首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spinel peridotite xenoliths from the Atsagin-Dush volcanic centre, SE Mongolia range from fertile lherzolites to clinopyroxene(cpx)-bearing harzburgites. The cpx-poor peridotites typically contain interstitial fine-grained material and silicate glass and abundant fluid inclusions in minerals, some have large vesicular melt pockets that apparently formed after primary clinopyroxene and spinel. No volatile-bearing minerals (amphibole, phlogopite, apatite, carbonate) have been found in any of the xenoliths. Fifteen peridotite xenoliths have been analysed for major and trace elements; whole-rock Sr isotope compositions and O isotope composition of all minerals were determined for 13 xenoliths. Trace element composition and Sr-Nd isotope compositions were also determined in 11 clinopyroxene and melt pocket separates. Regular variations of major and moderately incompatible trace elements (e.g. heavy-rare-earth elements) in the peridotite series are consistent with its formation as a result of variable degrees of melt extraction from a fertile lherzolite protolith. The Nd isotope compositions of LREE (light-rare-earth elements)-depleted clinopyroxenes indicate an old (≥ 1 billion years) depletion event. Clinopyroxene-rich lherzolites are commonly depleted in LREE and other incompatible trace elements whereas cpx-poor peridotites show metasomatic enrichment that can be related to the abundance of fine-grained interstitial material, glass and fluid inclusions in minerals. The absence of hydrous minerals, ubiquitous CO2-rich microinclusions in the enriched samples and negative anomalies of Nb, Hf, Zr, and Ti in primitive mantle-normalized trace element patterns of whole rocks and clinopyroxenes indicate that carbonate melts may have been responsible for the metasomatic enrichment. Low Cu and S contents and high δ34S values in whole-rock peridotites could be explained by interaction with oxidized fluids that may have been derived from subducted oceanic crust. The Sr-Nd isotope compositions of LREE-depleted clinopyroxenes plot either in the MORB (mid-ocean-ridge basalt) field or to the right of the mantle array, the latter may be due to enrichment in radiogenic Sr. The LREE-enriched clinopyroxenes and melt pockets plot in the ocean island-basalt field and have Sr-Nd isotope signatures consistent with derivation from a mixture of the DMM (depleted MORB mantle) and EM (enriched mantle) II sources. Received: 18 January 1996 / Accepted: 23 August 1996  相似文献   

2.
A wide range of trace elements have been analysed in mantle xenoliths (whole rocks, clinopyroxene and amphibole separates) from alkaline lavas in the Eastern Carpathians (Romania), in order to understand the process of metasomatism in the subcontinental mantle of the Carpatho-Pannonian region. The xenoliths include spinel lherzolites, harzburgites and websterites, clinopyroxenites, amphibole veins and amphibole clinopyroxenites. Textures vary from porphyroclastic to granoblastic, or equigranular. Grain size increases with increasing equilibrium temperature of mineralogical assemblages and results from grain boundary migration. In peridotites, interstitial clinopyroxenes (cpx) and amphiboles resulted from impregnation and metasomatism of harzburgites or cpx-poor lherzolites by small quantities of a melt I with a melilitite composition. Clinopyroxenites, amphibole veins and amphibole clinopyroxenites are also formed by metasomatism as a result of percolation through fracture systems of large quantities of a melt II with a melanephelinite composition. These metasomatic events are marked by whole-rock enrichments, relative to the primitive mantle (PM), in Rb, Th and U associated in some granoblastic lherzolites and in clinopyroxene and amphibole veins with enrichments in LREE, Ta and Nb. Correlations between major element whole-rock contents in peridotites demonstrate that the formation of interstitial amphibole and clinopyroxene induced only a slight but variable increase of the Ca/Al ratio without apparent modifications of the initial mantle composition. Metasomatism is also traced by enrichments in the most incompatible elements and the LREE. The Ta, Nb, MREE and HREE contents remained unchanged and confirm the depleted state of the initial but heterogeneous mantle. Major and trace element signature of clinopyroxene suggests that amphibole clinopyroxenites and some granoblastic lherzolites have been metasomatized successively by melts I and II. Both melts I and II were Ca-rich and Si-poor, somewhat alkaline (Na > K). Melt I differed from melt II in having higher Mg and Cr contents offset by lower Ti, Al, Fe and K contents. Both were highly enriched in all incompatible trace elements relative to primitive mantle, showing positive anomalies in Rb, Ba, Th, Sr and Zr. They contrasted by their Ta, Nb and LREE contents, lower in melt I than in melt II. Melts I and II originate during a two-stage melting event from the same source at high pressure and under increasing temperature. The source assemblage could be that of a metasomatized carbonated mantle but was more likely that of an eclogite of crustal affinity. Genetic relationships between calc-alkaline and alkaline lavas from Eastern Carpathians and these melts are thought to be only indirect, the former originating from partial melting of mantle sources respectively metasomatized by the melts I and II. Received: 17 March 1997 / Accepted: 14 July 1997  相似文献   

3.
Clinopyroxene is a major host for lithophile elements in the mantle lithosphere, and therefore it is critical whether we are to understand the constraints that this mineral puts on mantle evolution and melt generation. This study presents a detailed in situ trace element and Sr isotope study of clinopyroxene, amphibole and melt from two spinel lherzolites from the Middle Atlas Mountains, Morocco. The results show that there is limited, but discernable, Sr isotopic variation between clinopyroxene crystals within these xenoliths [87Sr/86Sr ranging from 0.703416 (±11 2SE) to 0.703681 (±12 2SE)]. Trace element patterns show similar interelement fractionation with LREE enrichment, but there is a considerable range in terms of elemental concentration (e.g. over 100 ppm in Sr concentrations). Observed modal clinopyroxene is far more abundant than that predicted from estimates of melt depletion. This along with isotope and trace element variability found in these xenoliths supports a multistage metasomatic process in which clinopyroxene and amphibole are recent secondary additions to the lithospheric mantle. Elemental systematics indicate that the metasomatic mineral assemblage has most recently equilibrated with a carbonatitic melt prior to inclusion in the host basalt. The clinopyroxene from this study is typical of global off-craton clinopyroxene in terms of Sr isotope composition, suggesting that the majority of clinopyroxene in off-craton settings may have a recent metasomatic origin. These findings indicate that caution is required when using peridotite xenoliths to estimate the degree of elemental enrichment in the subcontinental lithosphere.  相似文献   

4.
Anhydrous and amphibole-bearing mantle peridotite xenoliths from Kapfenstein (Styrian Basin) have been studied with the aim of understanding both the processes responsible for amphibole formation and the nature of metasomatizing agents which affected this portion of lithosphere. This area of the Pannonian Basin underwent a subduction event which was followed after about 15 Ma, by alkaline intraplate magmatism. Primary clinopyroxene (cpx1) in four-phase lherzolite xenoliths is characterized by LREE-depleted to slightly LREE-enriched patterns. LREE-depleted cpx1 have low Th and U contents and Zr (and Hf) anomalies varying from slightly negative to positive. LREE-enriched cpx have high Th and U contents and remarkable positive anomalies of Zr and Hf. Primary clinopyroxenes in amphibole-bearing lherzolites present a comparable compositional variation from LREE (and Th, U, Zr, Hf)-depleted type to LREE (and Th, U, Zr, Hf)-enriched type. LREE-depleted cpx1, with strong negative Zr and Ti anomalies, are also recognized in the peridotite matrix of a composite sample cut by a large amphibole vein. Textural and geochemical evidence indicates that amphibole disseminated within the matrix grew at the expense of primary spinel and clinopyroxene, mimicking the trace element patterns of the latter. As a consequence, the geochemical features of amphibole vary in relation to those of clinopyroxene, from enriched to depleted. On the other hand, the composition of vein amphibole in the composite xenolith compares well with amphibole megacrysts and microphenocrysts, suggesting that it represents a fractionation product of alkaline melt that passed through the lithosphere. Two kinds of metasomatism, superimposed on a slightly depleted lithospheric mantle, were identified. A slab-derived melt (proto-adakite?) metasomatic agent was responsible for the first enrichment in Th, U, Zr and Hf observed in clinopyroxene, whereas an alkaline within-plate metasomatic agent caused the formation of the Nb (and Ta)- rich disseminated amphibole. The final process was the alkaline magmatism, which was responsible for the formation of the large amphibole vein and megacrysts. It is proposed that the Nb-poor and Nb-rich amphiboles record the transition between the suprasubduction slab melt-related and the intraplate alkaline metasomatism.

These geochemical features are consistent with a lithospheric portion enriched in slab melt components which was subsequently metasomatized by alkaline melt. Alternatively an asthenospheric uprising could have scavenged a previously slab melt-enriched region of the lithosphere.  相似文献   


5.
Mantle xenoliths hosted in Miocene-Quaternary mafic alkaline volcanic rocks from Sardinia have been investigated with electron microprobe, laser ablation microprobe-inductively coupled plasma-mass spectrometry and thermal ionization mass spectrometry techniques. The xenoliths are anhydrous clinopyroxene-poor lherzolites and harzburgites, plus very rare websterites and olivine-websterites. Glassy pods having thin subhedral to euhedral microlites of olivine, clinopyroxene and spinel have been found in harzburgites and websterites. Clinopyroxene shows trace element variability, with values of (La/Yb)N ranging from sub-chondritic (0.01) to supra-chondritic (8.6). The Sr–Nd isotopic ratios of the clinopyroxenes fall mostly in the field of the European lithospheric mantle xenoliths (87Sr/86Sr from 0.70385 to 0.70568 and 143Nd/144Nd ranging from 0.512557 to 0.512953). The geochemical characteristics of the Sardinian xenoliths testify to the variable degrees of earlier partial melt extraction, followed by metasomatic modification by alkaline melts or fluids. Websterites are considered to represent small lenses or veins of cumulitic (i.e. magmatic) origin within the mantle peridotite.  相似文献   

6.
 Two types of melt pockets occur in Hawaiian mantle xenoliths: amphibole-bearing (AMP) and spinel-bearing (SMP). AMPs contain amphibole (kaersutite), olivine (Fo92), clinopyroxene (with 7–11% Al2O3), vesicles and glass. SMPs contain olivine, clinopyroxene, spinel, glass, and vesicles. The glasses in SMPs (SiO2=44–45%, 11–12% alkalis, La=90–110 ppm) and AMPs (SiO2=49–54%, 6–8.5% alkalis, La=8–14 ppm) are distinct in color and composition. Both glasses are generally characterized by LREE-enriched (chondrite-normalized) patterns. Amphibole and clinopyroxene have gently convex upward-to-moderately LREE-enriched patterns. Mineral/glass trace element abundance ratio plots show a strong negative Ti anomaly and a gentle negative Zr anomaly for clinopyroxene/glass; whereas amphibole/glass patterns show a distinctive positive Ti spike. The amphibole/glass trace element ratios are similar to published megacryst/lava values. An earlier study showed that the Hawaiian spinel lherzolites (lithosphere) have largely been metasomatized during post-erosional Honolulu magmatic activity. REE abundances of SMP glasses (melts) overlap the REE abundances calculated for such metasomes. The occurrence of hydrous, alkaline, mafic melt pockets in Hawaiian upper mantle xenoliths implies that (1) such hydrous liquids are generated in the upper mantle, and (2) water plays a role in magmatic activity associated with the Hawaiian plume. Although we are uncertain about the source (plume, lithosphere, or asthenosphere) of this water, we speculate that such melts and other alkalic lavas erupted on Oahu and on the sea-floor over the Hawaiian arch were generated from a broad „wet“ rim of a radially layered Hawaiian plume, whose hot and „dry“ core supplied the shield-forming magmas. Received: 6 February 1995 / Accepted: 28 August 1995  相似文献   

7.
 Mantle xenoliths hosted by the Historic Volcan de San Antonio, La Palma, Canary Islands, fall into two main group. Group I consists of spinel harzburgites, rare spinel lherzolites and spinel dunites, whereas group II comprises spinel wehrlites, amphibole wehrlites, and amphibole clinopyroxenites. We here present data on group I xenoliths, including veined harzburgites and dunites which provide an excellent basis for detailed studies of metasomatic processes. The spinel harzburgite and lherzolite xenoliths have modal ol−opx−cpx ratios and mineral and whole rock major element chemistry similar to those found in Lanzarote and Hierro, and are interpreted as highly refractory, old oceanic lithospheric mantle. Spinel dunites are interpreted as old oceanic peridotite which has been relatively enriched in olivine and clinopyroxene (and highly incompatible elements) through reactions with basaltic Canarian magmas, with relatively high melt/peridotite ratio. Group I xenoliths from La Palma differ from the Hierro and Lanzarote ones by a frequent presence of minor amounts of phlogopite (and amphibole). Metasomatic processes are also reflected in a marked enrichment of strongly incompatible relative to moderately incompatible trace elements, and in a tendency for Fe−Ti enrichment along grain boundaries in some samples. The veins in the veined xenoliths show a gradual change in phase assemblage and composition of each phase, from Fe−Ti-rich amphibole+augite+Fe−Ti-oxides+apatite+basaltic glass, to Ti-poor phlogopite+Cr-diopside±chromite+ Si−Na−K-rich glass+fluid. Complex reaction zones between veins and peridotite include formation of clinopyroxene±olivine+glass at the expense of orthopyroxene in harzburgite, and clinopyroxene+spinel±amphibole±glass at the expense of olivine in dunite. The dramatic change in glass composition from the broadest to the narrowest veins includes increasing SiO2 from 44 to 67 wt%, decreasing TiO2/Al2O3 ratio from >0.24 to about 0.02, and increasing K2O and Na2O from 1.8 to >7.0 wt% and 3.8 to 6.7 wt%, respectively. The petrographic observations supported by petrographic mixing calculations indicate that the most silicic melts in the veined xenoliths formed as the result of reaction between infiltrating basaltic melt and peridotite wall-rock. The highly silicic, alkaline melt may represent an important metasomatic agent. Pervasive metasomatism by highly silicic melts (and possibly fluids unmixed from these) may account for the enriched trace element patterns and frequent presence of phlogopite in the upper mantle under La Palma. Received: 15 January 1996 / Accepted 30 May 1996  相似文献   

8.
A suite of spinel lherzolite and wehrlite xenoliths from a Devonian kimberlite dyke near Kandalaksha, Kola Peninsula, Russia, has been studied to determine the nature of the lithospheric mantle beneath the northern Baltic Shield. Olivine modal estimates and Fo content in the spinel lherzolite xenoliths reveal that the lithosphere beneath the Archaean–Proterozoic crust has some similarities to Phanerozoic lithospheric mantle elsewhere. Modal metasomatism is indicated by the presence of Ti-rich and Ti-poor phlogopite, pargasite, apatite and picroilmenite in the xenoliths. Wehrlite xenoliths are considered to represent localised high-pressure cumulates from mafic–ultramafic melts trapped within the mantle as veins or lenses. Equilibration temperatures range from 775 to 969 °C for the spinel lherzolite xenoliths and from 817 to 904 °C for the wehrlites.

Laser ablation ICP-MS data for incompatible trace elements in primary clinopyroxenes and metasomatic amphiboles from the spinel lherzolites show moderate levels of LREE enrichment. Replacement clinopyroxenes in the wehrlites are less enriched in LREE but richer in TiO2. Fractional melt modelling for Y and Yb concentrations in clinopyroxenes from the spinel lherzolites indicates 7–8% partial melting of a primitive source. Such a volume of partial melt could be related to the 2.4–2.5 Ga intrusion of basaltic magmas (now metamorphosed to garnet granulites) in the lower crust of the northern Baltic Shield. The lithosphere beneath the Kola Peninsula has undergone several episodes of metasomatism. Both the spinel lherzolites and wehrlites were subjected to an incomplete carbonatitic metasomatic event, probably related to an early carbonatitic phase associated with the 360–380 Ma Devonian alkaline magmatism. This resulted in crystallisation of secondary clinopyroxene rims at the expense of primary orthopyroxenes, with development of secondary forsteritic olivine and apatite. Two separate metasomatic events resulted in the crystallisation of the Ti–Fe-rich amphibole, phlogopite and ilmenite in the wehrlites and the low Ti–Fe amphibole and phlogopite in the spinel lherzolites. Alternatively, a single metasomatic event with a chemically evolving melt may have produced the significant compositional differences seen in the amphibole and phlogopite between the spinel lherzolites and wehrlites. The calculated REE pattern of a melt in equilibrium with clinopyroxenes from a cpx-rich pocket is identical to that of the kimberlite host, indicating a close petrological relationship.  相似文献   


9.
Mantle xenoliths included in the alkaline basic lavas from thePaleogene Veneto Volcanic Province (VVP) consist of predominantspinel lherzolites (21–6% clinopyroxene) and minor spinelharzburgites (4–2% clinopyroxene), mainly protogranulartextured. Most of the xenoliths show superimposed textural evidenceof metasomatic processes, consisting of reaction patches andspongy clinopyroxenes, variably associated with glass and secondaryolivine, clinopyroxene, spinel and feldspar. Whole-rock andmineral major and trace element data indicate a complex historyof depletion and enrichment processes undergone by the continentallithospheric mantle beneath a within-plate region. Protogranular-texturedclinopyroxenes from lherzolites show heavy rare earth element(HREE) contents  相似文献   

10.
Mineral and whole-rock chemical data for peridotite xenolithsin basaltic lavas on Spitsbergen are examined to reassess mechanismsof melt–fluid interaction with peridotites and their relativerole versus melt composition in mantle metasomatism. The enrichmentpatterns in the xenoliths on primitive mantle-normalized diagramsrange from Th–La–Ce ‘inflections’ inweakly metasomatized samples (normally without amphibole) toa continuous increase in abundances from Ho to Ce typical foramphibole-bearing xenoliths. Numerical modelling of interactionbetween depleted peridotites and enriched melts indicates thatthese patterns do not result from simple mixing of the two end-membersbut can be explained by chromatographic fractionation duringreactive porous melt flow, which produces a variety of enrichmentpatterns in a single event. Many metasomatized xenoliths havenegative high field strength element and Pb anomalies and Srspikes relative to rare earth elements of similar compatibility,and highly fractionated Nb/Ta and Zr/Hf. Although amphiboleprecipitation can produce Nb–Ta anomalies, some of thesefeatures cannot be attributed to percolation-related fractionationalone and have to be a signature of the initial melt (possiblycarbonate rich). In general, chemical and mineralogical fingerprintsof a metasomatic medium are strongest near its source (e.g.a vein) whereas element patterns farther in the metasomatic‘column’ are increasingly controlled by fractionationmechanisms. KEY WORDS: Spitsbergen; lithospheric mantle; metasomatism; trace elements; theoretical modelling  相似文献   

11.
Mafic dikes, which transect the Mesoarchaean Singhbhum Granitoid Complex, are the most abundant members of the Newer Dolerite dikes of the Singhbhum Orissa craton. These dikes are subalkaline and exhibit a tholeiitic differentiation trend. Studied dikes underwent fractional crystallization of clinopyroxene and plagioclase. They show enriched patterns for the light rare earth elements (LREE) and large ion lithophile elements (LILE). On primitive mantle-normalized multi-element patterns, they possess Ba, Nb, Sr, P, and Ti depletions similar to subduction-related basaltic rocks. The high (La/Yb) n and (Gd/Yb) n ratios suggest that the studied mafic dikes were derived by low degrees of partial melting of a garnet-bearing source. Judging by trace elemental ratios (e.g. Ba/Y, Nb/Y, Ba/Th and Th/Nb), the studied dikes were derived from a mantle source metasomatized by a subduction component (e.g. fluids derived by dehydration of the subducting slab). We conclude that interaction between these fluids and the overlying mantle was the main cause of (LREE and LILE) enrichment and Nb (high field strength elements) depletion in the mafic dikes.  相似文献   

12.
Quaternary basalts in the Cerro del Fraile area contain two types of mantle xenoliths; coarse-grained (2–5 mm) C-type spinel harzburgites and lherzolites, and fine-grained (0.5–2 mm) intensely metasomatized F-type spinel lherzolites. C-type xenoliths have high Mg in olivine (Fo = 90–91) and a range in Cr# [Cr/ (Cr + Al) = 0.17–0.34] in spinel. Two C-type samples contain websterite veinlets and solidified patches of melt that is now composed of minute quenched grains of plagioclase + Cr-spinel + clinopyroxene + olivine. These patches of quenched melts are formed by decompression melting of pargasitic amphibole. High Ti contents and common occurrence of relic Cr-spinel in the quenched melts indicate that the amphibole is formed from spinel by interaction with the Ti-rich parental magma of the websterite veinlets. The fO2 values of these two C-type xenoliths range from ΔFMQ −0.2 to −0.4, which is consistent with their metasomatism by an asthenospheric mantle-derived melt. The rest of the C-type samples are free of “melt,” but show cryptic metasomatism by slab-derived aqueous fluids, which produced high concentrations of fluid-mobile elements in clinopyroxenes, and higher fO2 ranging from ΔFMQ +0.1 to +0.3. F-type lherzolites are intensely metasomatized to form spinel with low Cr# (∼0.13) and silicate minerals with low MgO, olivine (Fo = ∼84), orthpyroxene [Mg# = Mg/(Mg + ΣFe) = ∼0.86] and clinopyroxene (Mg# = ∼0.88). Patches of “melt” are common in all F-type samples and their compositions are similar to pargasitic amphibole with low TiO2 (<0.56 wt%), Cr2O3 (<0.55 wt%) and MgO (<16.3 wt%). Low Mg# values of silicate minerals, including the amphibole, suggest that the metasomatic agent is most likely a slab melt. This is supported by high ratios of Sr/Y and light rare earth elements (REE)/heavy REE in clinopyroxenes. F-type xenoliths show relatively low fO2 (ΔFMQ −0.9 to −1.1) compared to C-type xenoliths and this is explained by the fusion of organic-rich sediments overlying the slab during the slab melt. Trench-fill sediments in the area are high in organic matter. The fusion of such wet sediments likely produced CH4-rich fluids and reduced melts that mixed with the slab melt. High U and Th in bulk rocks and clinopyroxene in F-type xenoliths support the proposed interpretation.  相似文献   

13.
Patches of glass with a second generation of small crystals of olivine, clinopyroxene, and spinel are abundant in hydrous peridotite mantle xenoliths with tabular equigranular textures from two maar-type volcanoes, Meerfelder Maar and Dreiser Weiher (West Eifel, Germany). The patches are similar in size to the main phases of the hosting peridotite. Their central part is often occupied by relics of pargasitic amphibole. Mass-balance calculations show that the patches were formed by surface controlled incongruent thermal breakdown of amphibole according to the reaction: amphibole olivine + clinopyroxene + spinel + melt. Simultaneously with the decomposition of amphibole, small crystals of olivine, clinopyroxene, and spinel grew radially from the patch/peridotite interface toward the centre of the patch. Apart from sector zoning of clinopyroxene, the crystals are virtually homogeneous and are separated from the amphibole by a seam of melt (glass). Secondary olivines reveal higher Mg-numbers, secondary clinopyroxenes higher Cr2O3 concentrations than olivines and clinopyroxenes, respectively, of the host peridotite. The silica contents of melts produced by the above breakdown reaction range from 48 to 52% SiO2 as a function of the composition of the parent amphiboles. Patches surrounded by primary olivines only reveal no reaction with the host peridotite. The variation of SiO2, MgO and CaO in melts from these patches is the result of minor precipitation of olivine and clinopyroxene during fast cooling. If patches are in contact with primary olivine and orthopyroxene, melts are additionally modified by the reaction liquid 1 + orthopyroxene liquid 2 + olivine + clinopyroxene resulting in more silica-rich compositions between 54 and 58%. For the rare glasses richer in silica, a more complex formation is required. Veinlets along grain boundaries are filled with glasses which are chemically identical to those from nearby patches. This suggests that the veinlets were filled by melts formed by amphibole breakdown during entrainment of the xenoliths to the host magmas.  相似文献   

14.
岚皋金云角闪辉石岩类捕虏体:地幔交代作用的证据   总被引:6,自引:2,他引:6  
产于陕西岚皋地区碱质基性-超基性潜火山杂岩中的金云角闪辉石岩类捕虏体,主要由透辉石、富钛韭闪石、金云母、磷灰石、榍石、及钛铁矿组成。捕虏体发育三联晶、碎裂边、肯克变形等固相线下变形变质结构,矿物学特征表明,透辉石、富钛韭闪石、金云母为地幔来源,是地幔交代作用的产物;与正常地幔尖晶石二辉橄榄岩相比,捕虏体富TiO2、Fe2O3、CaO、Na2O、K2O,贫MgO,其稀土元素具富集特征,尤其富集LREE;微量元素分配型式显示了富亲石不相容元素的特征。岩相学、矿物学及岩石化学特征表明:该类捕虏体为交代地幔捕虏体,它代表了北大巴山早古生代裂谷作用时期的异常地幔,是地幔交代作用的产物。交代营力可能源于地幔热缕的上升,交代过程推测为深处小范围的流体交代及随后硅酸岩熔体的“弥散”性交代  相似文献   

15.
Ultramafic xenoliths entrained in the late Miocene alkali basalts and basanites from NW Turkey include refractory spinel-harzburgites and dunites accompanied by subordinate spinel-lherzolites. Whole-rock major and trace element characteristics indicate that the xenoliths are mostly the solid residues of varying degrees of partial melting (~4–~15%), but some have geochemical signatures reflecting the processes of melt/rock interaction. Mantle-normalized trace element patterns for the peridotites vary from LREE-depleted to strongly LREE-enriched, reflecting multistage mantle processes from simple melt extraction to metasomatic enrichment. Rhenium and platinum group element (PGE) abundances and 187Os/188Os systematics of peridotites were examined in order to identify the nature of the mantle source and the processes effective during variable stages of melt extraction within the sub-continental lithospheric mantle (SCLM). The peridotites are characterized by chondritic Os/Ir and Pt/Ir ratios and slightly supra-chondritic Pd/Ir and Rh/Ir ratios, representing a mantle region similar in composition to the primitive mantle (PM). Moderate enrichment in PPGE (Pd–Pt–Rh)/IPGE (Ir–Os–Ru) ratios with respect to the PM composition in the metasomatized samples, however, reflects compositional modification by sulphide addition during possible post-melting processes. The 187Os/188Os ratios of the peridotites range from 0.11801 to 0.12657. Highly unradiogenic Os isotope compositions (γOs at 10 Ma from –7.0 to –3.2) in the chemically undisturbed mantle residues are accompanied by depletion in Re/Os ratios, suggesting long-term differentiation of SCLM by continuous melt extraction. For the metasomatized peridotites, however, systematic enrichments in PPGE and Re abundances, and the observed positive covariance between 187Re/188Os and γOs can most likely be explained by interaction of solid residues with basaltic melts produced by melting of relatively more radiogenic components in the mantle. Significantly, the wide range of 187Os/188Os ratios characterizing the entire xenolith suite seems to be consistent with multistage evolution of SCLM and suggests that parts of the lithospheric mantle contain materials that have experienced ancient melt removal (~1.3 Ga) which created time-integrated depletion in Re/Os ratios; in contrast, some other parts display evidence indicative of recent perturbation in the Re–Os system by sulphide addition during interaction with metasomatizing melts.  相似文献   

16.
《International Geology Review》2012,54(14):1768-1785
ABSTRACT

We analysed whole-rock major and trace elements and Sr-Nd-Pb-Hf isotopes of the late Cenozoic volcanic rocks in the Leizhou Peninsula, South China to investigate their mantle source characteristics. These volcanic rocks, collected from Jiujiang, Tianyang and Huoju areas of the Leizhou Peninsula, are characterized by incompatible element enrichment but variable isotopic depletion. The volcanic rocks from Jiujiang and Tianyang show prominent primitive-mantle-normalized positive Nb, Ta and Sr anomalies and depleted Sr-Nd-Pb-Hf isotope compositions, whereas those from Huoju show slight positive to negative Nb and Ta anomalies, a prominent positive Pb anomaly, and more enriched Sr-Nd-Pb-Hf isotope compositions. Two types of mantle metasomatism are required to explain the geochemical characteristics of these rocks. The Jiujiang and Tianyang samples were largely derived from a mantle source metasomatized recently by a low-F melt. Such low-F melt is generated within the asthenospheric mantle, which is enriched in volatiles and incompatible elements with positive Sr anomaly and depleted Sr-Nd-Pb-Hf isotope compositions. The Huoju samples were largely derived from a mantle source metasomatized by recycled upper continental crust material. These two types of mantle metasomatism beneath the Leizhou Peninsula are consistent with trace element characteristics of mantle mineralogy (e.g. clinopyroxene vs. amphibole), which reflects source evolution in space and time (e.g. tectonic setting change).  相似文献   

17.
Mantle xenoliths (lherzolites, clinopyroxene dunites, wehrlites, and clinopyroxenites) in the Early Cretaceous volcanic rocks of Makhtesh Ramon (alkali olivine basalts, basanites, and nephelinites) represent metasomatized mantle, which served as a source of basaltic melts. The xenoliths bear signs of partial melting and previous metasomatic transformations. The latter include the replacement of orthopyroxene by clinopyroxene in the lherzolites and, respectively, the wide development of wehrlites and olivine clinopyoroxenites. Metasomatic alteration of the peridotites is accompanied by a sharp decrease in Mg, Cr, and Ni, and increase of Ti, Al, Ca contents and 3+Fe/2+Fe ratio, as well as the growth of trace V, Sc, Zr, Nb, and Y contents. The compositional features of the rocks such as the growth of 3+Fe/2+Fe and the wide development of Ti-magnetite in combination with the complete absence of sulfides indicate the high oxygen fugacity during metasomatism and the low sulfur concentration, which is a distinctive signature of fluid mode during formation of the Makhtesh Ramon alkali basaltic magma. Partial melting of peridotites and clinopyroxenites is accompanied by the formation of basanite or alkali basaltic melt. Clino- and orthopyroxenes are subjected to melting. The crystallization products of melt preserved in the mantle rock are localized in the interstices and consist mainly of fine-grained clinopyroxene, which together with Ti-magnetite, ilmenite, amphibole, rhenite, feldspar, and nepheline, is cemented by glass corresponding to quartz–orthopyroxene, olivine–orthopyroxene, quartz–feldspar, or nepheline–feldspar mixtures of the corresponding normative minerals. The mineral assemblages of xenoliths correspond to high temperatures. The high-Al and high-Ti clinopyroxene, calcium olivine, feldspar, and feldspathoids, amphibole, Ti-magnetite, and ilmenite are formed at 900–1000°. The study of melt and fluid inclusions in minerals from xenoliths indicate liquidus temperatures of 1200–1250°C, solidus temperatures of 1000–1100°C, and pressure of 5.9–9.5 kbar. Based on the amphibole–plagioclase barometer, amphibole and coexisting plagioclase were crystallized in clinopyroxenites at 6.5–7.0 kbar.  相似文献   

18.
A suite of spinel peridotite xenoliths in Mesozoic basalts of the Tuoyun basin in the Tianshan area of northwest China has a high proportion of amphibole/mica-bearing lherzolites, with high Cpx/Opx ratios (mean 0.74). Many aspects of mineral chemistry in the Tuoyun peridotites are intermediate between those of refractory Archean cratonic mantle and fertile Phanerozoic mantle. These include Ni/Cr and the contents of transition metals and Y in olivine and orthopyroxene and the abundances of elements such as Na, Al, Ti, Y, Sr and LREE in clinopyroxene. The data suggest that the mantle in Tuoyun is moderately depleted in basaltic components relative to both the refractory Archean mantle and the fertile Phanerozoic mantle. The wide variations in the CaO/Al2O3 (0.9–3.5) of whole rocks and LREE/HREE (0.8–14.2) and Ti/Eu (971–5,765) of clinopyroxenes in the Tuoyun peridotites are interpreted as the metasomatism of hydrous carbonatitic and potassic melt or the cumulative effects of mantle metasomatism by different agents (carbonatite and small-volume silicate melts) through time. The Tuoyun mantle shows closer affinity to the type of mantle found beneath the Proterozoic Cathaysia block, and especially to that beneath the East Central Asia Orogenic Belt (ECAOB), than to the mantle beneath the Archean North China Craton. This implies that the Tianshan subcontinental lithospheric mantle may have been generated during the accretion of the ECAOB. The high proportion of fine-grained microstructures, high Cpx/Opx ratio, obvious Ca enrichment and lower overall depletion in the Tuoyun mantle relative to that in other parts of the ECAOB reflect stronger mechanical and chemical modification of the Tuoyun mantle, near the translithospheric Talas-Ferghana strike-slip fault, which played a major role in controlling the strength of the mantle lithosphere and has channeled the upwelling mantle.  相似文献   

19.
The Dalnyaya kimberlite pipe(Yakutia,Russia) contains mantle peridotite xenoliths(mostly Iherzolites and harzburgites) that show both sheared porphyroclastic(deformed) and coarse granular textures,together with ilmenite and clinopyroxene megacrysts.Deformed peridotites contain high-temperature Fe-rich clinopyroxenes,sometimes associated with picroilmenites,which are products of interaction of the lithospheric mantle with protokimberlite related melts.The orthopyroxene-derived geotherm for the lithospheric mantle beneath Dalnyaya is stepped similar to that beneath the Udachnaya pipe.Coarse granular xenoliths fall on a geotherm of 35 mWm-2 whereas deformed varieties yield a 45 mWm-2)geotherm in the 2-7.5 GPa pressure interval.The chemistry of the constituent minerals including garnet,olivine and clinopyroxene shows trends of increasing Fe~#(=Fe/(Fe+Mg))with decreasing pressure.This may suggest that the interaction with fractionating protokimberlite melts occurred at different levels.Two major mantle lithologies are distinguished by the trace element patterns of their constituent minerals,determined by LA-ICP-MS.Orthopyroxenes,some clinopyroxenes and rare garnets are depleted in Ba,Sr,HFSE and MREE and represent relic lithospheric mantle.Re-fertilized garnet and clinopyroxene are more enriched.The distribution of trace elements between garnet and clinopyroxene shows that the garnets dissolved primary orthopyroxene and clinopyroxene.Later high temperature clinopyroxenes related to the protokimberlite melts partially dissolved these garnets.Olivines show decreases in Ni and increases in Al,Ca and Ti from Mg-rich varieties to the more Fe-rich,deformed and refertilized ones.Minerals showing higher Fe~#(0.11-0.15) are found within intergrowths of low-Cr ilmenite-clinopyroxene-garnet related to the crystallization of protokimberlite melts in feeder channels.In P-f(O_2) diagrams,garnets and Cr-rich clinopyroxenes indicate reduced conditions at the base of the lithosphere at-5 log units below a FMQ buffer.However,Cr-poor clinopyroxenes,together with ilmenite and some Fe-Ca-rich garnets,demonstrate a more oxidized trend in the lower part of lithosphere at-2 to 0 log units relative to FMQ.Clinopyroxenes from xenoliths in most cases show conditions transitional between those determined for garnets and megacrystalline Cr-poor suite.The relatively low diamond grade of Dalnyaya kimberlites is explained by a high degree of interaction with the oxidized protokimberlite melts,which is greater at the base of the lithosphere.  相似文献   

20.
《Chemical Geology》1999,153(1-4):11-35
Anhydrous mantle peridotite xenoliths from a single volcanic vent in the French Massif Central are compositionally varied, ranging from relatively fertile lherzolites to refractory harzburgites. Fertile lherzolites closely resemble previous estimates of undepleted mantle compositions but the average of the Ray Pic xenoliths is much less enriched in LILE and LREE than McDonough's (1990) average mantle [McDonough, W.F., 1990. Constraints on the composition of the continental lithospheric mantle. Earth Planet. Sci. Lett., 101, 1–18]. The wide geochemical variation in the bulk rocks reflects significant heterogeneities that can be attributed to two major processes within the shallow lithospheric mantle. The first process is depletion, related to variable degrees of partial melting and melt extraction from an originally near-chondritic mantle. This process has largely controlled the major elements and much of the trace element variation between fertile lherzolites and refractory peridotites. LREE-depleted compositions are also produced by this process. During partial melting, HREE behaved coherently with the major oxides and the moderately incompatible trace elements (Y, V and Sc). A subsequent process of enrichment is indicated by high concentrations of incompatible trace elements in many of the xenoliths. Sr, Ba, K, Th, U, Nb and LREE abundance are independent of major oxide variations and reflect enrichment related to infiltration by alkaline silicate melts/fluids. Both fertile and refractory mantle were enriched but harzburgites were particularly affected. Modal metasomatism occurred only rarely and is indicated by Cr-diopside-rich veins and patches in a few samples. Their chemistry suggests that they were also formed by migration of similar magmas/fluids from the asthenospheric mantle, although the presence of wehrlitic patches may indicate interaction with carbonate melts. In both depleted and enriched xenoliths, trace element patterns for separated clinopyroxenes closely reflect those of the bulk rock, except for Rb, Ba and Nb, which are probably hosted by other phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号