential loss of H2O is not in accordance with those gradients in both constant pressure and differential pressure experiments. The development of deformation halos in quartz around fluid inclusions that are either under-pressurized or over-pressurized promotes absorption of H2O from the inclusions and inhibits bulk diffusion according to the applied fugacity gradients.  相似文献   

15.
Extrusive and intrusive igneous rocks represent different parts of a magmatic system and ultimately provide complementary information about the processes operating beneath volcanoes. To shed light on such processes, we have examined and quantified the textures and mineral compositions of plutonic and cumulate xenoliths and lavas from Bequia, Lesser Antilles arc. Both suites contain assemblages of iddingsitized olivine, plagioclase, clinopyroxene and spinel with rare orthopyroxene and ilmenite. Mineral zoning is widespread, but more protracted in lavas than xenoliths. Plagioclase cores and olivine have high anorthite (An?≤?98) and low forsterite (Fo?≤?84) compositions respectively, implying crystallisation from a hydrous mafic melt that was already fractionated. Xenolith textures range from adcumulate to orthocumulate with variable mineral crystallisation sequences. Textural criteria are used to organize the xenoliths into six groups. Amphibole, notably absent from lavas, is a common feature of xenoliths, together with minor biotite and apatite. Bulk compositions of xenoliths deviate from the liquid line of descent of lavas supporting a cumulate origin with varying degrees of reactive infiltration by evolved hydrous melts, preserved as melt inclusions in xenolith crystals. Volatile saturation pressures in melt inclusions indicate cumulate crystallization over a 162–571 MPa pressure range under conditions of high dissolved water contents (up to 7.8 wt% H2O), consistent with a variety of other thermobarometric estimates. Phase assemblages of xenoliths are consistent with published experimental data on volatile-saturated low-magnesium and high-alumina basalts and basaltic andesite from the Lesser Antilles at pressures of 200–1000 MPa, temperatures of 950–1050 °C and dissolved H2O contents of 4–7 wt%. Once extracted from mid-crustal mushes, residual melts ascend to higher levels and undergo H2O-saturated crystallization in shallow, pre-eruptive reservoirs to form phenocrysts and glomerocrysts. The absence of amphibole from lavas reflects instability at low pressures, whereas its abundance in xenoliths testifies to its importance in mid-crustal differentiation processes. A complex, vertically extensive (6 to at least 21 km depth) magmatic system is inferred beneath Bequia. Xenoliths represent fragments of the mush incorporated into ascending magmas. The widespread occurrence of evolved melts in the mush, but the absence of erupted evolved magmas, in contrast to islands in the northern Lesser Antilles, may reflect the relative immaturity of the Bequia magmatic system.  相似文献   

16.
Volatiles contribute to magma ascent through the sub-volcanic plumbing system. Here, we investigate melt inclusion compositions in terms of major and trace elements, as well as volatiles (H2O, CO2, SO2, F, Cl, Br, S) for Quaternary Plinian and dome-forming dacite and andesite eruptions in the central and the northern part of Dominica (Lesser Antilles arc). Melt inclusions, hosted in orthopyroxene, clinopyroxene and plagioclase are consistently rhyolitic. Post-entrapment crystallisation effects are limited, and negligible in orthopyroxene-hosted inclusions. Melt inclusions are among the most water-rich yet recorded (≤?8 wt% H2O). CO2 contents are generally low (<?650 ppm), although in general the highest pressure melt inclusion contain the highest CO2. Some low-pressure (<?3 kbars) inclusions have elevated CO2 (up to 1100–1150 ppm), suggestive of fluxing of shallow magmas with CO2-rich fluids. CO2-trace element systematics indicate that melts were volatile-saturated at the time of entrapment and can be used for volatile-saturation barometry. The calculated pressure range (0.8–7.5 kbars) indicates that magmas originate from a vertically-extensive (3–27 km depth) storage zone within the crust that may extend to the sub-Dominica Moho (28 km). The vertically-extensive crustal system is consistent with mush models for sub-volcanic arc crust wherein mantle-derived mafic magmas undergo differentiation over a range of crustal depths. The other volatile range of composition for melt inclusions from the central part is F (75–557 ppm), Cl (1525–3137 ppm), Br (6.1–15.4 ppm) and SO2 (<?140 ppm), and for the northern part it’s F (92–798 ppm), Cl (1506–4428 ppm), Br (not determined) and SO2 (<?569; one value at 1015 ppm). All MIs, regardless of provenance, describe the same Cl/F correlation (8.3?±?2.7), indicating that the magma source at depth is similar. The high H2O content of Dominica magmas has implications for hazard assessment.  相似文献   

17.
Melt inclusions in olivine Fo83–72 from tephras of 1867, 1971 and 1992 eruptions of Cerro Negro volcano represent a series of basaltic to andesitic melts of narrow range of MgO (5.6–8 wt %) formed by ~46 wt % fractional crystallization of olivine (~6 wt %), plagioclase (~27 wt %), pyroxene (~13 wt %) and magnetite (<1 wt %) from primitive basaltic melt (average SiO2 = 49 wt %, MgO = 7.6 wt %, H2O = 6 wt %) as it ascended to the surface from the depth of about 14 km. The crystallization occurred at increasing liquidus temperature from 1,050 to 1,090 °C in the pressure range from 400 to 50 MPa and was induced by release of mixed H2O–CO2 fluid from the melt at decreasing pressure. Matrix glass compositions fall at the high-Si end of the melt inclusion trend and represent the final stage of melt crystallization during and after eruption. The bulk compositions of erupted Cerro Negro magmas (tephras and lavas) range from high- to low-MgO (3–10 wt %) basalts, which form a compositional array crossing the trend of melt inclusions so that virtually no rock from Cerro Negro has composition akin to true melt represented by the inclusions. The variations of the bulk magma (rocks) and melt (melt inclusions) compositions can be generated in a dyke connecting a deep primitive magma reservoir with the Cerro Negro edifice. While the melt inclusions represent the compositional trend of instantaneous melts along the magma pathway at decreasing pressure and H2O content, occurrence of low-Mg to high-Mg basalts reflects the process of phenocryst re-distribution in progressively evolving melt. The crystallization scenario is anticipated to operate everywhere in dykes feeding basaltic volcanoes and can explain the predominance of plagioclase-rich high-Al basalts in island arc as well as typical compositional variations of magmas during single eruptions.  相似文献   

18.
Partition coefficients (DBemineral/melt) for beryllium between hydrous granitic melt and alkali feldspars, plagioclase feldspars, quartz, dark mica, and white mica were determined by experiment at 200 MPa H2O as a function of temperature (650-900°C), activity of Be in melt (trace levels to beryl saturation), bulk composition, and thermal run direction. At trace levels, Be is compatible in plagioclase of An31 (1.84 at 700°C) and muscovite (1.35 at 700°C) but incompatible in biotite (0.39-0.54 from 650-800°C), alkali feldspar (0.38-0.19 from 680-850°C), quartz (0.24 at 800°C), and albite (0.10 at 750°C). The partition coefficients are different at saturation of the melt in beryl: lower in the case of plagioclase of An31 (0.89 at 700°C), muscovite (0.87 at 700°C), biotite (0.18-0.08 from 675-800°C), alkali feldspar (0.18-0.14 from 680-700°C), and quartz (0.17-0.08 from 750-800°C), but higher in the case of albite (0.37 at 750°C).With other data sources, these new partition coefficients were utilized to track, first, the distribution of Be between aluminous quartzofeldspathic source rocks and their anatectic melts, and second, the dispersion or concentration of Be in melt through igneous crystal fractionation of different magma types (e.g., S-type, I-type) up to beryl-saturated granitic pegmatites and, finally, into their hydrothermal aureoles. Among the rock-forming minerals, cordierite, calcic oligoclase, and muscovite (in this order) control the fate of Be because of the compatibility of Be in these phases. In general, beryl-bearing pegmatites can arise only after extended crystal fractionation of large magma batches (to F, fraction of melt remaining, ≤0.05); granitic magmas that originate from cordierite-bearing protoliths or that contain large modal quantities of calcic oligoclase will not achieve beryl saturation at any point in their evolution.  相似文献   

19.
Hydrothermal volatile-solubility and partitioning experiments were conducted with fluid-saturated haplogranitic melt, H2O, CO2, and S in an internally heated pressure vessel at 900°C and 200?MPa; three additional experiments were conducted with iron-bearing melt. The run-product glasses were analyzed by electron microprobe, FTIR, and SIMS; and they contain ??0.12 wt% S, ??0.097 wt% CO2, and ??6.4 wt% H2O. Apparent values of log f O2 for the experiments at run conditions were computed from the [(S6+)/(S6++S2?)] ratio of the glasses, and they range from NNO ?0.4 to NNO?+?1.4. The C?CO?CH?CS fluid compositions at run conditions were computed by mass balance, and they contained 22?C99?mol% H2O, 0?C78?mol% CO2, 0?C12?mol% S, and <3 wt% alkalis. Eight S-free experiments were conducted to determine the H2O and CO2 concentrations of melt and fluid compositions and to compare them with prior experimental results for C?CO?CH fluid-saturated rhyolite melt, and the agreement is excellent. Sulfur partitions very strongly in favor of fluid in all experiments, and the presence of S modifies the fluid compositions, and hence, the CO2 solubilities in coexisting felsic melt. The square of the mole fraction of H2O in melt increases in a linear fashion, from 0.05 to 0.25, with the H2O concentration of the fluid. The mole fraction of CO2 in melt increases linearly, from 0.0003 to 0.0045, with the CO2 concentration of C?CO?CH?CS fluids. Interestingly, the CO2 concentration in melts, involving relatively reduced runs (log f O2????NNO?+?0.3) that contain 2.5?C7?mol% S in the fluid, decreases significantly with increasing S in the system. This response to the changing fluid composition causes the H2O and CO2 solubility curve for C?CO?CH?CS fluid-saturated haplogranitic melts at 200?MPa to shift to values near that modeled for C?CO?CH fluid-saturated, S-free rhyolite melt at 150?MPa. The concentration of S in haplogranitic melt increases in a linear fashion with increasing S in C?CO?CH?CS fluids, but these data show significant dispersion that likely reflects the strong influence of f O2 on S speciation in melt and fluid. Importantly, the partitioning of S between fluid and melt does not vary with the (H2O/H2O?+?CO2) ratio of the fluid. The fluid-melt partition coefficients for H2O, CO2, and S and the atomic (C/S) ratios of the run-product fluids are virtually identical to thermodynamic constraints on volatile partitioning and the H, S, and C contents of pre-eruptive magmatic fluids and volcanic gases for subduction-related magmatic systems thus confirming our experiments are relevant to natural eruptive systems.  相似文献   

20.
Uturuncu is a dormant volcano in the Altiplano of SW Bolivia. A present day ~70 km diameter interferometric synthetic aperture radar (InSAR) anomaly roughly centred on Uturuncu’s edifice is believed to be a result of magma intrusion into an active crustal pluton. Past activity at the volcano, spanning 0.89 to 0.27 Ma, is exclusively effusive and almost all lavas and domes are dacitic with phenocrysts of plagioclase, orthopyroxene, biotite, ilmenite and Ti-magnetite plus or minus quartz, and microlites of plagioclase and orthopyroxene set in rhyolitic groundmass glass. Plagioclase-hosted melt inclusions (MI) are rhyolitic with major element compositions that are similar to groundmass glasses. H2O concentrations plotted versus incompatible elements for individual samples describe a trend typical of near-isobaric, volatile-saturated crystallisation. At 870 °C, the average magma temperature calculated from Fe–Ti oxides, the average H2O of 3.2 ± 0.7 wt% and CO2 typically <160 ppm equate to MI trapping pressures of 50–120 MPa, approximately 2–4.5 km below surface. Such shallow storage precludes the role of dacite magma emplacement into pre-eruptive storage regions as being the cause of the observed InSAR anomaly. Storage pressures, whole-rock (WR) chemistry and phase assemblage are remarkably consistent across the eruptive history of the volcano, although magmatic temperatures calculated from Fe–Ti oxide geothermometry, zircon saturation thermometry using MI and orthopyroxene-melt thermometry range from 760 to 925 °C at NNO ± 1 log. This large temperature range is similar to that of saturation temperatures of observed phases in experimental data on Uturuncu dacites. The variation in calculated temperatures is attributed to piecemeal construction of the active pluton by successive inputs of new magma into a growing volume of plutonic mush. Fluctuating temperatures within the mush can account for sieve-textured cores and complex zoning in plagioclase phenocrysts, resorption of quartz and biotite phenocrysts and apatite microlites. That Fe–Ti oxide temperatures vary by ~50–100 °C in a single thin section indicates that magmas were not homogenised effectively prior to eruption. Phenocryst contents do not correlate with calculated magmatic temperatures, consistent with crystal entrainment from the mush during magma ascent and eruption. Microlites grew during ascent from the magma storage region. Variability in the proportion of microlites is attributed to differing ascent and effusion rates with faster rates in general for lavas >0.5 Ma compared to those <0.5 Ma. High microlite contents of domes indicate that effusion rates were probably slowest in dome-forming eruptions. Linear trends in WR major and trace element chemistries, highly variable, bimodal mineral compositions, and the presence of mafic enclaves in lavas demonstrate that intrusion of more mafic magmas into the evolving, shallow plutonic mush also occurred further amplifying local temperature fluctuations. Crystallisation and resorption of accessory phases, particularly ilmenite and apatite, can be detected in MI and groundmass glass trace element covariation trends, which are oblique to WRs. Marked variability of Ba, Sr and La in MI can be attributed to temperature-controlled, localised crystallisation of plagioclase, orthopyroxene and biotite within the evolving mush.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号