共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
A number of thermal springs with temperature up to 64°C are found in the Western Cape Province of South Africa. The average δ13C value of gas (CO2+CH4) released at three springs is −22, which is consistent with an entirely biogenic origin for the C and supports previous investigations which showed that the springs are not associated with recent or nascent volcanic activity. Most springs issue from rocks of the Table Mountain Group, where faulted and highly jointed quartzites and sandstones of the Cape Fold Belt act as the main deep aquifer. The δD and δ18O values of the springs range from −46 to −18 and from −7.3 to −3.9, respectively. Although the thermal springs have isotope compositions that plot close to the local meteoric water line, their δD and δ18O values are significantly lower than ambient meteoric water or groundwater. It is, therefore, suggested that the recharge of most of the thermal springs is at a significantly higher altitude than the spring itself. The isotope ratios decrease wuth increasing distance from the west coast of South Africa, which is in part related to the continental effect. However, a negative correlation between the spring water temperature and the δ18O value in the thermal springs closest to the west coast indicates a progressive in increase in the average altitude of recharge away from the coast. 相似文献
3.
《Geoforum》2015
Emerging research on the increasing significance of consumption in the global South is concerned with its links to the globalizing middle classes. Against the backdrop of optimism invested in the new global middle classes to fuel consumption-led growth, this paper contributes to new debate about the articulations and significance of ethical consumption in the global South. Missing from much current mainstream policy, media and academic debate is acknowledgement of the diversity of the global middle classes and an understanding of how ethical interpretations and behaviour differ in various consumer markets around the world. In response, this paper draws on qualitative research in South Africa’s Western Cape to explore the cultural significance of everyday ethical realities in shaping consumption in the global South. In addition to addressing the relative absence of research into ethical consumption in global South contexts, the paper makes two key contributions based our findings. First, it challenges the tendency, particularly in economic discourses, to generalise about the ‘new’ global middle class consumers by highlighting the significance of locality and context in shaping consumption practices in the Western Cape; specifically it finds that, for diverse middle class consumers, thrift is an important ethical choice and practice determining consumption patterns. Second, it highlights the significance of everyday ethical practices in shaping consumption in the Western Cape, focusing specifically on how thrift is imbricated in concerns with not just economic constraint, but also care, habit and aspiration. The paper concludes with reflections on the wider implications of these findings and suggests that they illustrate a need to theorise ethical consumption from contexts in the global South, on their own terms. 相似文献
4.
Quartz-tourmaline lenses, around which host granite is impregnated by uraninite, have been found among porphyritic granite
with large phenocrysts of the Urtui pluton in the Ttansbaikal krai framing the Strel’tsovka volcano-tectonic structure. Two
generations of tourmaline are distinguished. Most individual crystals belong to the first generation attributed to “fluor-schorl”;
tourmaline-II attributed to schorl occurs as thin rims overgrowing tourmaline-I. The major type of cation isomorphic substitution
in both tourmalines is Fe2+ → Mg. The Fe3+/Fetot value and Li content in the average sample are 2% and 80 ppm, respectively. The high F content, comparatively high Li, low
Fe3+/Fetot value, and character of cation isomorphic substitution indicate that the tourmaline relates to greisens. The combination
of these features allows one to distinguish greisen-type tourmaline-bearing rocks. The impregnated uranium mineralization
in granite of the Urtui pluton, one of the probable sources of uranium in economic U ore of the Strel’tsovka deposit, is suggested
to be caused by greisenization and the formation of quartz-tourmaline lenses. 相似文献
5.
The Sakarya Zone is intruded by several Late Paleozoic granitoids, of which the Sar?cakaya intrusive rocks in the central Sakarya (Eski?ehir) region, is the least-studied. The Sar?cakaya intrusive rocks consist mainly of quartz diorite-granodiorite, granodiorite and granite. They are, geochemically, divided into two groups: diorites and granites. The former is medium-K and calc-alkaline (mainly I-type), whereas the latter is high-K to shoshonite and calcic (I-type). Typical minerals for both rock types are plagioclase, K-feldspar, quartz, biotite, hornblende and Fe–Ti oxides. Chondrite-normalized REE patterns for the Sar?cakaya intrusive rocks are moderately fractionated and have small negative Eu anomalies. They are enriched in LILE and LREE relative to HFSE showing characteristics of arc-related granitoids. Geochemical characteristics of the Sar?cakaya intrusive rocks indicate a hybrid origin through partial melting of lower crustal source rocks. 相似文献
6.
In plutonic systems, magma mixing is often modelled by mass balance based on whole-rock geochemistry. However, magma mixing is a chaotic process and chemical equilibration is controlled by non-linear diffusive–advective processes unresolved by the study of bulk samples. Here we present textural observations, LA-(MC-)ICP-MS trace element and Sr–Nd isotopic data of accessory apatites and titanites from a hybrid granodiorite of the Neoarchean Matok pluton (South Africa), collected in a zone of conspicuous mixing between mafic and felsic magmas. Apatite grains mostly show a pronounced zoning in CL images, corresponding to abrupt changes in REE and HFSE concentrations recording their transfer through compositionally different melt domains during mixing. These grains crystallized early, at temperatures of 950–1000 °C. Titanite grains crystallized at temperatures of 820–900 °C (Zr-in-sphene thermometry). They show limited intra-grain chemical variations but huge inter-grain compositional scatter in REE and HFSE, pinpointing crystallization within a crystal mush, from isolated melt pockets having different composition from one another owing to incomplete chemical homogenization and variable Rayleigh fractionation. These chemical–textural characteristics, in combination with partitioning models and Polytopic Vector Analysis, point to “self-mixing” between co-genetic dioritic and granodioritic/granitic magmas. Both resulted from differentiation of mantle-derived mafic melts, showing that mixing does not necessarily involve magmas from contrasted (crust vs. mantle) sources. Systematic variations in εNd t (?4.5 to ?2.5) and 87Sr/86Sr(i) (0.703–0.707) of titanite and apatite grains/domains crystallized from the two magmas point to an isotopically inhomogeneous mantle source, which is not resolved by bulk-rock isotopic data. Interaction between the two magmas must have occurred at relatively high temperatures (ca. 900°C) so that their viscosity contrast remained low, allowing efficient mechanical mixing. Despite this, chemical homogenization was incomplete, as recorded by diffusive fractionation between REE–HFSE and Sr. Modelling thereof reveals that chemical exchange between the liquid phases of the two mixed magmas did not last more than a few tens to hundreds of years. The chemical equilibration between mixed magmas thus strongly depends on the considered elements and observational length scales. 相似文献
7.
Summary The Degana pluton hosts one of the few known tungsten deposits in India It is an epizonal, moderately high silica pluton emplaced during the Proterozoic in a posttectonic setting. Though homogeneous in composition, it displays textural heterogeneity from coarse-grained hypidiomorphic to fine-grained porphyritic to hypabyssal granite porphyry. Genetically related rhyolites are also present. Coherency of geochemical and mineralogical attributes in the Degana pluton can be explained by fractional crystallisation. Complex variety of hydrothermal and pneumatolytic features is also present. At shallow depths, emanation differentiation has led to progressive enrichment of Li, Rb, and W. Both the plutonic and volcanic phases of the magma show development of rapakivi texture and other diagnostic characteristics of the rapakivi granites.The Degana granite is a specialised granite and classified as an A-type intraplate anorogenic granite of mantle plume origin. The mineralogy and chemistry of the Degana pluton compares well with the various rapakivi granites of south-eastern Fennoscandia. Chemical and textural characteristics of the Degana pluton provide a constraint on the formation of the rapakivi texture when interpreted in terms of experimentally determined phase equilibria. The mantling process is interpreted as a result of pressure fluctuations due to escape and recharging of volatiles (e.g., H2O and F) accompanying the emplacement of the magma.
Geologie und Geochemie des Degana-Plutons—ein proterozoischer Rapakivi Granite in Rajasthan, Indien
Zusammenfassung Der Degana Pluton enhält eine der wenigen in Indien bekannten Wolfram-Lagerstätten. Es handelt sich hier um einen epizonalen Pluton mit höheren Si-Gehalten, der während des Proterozoikums in ein posttektonisches Setting intrudiert wurde. Obwohl er in seiner Zusammensetzung homogen ist, zeigt er Heterogenität auf dem texturellen Bereich, die von grobkörnig hypidiomorph bis feinkörnig porphyritisch und schließlich bis zu hypabyssischen Granitporphyren reicht. Genetisch verwandte Rhyolite kommen im Untersuchungsgebiet auch vor. Übereinstimmende geochemische und mineralogische Parameter können auf fraktionierte Kristallisation zurückgeführt werden. Eine komplexe Vielfalt von hydrothermalen und pneumotolytischen Erscheinungen ist bemerkenswert. In geringen Tiefen hat die Emanations-Differentiation zu einer progressiven Anreicherung von Li, Rb und W geführt. Sowohl die plutonischen als auch die vulkanischen Erstarrungsprodukte des Magmas zeigen die Entwicklung von Rapakivi-Texturen und anderen diagnostischen Eigenschaften der Rapakivi-Granite.Der Degana-Granit ist ein spezialisierter Granit und ist als ein anorogener Intraplattengranit des A-Typs zu klassifizieren, der auf einen mantle plume zurückgeführt wird. Die Mineralogie und Chemie des Degana-Plutons läßt sich gut mit der verschiedener Rapakivi Granite im südöstlichen Fennoskandien vergleichen. Chemische und texturelle Eigenheiten des Degana Plutons ermöglichen eine Eingrenzung der Bildung von Rapakivi Texturen, sofern sie im Sinne experimentell bestimmter Phasen-Gleichgewichte interpretiert werden. Die Entstehung von Überwachsungen einzelner Kristalle wird als Resultat von Druckschwankungen interpretiert, die auf das Entweichen und die Neuzufuhr von volatilen Phasen (i.e. H2O und F) im Gefolge der Platz nahme des Magmas zurückzuführen sind.相似文献
8.
9.
O. S. Yakovleva I. V. Pekov L. Horváth I. A. Bryzgalov V. O. Yapaskurt E. V. Guseva 《Geology of Ore Deposits》2010,52(8):725-735
High-alumina fenites in the Mont Saint-Hilaire alkaline complex, Québec, Canada, form bodies at the contact of peralkaline
nepheline syenite. Fenites are subdivided into four types: corundum-spessartine-biotite-feldspar, muscovite-corundum-hercynite-biotite-feldspar,
carbonated muscovite-biotite-hercynite-feldspar, and spessartine-hercynite-feldspar. Accessory minerals of the ilmenite-pyrophanite
series, columbites, zircon, thorite, pyrrhotite, Fe, Mn, Mg, Ca, Ba, and REE carbonates, uedaite-(Ce), etc. are identified.
Three stages are suggested in the formation of these rocks. In mineralogy and geochemistry, the Mont Saint-Hilaire high-alumina
fenites are similar to Al-rich fenites replacing xenoliths in the Khibiny alkaline complex, Russia. In both cases, fenites
are related to peralkaline rocks and replace high-alumina protoliths: granite at Mont Saint-Hilaire and metapelites in the
Khibiny Mountains. These fenites are regarded as a specific type of fenites with rock-forming Mg-depleted hercynite. 相似文献
10.
《International Geology Review》2012,54(12):1506-1522
Garnet orthopyroxenites from Maowu (Dabieshan orogen, eastern China) were formed from a refractory harzburgite/dunite protolith. They preserve mineralogical and geochemical evidence of hydration/metasomatism and dehydration at the lower edge of a cold mantle wedge. Abundant polyphase inclusions in the cores of garnet porphyroblasts record the earliest metamorphism and metasomatism in garnet orthopyroxenites. They are mainly composed of pargasitic amphibole, gedrite, chlorite, talc, phlogopite, and Cl-apatite, with minor anhydrous minerals such as orthopyroxene, sapphirine, spinel, and rutile. Most of these phases have high XMg, NiO, and Ni/Mg values, implying that they probably inherited the chemistry of pre-existing olivine. Trace element analyses indicate that polyphase inclusions are enriched in large ion lithophile elements (LILE), light rare earth elements (LREE), and high field strength elements (HFSE), with spikes of Ba, Pb, U, and high U/Th. Based on the P–T conditions of formation for the polyphase inclusions (?1.4 GPa, 720–850°C), we suggest that the protolith likely underwent significant hydration/metasomatism by slab-derived fluid under shallow–wet–cold mantle wedge corner conditions beneath the forearc. When the hydrated rocks were subducted into a deep–cold mantle wedge zone and underwent high-pressure–ultrahigh-pressure (HP–UHP) metamorphism, amphibole, talc, and chlorite dehydrated and garnet, orthopyroxene, Ti-chondrodite, and Ti-clinohumite formed during prograde metamorphism. The majority of LILE (e.g. Ba, U, Pb, Sr, and Th) and LREE were released into the fluid formed by dehydration reactions, whereas HFSE (e.g. Ti, Nb, and Ta) remained in the cold mantle wedge lower margin. Such fluid resembling the trace element characteristics of arc magmas evidently migrates into the overlying, internal, hotter part of the mantle wedge, thus resulting in a high degree of partial melting and the formation of arc magmas. 相似文献
11.
《Chemical Geology》2002,182(2-4):473-482
Three lithological Groups I (medium-grained, with magmatogenic arfvedsonite), II (medium-grained, with secondary arfvedsonite) and III (fine-grained, with magmatogenic arfvedsonite) are identified in the Saertielieke alkali granite pluton, Ulungur of the northern Xinjiang, China. A weak negative correlation between the δ18O values of alkali feldspar and quartz separates from each group, and the distinctly lower δ18O values of alkali feldspar separates from Groups I and II than those from Group III are interpreted in terms of superimposed closed-system and open-system isotope exchange. A small amount of locally exsolved magmatic fluid is involved in the development of the perthitic texture in alkali feldspar at ∼400 °C that results in a volume increase and, hence, causes quartz deformation. The microtextural changes promote the closed-system oxygen isotope exchange between quartz and alkali feldspar that causes a dispersion in the quartz δ18O values. However, the distinctly lower δ18O values of alkali feldspar and secondary arfvedsonite coupled with their microtextural characteristics indicate that meteoric-derived water plays an important role in the further development of alkali feldspar exsolution texture at T<400 °C and directly causes secondary arfvedsonite formation. The estimated relative exchange rates kQuartz/kFeldspar/kArfvedsonite of ∼10/100/1 for Groups I and III, and ∼10/100/100 for Group II suggest that alkali feldspar, quartz, and secondary arfvedsonite have exchanged with meteoric-derived water mainly via dissolution–reprecipitation, whereas magmatogenic arfvedsonite has exchanged via diffusion. 相似文献
12.
Christina Yan Wang Mei-Fu Zhou Yali Sun Nicholas T. Arndt 《Contributions to Mineralogy and Petrology》2012,164(2):281-301
The Nantianwan mafic intrusion in the Panxi region, SW China, part of the ~260?Ma Emeishan large igneous province, consists of the olivine gabbro and gabbronorite units, separated by a transitional zone. Olivine gabbros contain olivine with Fo values ranging from 83 to 87, indicating crystallization from a moderately evolved magma. They have 0.2 to 0.9?wt?% sulfide with highly variable PGE (17?C151?ppb) and variable Cu/Pd ratios (1,500?C32,500). Modeling results indicate that they were derived from picritic magmas with high initial PGE concentrations. Olivine gabbros have negative ??Nd(t) values (?1.3 to ?0.1) and positive ??Os(t) values (5?C15), consistent with low degrees of crustal contamination. Gabbronorites include sulfide-bearing and sulfide-poor varieties, and both have olivine with Fo values ranging from 74 to 79, indicating crystallization from a more evolved magma than that for olivine gabbros. Sulfide-bearing gabbronorites contain 1.9?C4.1?wt?% sulfide and 37?C160?ppb PGE and high Cu/Pd ratios (54,000?C624,000). Sulfide-poor gabbronorites have 0.1?C0.6?wt?% sulfide and 0.2?C15?ppb PGE and very high Cu/Pd ratios (16,900?C2,370,000). Both sulfide-bearing and sulfide-poor gabbronorites have ??Nd(t) values (?0.9 to ?2.1) similar to those for olivine gabbros, but their ??Os(t) values (17?C262) are much higher and more variable than those of the olivine gabbros. Selective assimilation of crustal sulfides from the country rocks is thus considered to have resulted in more radiogenic 187Os of the gabbronorites. Processes such as magma differentiation, crustal contamination and sulfide saturation at different stages in magma chambers may have intervened during formation of the intrusion. Parental magmas were derived from picritic magmas that had fractionated olivine under S-undersaturated conditions before entering a deep-seated staging magma chamber, where the parental magmas crystallized olivine, assimilated minor crustal rocks and reached sulfide saturation, forming an olivine- and sulfide-laden crystal mush in the lower part and evolved magmas in the upper part of the chamber. The evolved magmas were forced out of the staging chamber and became S-undersaturated due to a pressure drop during ascent to a shallow magma chamber. The magmas re-attained sulfide saturation by assimilating external S from S-rich country rocks. They may have entered the shallow magma chamber as several pulses so that several gabbronorite layers each with sulfide segregated to the base and a sulfide-poor upper part. The olivine gabbro unit formed from a new and more primitive magma that entrained olivine crystals and sulfide droplets from the lower part of the staging chamber. A transitional zone formed along the boundary with the gabbronorite unit due to chemical interaction between the two rock units. 相似文献
13.
Pieter H. Fourie Udo Zimmermann Nicolas J. Beukes Thanusha Naidoo Katsuro Kobayashi Jan Kosler Eizo Nakamura Jenny Tait Johannes N. Theron 《International Journal of Earth Sciences》2011,100(2-3):527-541
In order to facilitate the understanding of the geological evolution of the Kalahari Craton and its relation to South America, the provenance of the first large-scale cratonic cover sequence of the craton, namely the Ordovician to Carboniferous Cape Supergroup was studied through geochemical analyses of the siliciclastics, and age determinations of detrital zircon. The Cape Supergroup comprises mainly quartz-arenites and a Hirnantian tillite in the basal Table Mountain Group, subgreywackes and mudrocks in the overlying Bokkeveld Group, while siltstones, interbedded shales and quartz-arenites are typical for the Witteberg Group at the top of the Cape Supergroup. Palaeocurrent analyses indicate transport of sediment mainly from northerly directions, off the interior of the Kalahari Craton with subordinate transport from a westerly source in the southwestern part of the basin near Cape Town. Geochemical provenance data suggest mainly sources from passive to active continental margin settings. The reconnaissance study of detrital zircons reveals a major contribution of Mesoproterozoic sources throughout the basin, reflecting the dominance of the Namaqua-Natal Metamorphic Belt, situated immediately north of the preserved strata of Cape Supergroup, as a source with Archaean-aged zircons being extremely rare. We interpret the Namaqua-Natal Metamorphic Belt to have been a large morphological divide at the time of deposition of the Cape Supergroup that prevented input of detrital zircons from the interior early Archaean Kaapvaal cratonic block of the Kalahari Craton. Neoproterozoic and Cambrian zircons are abundant and reflect the basement geology of the outcrops of Cape strata. Exposures close to Cape Town must have received sediment from a cratonic fragment that was situated off the Kalahari Craton to the west and that has subsequently drifted away. This cratonic fragment predominantly supplied Meso- to Neoproterozoic, and Cambrian-aged zircon grains in addition to minor Silurian to Lower Devonian zircons and very rare Archaean (2.5?Ga) and late Palaeoproterozoic (1.8-2.0?Ga) ones. No Siluro-Devonian source has yet been identified on the Kalahari Craton, but there are indications for such a source in southern Patagonia. Palaeozoic successions in eastern Argentina carry a similar detrital zircon population to that found here, including evidence of a Silurian to Lower Devonian magmatic event. The Kalahari and Río de la Plata Cratons were thus in all likelihood in close proximity until at least the Carboniferous. 相似文献
14.
Laurent Oscar Couzinié Simon Zeh Armin Vanderhaeghe Olivier Moyen Jean-François Villaros Arnaud Gardien Véronique Chelle-Michou Cyril 《International Journal of Earth Sciences》2017,106(2):421-451
International Journal of Earth Sciences - The late stages of the Variscan orogeny are characterized by middle to lower crustal melting and intrusion of voluminous granitoids throughout the belt,... 相似文献
15.
In the northern limb of the 2.06-Ga Bushveld Complex, the Platreef is a platinum group elements (PGE)-, Cu-, and Ni-mineralized
zone of pyroxenite that developed at the intrusion margin. From north to south, the footwall rocks of the Platreef change
from Archaean granite to dolomite, hornfels, and quartzite. Where the footwall is granite, the Sr-isotope system is more strongly
perturbed than where the footwall is Sr-poor dolomite, in which samples show an approximate isochron relationship. The Nd-isotope
system for samples of pyroxenite and hanging wall norite shows an approximate isochron relationship with an implied age of
2.17 ± 0.2 Ga and initial Nd-isotope ratio of 0.5095. Assuming an age of 2.06 Ga, the ɛNd values range from −6.2 to −9.6 (ave.
−7.8, n = 17) and on average are slightly more negative than the Main Zone of the Bushveld. These data are consistent with local
contamination of an already contaminated magma of Main Zone composition. The similarity in isotope composition between the
Platreef pyroxenites and the hanging wall norites suggests a common origin. Where the country rock is dolomite, the Platreef
has generally higher plagioclase and pyroxene δ
18O values, and this indicates assimilation of the immediate footwall. Throughout the Platreef, there is considerable petrographic
evidence for sub-solidus interaction with fluids, and the Δ
plagioclase–pyroxene values range from −2 to +6, which indicates interaction at both high and low temperatures. Whole-rock and mineral δD values suggest that the Platreef interacted with both magmatic and meteoric water, and the lack of disturbance to the Sr-isotope
system suggests that fluid–rock interaction took place soon after emplacement. Where the footwall is granite, less negative
δD values suggest a greater involvement of meteoric water. Consistently higher values of Δ
plagioclase–pyroxene in the Platreef pyroxenites and hanging wall norites in contact with dolomite suggest prolonged interaction with CO2-rich fluid derived from decarbonation of the footwall rocks. The overprint of post crystallization fluid–rock interaction
is the probable cause of the previously documented lack of correlation between PGE and sulfide content on the small scale.
The Platreef in contact with dolomite is the focus of the highest PGE grades, and this suggests that dolomite contamination
played a role in PGE concentration and deposition, but the exact link remains obscure. It is a possibility that the CO2 produced by decarbonation of assimilated dolomite enhanced the process of PGE scavenging by sulfide precipitation. 相似文献
16.
Both stratiform/stratabound and granite-related models have been used to explain the genesis of W(Mo) deposits in the Okiep
copper district in western Namaqualand, South Africa. Apparently, stratabound mineralization (Fe-rich wolframite with accessory
molybdenite) occurs in foliation-parallel quartz veins in high-grade (∼750 °C, 5–6 kbar) metapelites of the Wolfram Formation,
and less commonly in small bodies of silicified leucogranites and pegmatites. Six Re–Os ages for molybdenites from four deposits
(Nababeep Tungsten Far West, Kliphoog, Narrap, Tweedam) range between 1000 ± 4 and 1026 ± 5 Ma. These molybdenites define
a well-constrained 187Re–187Os isochron with an age of 1019 ± 6 Ma, which is interpreted as the age of W(Mo) mineralization. This age is significantly
younger than Proterozoic protolith ages for supracrustal rocks and the emplacement ages for the main intrusive suites, but
geologic evidence requires overlap with a period of high-grade metamorphism. We suggest that W(Mo) mineralization is genetically
linked to intra-crustal magmatic processes at ∼1020 Ma, thereby precluding the ∼1060 Ma Concordia granite as the source for
mineralizing fluids. A narrow range of positive δ34S compositions (+3.6 to +4.5‰) for eight molybdenites from five W(Mo) mines is consistent with a SO2-rich fluid and a granite-related genetic model. Post-peak metamorphic deformation and metamorphism of W(Mo) ores is most
likely related to the retrograde stage of the Namaquan orogeny, which overlaps emplacement of late-orogenic, evolved granites
and pegmatites, and the formation of W(Mo) deposits in western Namaqualand. Therefore, the effects of retrograde Namaquan
metamorphism extend at least to ∼1020 Ma or, alternatively, these W(Mo) veins were affected by a poorly constrained later
event (e.g. early Pan-African).
Received: 12 September 1999 / Accepted: 20 April 2000 相似文献
17.
Abstract: The Balfour Formation has a pronounced lithological variation that is characterized by alternating sandstone- and mudstone-dominated members. The sandstone-dominated Oudeberg and Barberskrans Members are composed of lithofacies that range from intraformational conglomerates to fine-grained sediments, whereas the mudstone-dominated members (Daggaboersnek, Elandsberg, and Palingkloof) are dominated by the facies Fm and Fl. Petrography, geochemistry, and a paleocurrent analysis indicated that the source rock of the Balfour Formation was to south east and the rocks had a transitional/dissected magmatic arc signature. The sandstones-rich members were deposited by seasonal and ephemeral high-energy, low-sinuous streams, and the fine-grained-rich members were formed by ephemeral meandering streams. The paleoclimates have been equated to present temperate climates; they were semiarid becoming arid towards the top of the Balfour Formation. This has been determined by reconstructing the paleolatitude of the Karoo Basin, geochemistry, paleontology, sedimentary structures, and other rock properties, like color. 相似文献
18.
《Journal of African Earth Sciences》2006,44(5):537-548
The Schurwedraai alkali granite is one of a number of prominent ultramafic-mafic and felsic intrusions in the Neoarchaean to Palaeoproterozoic sub-vertical supracrustal collar rocks of the Vredefort Dome, South Africa. The alkali granite intruded the Neoarchaean Witwatersrand Supergroup and has a peralkaline to peraluminous composition. A new zircon SHRIMP crystallization age of 2052 ± 14 Ma for the Schurwedraai alkali granite places it statistically before the Vredefort impact event at 2023 ± 4 Ma and within the accepted emplacement interval of 2050–2060 Ma of the Bushveld magmatic event. The presence of the alkali granite and associated small ultramafic-mafic intrusions in the Vredefort collar rocks extends the southern extremity of Bushveld-related intrusions to some 120 km south of Johannesburg and about 150 km south of the current outcrop area of the Bushveld Complex. The combined effect of these ultramafic-mafic and felsic bodies may have contributed to a pronouncedly steep pre-impact geothermal gradient in the Vredefort area, and to the amphibolite-grade metamorphism observed in the supracrustal collar rocks of the Vredefort Dome. 相似文献
19.
Vidyã V. Almeida Valdecir de A. Janasi Darcy P. Svisero Felix Nannini 《Central European Journal of Geosciences》2014,6(4):614-632
Alkali-bearing Ti oxides were identified in mantle xenoliths enclosed in kimberlite-like rocks from Limeira 1 alkaline intrusion from the Alto Paranaíba Igneous Province, southeastern Brazil. The metasomatic mineral assemblages include mathiasite-loveringite and priderite associated with clinopyroxene, phlogopite, ilmenite and rutile. Mathiasite-loveringite (55–60 wt.% TiO2; 5.2–6.7 wt.% ZrO2) occurs in peridotite xenoliths rimming chromite (~50 wt.% Cr2O3) and subordinate ilmenite (12–13.4 wt.% MgO) in double reaction rim coronas. Priderite (Ba/(K+Ba)< 0.05) occurs in phlogopite-rich xenoliths as lamellae within Mg-ilmenite (8.4–9.8 wt.% MgO) or as intergrowths in rutile crystals that may be included in sagenitic phlogopite. Mathiasite-loveringite was formed by reaction of peridotite primary minerals with alkaline melts. The priderite was formed by reaction of peridotite minerals with ultrapotassic melts. Disequilibrium textures and chemical zoning of associated minerals suggest that the metasomatic reactions responsible for the formation of the alkali-bearing Ti oxides took place shortly prior the entrainment of the xenoliths in the host magma, and is not connected to old (Proterozoic) mantle enrichment events. 相似文献
20.
《Quaternary Science Reviews》2004,23(14-15):1681-1698
The southern Cape region of South Africa has extensive coastal aeolianites and barrier dunes. Whilst previously reported, limited knowledge of their age has precluded an understanding of their relationship with the climatic and sea-level fluctuations that have taken place during the Late Quaternary. Sedimentological and geomorphological studies combined with an optical dating programme reveal aeolianite development and barrier dune construction spanning at least the last two glacial–interglacial cycles. Aeolianite deposition has occurred on the southern Cape coast at ca 67–80, 88–90, 104–128, 160–189 and >200 ka before the present. Using this and other published data coupled with a better understanding of Late Quaternary sea-level fluctuations and palaeocoastline configurations, it is concluded that these depositional phases appear to be controlled by interglacial and subsequent interstadial sea-level high stands. These marine transgressions and regressions allowed onshore carbonate-rich sediment movement and subsequent aeolian reworking to occur at similar points in the landscape on a number of occasions. The lack of carbonates in more recent dunes (Oxygen Isotope Stages 1/2 and 4/5) is attributed not to leaching but to changes to carbonate production in the sediment source area caused by increased terrigenous material and/or changes in the balance between the warm Agulhas and nutrient-rich Benguela ocean currents. 相似文献