首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The strong partitioning of many trace elements into garnet and their slow diffusivities in both garnet and the rock matrix means that their distribution may record valuable petrogenetic information not documented by major elements in metamorphic rocks. Complex trace element growth zoning in garnet porphyroblasts from a garnet-grade metapelite from the Barrovian sequence of the Sikkim Himalaya is assessed using quantified LA-ICP-MS raster mapping coupled with X-ray micro-computed tomography. The data document systematic changes in the zoning patterns from early- to late-nucleated crystals, and also suggest that the REE+Y chemistry incorporated into garnet is dependent on persistent disequilibrium in the rock volume. There is evidence for HREE+Y diffusion haloes surrounding growing garnets and a heterogeneous HREE+Y distribution in the rock matrix. Annuli superimposed on oscillatory zoning are not consistent with formation during some rock-wide event, but are dependent on the spatial disposition of the garnet. Annuli are interpreted to reflect an integrated history of varying growth rates and the incorporation of pre-existing heterogeneities due to relatively slow matrix diffusivities. Conversely, smooth zoning of many transition metals indicate that their distribution in garnet may be controlled by equilibrium partitioning between garnet and the rock matrix. Significant rotation of garnet porphyroblasts during growth is revealed due to immobility of Cr over the duration of the crystallisation interval and overprinting of the heterogenous precursor Cr distribution. Strain rate estimates derived from this zoning are on the order of \(10^{-11}\)\(10^{-12}\, \hbox {s}^{-1}\).  相似文献   

2.
Higher Himalayan Crystalline (HHC) complex of the Sikkim Himalaya predominantly consists of high-grade pelitic migmatites. In this study, reaction textures, mineral/bulk rare earth elements (REE), trace element partition coefficients and trace element zoning profiles in garnet are used to demonstrate a complex petrogenetic process during crustal anatexis. With the help of equilibrium REE and trace element partitioning model, it is shown that strong enrichment of Effective Bulk Composition (EBC) is responsible for the zoning in garnet in these rocks. The data strongly support disequilibrium element partitioning and suggest that the anatectic melts associated with mafic selvedges are likely produced by disequilibrium melting because of fast melt segregation process.  相似文献   

3.
Trace element zoning in garnets from two contact-metamorphosed rocks from the Kwoiek area, British Columbia (Hollister 1969a), was measured with an ion microprobe. Zoning profiles have three distinct parts with chemical breaks defined by co-variation of major and trace elements. Important features of the trace element zoning profiles are: (1) roughly bell-shaped zoning profiles for Y and the HREEs, (2) an abrupt increase in Ti at a point midway through each garnet with inflections in the zoning profiles of other elements (Li, Na, Cr, V, Y, Zr, and the HREE), and (3) irregular Cr and V profiles. Unlike Mn zoning, the zoning profiles of most other trace elements cannot be easily modeled using simple Rayleigh fractionation models. Ti activity in the two samples is buffered by phase relations with ilmenite. Garnets from a continuously heated contact metamorphic environment should display continuous Ti zoning profiles if equilibrium was maintained and provided the Ti buffering assemblage did not change during garnet growth. The irregular Ti profiles suggest disequilibrium behavior. Several elements (Cr, V) may indicate breakdown of a phase enriched in trace elements during metamorphism. The source for the mass excess of these elements is probably the refractory cores of ilmenite grains. Either differing matrix transport rates of trace lements or interface kinetic controlled segregation could explain the unusual trace element behavior at the element inflection point. The preferred explanation involves segregation of elements at the interface of the garnet that were trapped during episodes of rapid garnet growth.  相似文献   

4.
The Flinton Group is a greenschist to upper amphibolite facies package of metasediments in southeastern Ontario that was metamorphosed during the Ottawan Orogeny. Thermodynamic modeling of metapelitic mineral assemblages suggests an increase in peak conditions of metamorphism across the 40 km wide study area from 3.5 to 7.9 kbar and 540 to 715 °C. Garnet isopleth thermobarometry applied to the cores of compositionally zoned porphyroblasts reveals remarkably similar P-T conditions of initial crystallization at approximately 3.7–4.0 kbar and 512–520 °C, corresponding to a relatively high geothermal gradient of ca. 34–45 °C km?1. It is inferred from modeling and reaction textures that metamorphism was along Barrovian P-T paths. Major and trace element zoning in garnet from one sample records a complex growth history as evidenced by major and trace element zoning and the distribution of xenotime, allanite and monazite inclusions. High-resolution (6 μm) LA-ICP-MS U-Pb geochronology performed on monazite in the rock matrix and included in the outer 150 μm of garnet rim-ward of a Y annulus revealed an age of 976?±?4 Ma. The age is interpreted to reflect monazite growth at the expense of allanite and apatite late in garnet’s growth history over the P-T interval 4.5–6.8 kbar and 540–640 °C. This new age estimate for near peak metamorphism fits well into the regional framework but is significantly younger than previously reported ages for Ottawan metamorphism. Based on microstructures this new age suggests that compressional tectonics were operating much later in the history of the Grenville of southeastern Ontario than previously thought.  相似文献   

5.
Major element, trace element and Lu–Hf geochronological data from amphibolite facies pelitic schist in the Raft River and Albion Mountains of northwest Utah and southern Idaho indicate that garnet grew during increasing pressure, interpreted to be the result of tectonic burial and crustal thickening during Sevier orogenesis. Garnet growth was interrupted by hiatuses interpreted from discontinuities in major element zonation. Pressure–temperature paths were determined from the pre‐hiatus portions of the garnet chemical zoning profiles and indicate an increase of ~2 kbar and ~50 °C in the western Raft River Mountains. Garnet Lu–Hf dates of 150 ± 1 Ma in the western Raft River Mountains and 138.7 ± 0.7 Ma and 132 ± 5 Ma in the southern Albion Mountains indicate the timing of garnet growth. Lutetium garnet zoning profiles indicate that the Lu–Hf ages are biased towards the post‐hiatus or outer pre‐hiatus segments, indicating that the determined ages likely post‐date the recorded P–T path history or date the tail end of the paths. Crustal thickening associated with Sevier orogenesis in the western Raft River Mountains thus began slightly before 150 ± 1 Ma, in the Late Jurassic. This study shows that integrating P–T paths determined from garnet growth zoning with Lu–Hf garnet geochronology and in situ garnet trace element analyses is an effective approach for interpreting and dating deformation events in orogenic belts.  相似文献   

6.
Analyses of trace elements in the mineral phases of granulites provide important information about the trace element distribution in the lower crust. Since granulites are often considered residues of partial melting processes, trace element characteristics of their mineral phases may record mineral/melt equilibria thus giving an opportunity to understand the nature and composition of melts in the lower continental crust. This study provides an extensive set of mineral trace element data obtained by LA-ICP-MS analyses of mafic and intermediate granulites from Central Finland. Mass balance calculations using the analytical data indicate a pronounced contribution of the accessory minerals apatite for the REE and ilmenite for the HFSE. Coherent mineral/mineral ratios between samples point to a close approach to equilibrium except for minerals intergrown with garnet porphyroblasts. Mineral trace element data were used for the formulation of a set of D mineral/melt partition coefficients that is applicable for trace element modelling under lower crustal conditions. D mineral/melt were derived by the application of predictive models and using observed constant mineral/mineral ratios. The comparison of the calculated D mineral/melt with experimental data as well as the relationship between mineral trace element contents and a leucosome with a composition close to an equilibrium melt provides additional constraints on mineral/melt partitioning. The D values derived in this study are broadly similar to magmatic partition coefficients for intermediate melt compositions. They provide a first coherent set of D values for Sc, V, Cr and Ni between clinopyroxene, amphibole, garnet, orthopyroxene, ilmenite and melt. In addition, they emphasize the strong impact that ilmenite exerts on the distribution of Nb and Ta.  相似文献   

7.
The analysis of texture, major element and oxygen isotope compositions of cloudy garnet crystals from a metapelite sampled on Ikaria Island (Greece) is used to assess the model of growth and re‐equilibration of these garnet crystals and to reconstruct the pressure–temperature–fluid history of the sample. Garnet crystals show complex textural and chemical zoning. Garnet cores (100–200 μm) are devoid of fluid inclusions. They are characterized by growth zoning demonstrated by a bell‐shaped profile of spessartine component (7–3 mol.%), an increase in grossular from 14 to 22 mol.% and δ18O values between 9.5 ± 0.3‰ and 10.4 ± 0.2‰. Garnet inner rims (90–130 μm) are fluid inclusion‐rich and show a decreasing grossular component from 22 to 5 mol.%. The trend of the spessartine component observed in the inner rim allows two domains to be distinguished. In contrast to domain I, where the spessartine content shows the same trend as in the core, the spessartine content of domain II increases outwards from 2 to 14 mol.%. The δ18O values decrease towards the margins of the crystals to a lowest value of 7.4 ± 0.2‰. The outer rims (<10 μm) are devoid of fluid inclusions and have the same chemical composition as the outermost part of domain II of the inner rim. Garnet crystals underwent a four‐stage history. Stage 1: garnet growth during the prograde path in a closed system for oxygen. Garnet cores are remnants of this growth stage. Stage 2: garnet re‐equilibration by coupled dissolution–reprecipitation at the temperature peak (630 < T < 650 °C). This causes the creation of porosity as the coupled dissolution–reprecipitation process allows chemical (Ca) and isotopic (O) exchange between garnet inner rims and the matrix. The formation of the outer rim is related to the closure of porosity. Stage 3: garnet mode decreases during the early retrograde path, but garnet is still a stable phase. The resulting garnet composition is characterized by an increasing Mn content in the inner rim’s domain II caused by intracrystalline diffusion. Stage 4: dissolution of garnet during the late retrograde path as garnet is not a stable phase anymore. This last stage forms corroded garnet. This study shows that coupled dissolution–reprecipitation is a possible re‐equilibration process for garnet in metamorphic rocks and that intra‐mineral porosity is an efficient pathway for chemical and isotopic exchange between garnet and the matrix, even for otherwise slow diffusing elements.  相似文献   

8.
X‐ray composition maps and quantitative analyses for Mn, Ca and Cr have been made for six pelitic and calc‐pelitic garnet crystals and Al, Fe and Cr analyses maps have been made for two kyanite crystals, from lower and mid/upper amphibolite facies rocks from the Grenville Province of western Labrador, using an electron microprobe analyser and a laser ablation ICP‐MS. Garnet with spiral (‘snowball’) internal fabrics (Si) has spiral zoning in major elements, implying that growth was concentrated in discrete regions of the crystal at any one time (spiral zoning). Cr zoning is parallel to Si in low amphibolite facies garnet with both straight and spiral internal fabrics, indicating that the garnet overprinted a fabric defined by Cr‐rich (mica±chlorite±epidote) and Cr‐poor (quartz±plagioclase) layers during growth (overprint zoning) and that Cr was effectively immobile. In contrast, in mid/upper amphibolite facies garnet porphyroblasts lacking Si, Cr zoning is concentric, implying that Cr diffusion occurred. Cr zoning in kyanite porphyroblasts appears superficially similar to oscillatory zoning, with up to three or four annuli of Cr enrichment and/or depletion present in a single grain. However, the variable width, continuity, Cr concentration and local bifurcation of individual annuli suggest that an origin by overprint zoning may be more likely. The results of this study explain previously observed nonsystematic Cr zoning in garnet and irregular partitioning of Cr between coexisting metamorphic mineral pairs. In addition, this study points to the important role of crystal growth rate in determining the presence or absence of inclusions and the type of zoning exhibited by both major and trace elements. During fast growth, inclusions are preferentially incorporated into the growing porphyroblast and slow diffusing elements such as Cr are effectively immobile, whereas during slow growth, inclusions are not generally included in the porphyroblast and Cr zoning is concentric.  相似文献   

9.
热液型矿床形成过程中流体的组成、运移、演化及其矿质沉淀机制是矿床学研究的重点内容和难点。矽卡岩矿床中具有震荡环带结构的石榴子石完整记录了热液流体的性质、组成及演化过程,这种震荡环带的出现暗示了不同成分系列的石榴子石对不同阶段热液流体成矿物化环境的特定选择性。石榴子石晶体元素化学分带现象是流体运移和矿物再沉淀过程周期性循环再现的结果,对指示早期矽卡岩阶段热液流体中主、微量元素化学分带机制具有重要意义。不同成分系列、不同期次石榴子石的Fe_2O_3和Al_2O_3含量差异显著,其对热液流体演化过程中氧化还原环境的变化具有较好的示踪作用;相对主量元素而言,微量元素在流体演化过程中具有更好的探针作用,钙铝榴石常富集Al、Ti、Zr、HREE元素,而钙铁榴石常富集As、W、Mo、Fe、LREE元素。借助EMPA和LA_ICP_MS技术对具震荡环带结构的石榴子石进行主、微量元素(包括稀土元素)的微区和原位分析是探讨成矿过程中流体组成和性质演化的重要手段,其有可能揭示矿物生长机制、成矿环境以及成矿流体组成与性质的演化,而这一地质信息对于全面理解矽卡岩型矿床的矿化分带及成矿作用非常重要。  相似文献   

10.
The study provides geological, structural, mineralogical, petrological, and geochronological evidence for polymetamorphic evolution of gneisses from the Garevka complex of the Yenisei Ridge. The results of the study provide significant insight into the geochemical behavior of major and trace elements in zoned garnet crystals and mineral inclusions formed during prograde and retrograde metamorphism of pelitic rocks. It was shown that the concentrations of Y and HREE in garnet decrease with increasing P and T and increase with decreasing pressure and temperature. The combined study of multicomponent chemical zoning patterns of coexisting minerals and metamorphic mineral reactions in metapelites was conducted. The results show that the main reason for a drastic increase in CaO content in garnets during collisional metamorphism is a mass exchange between garnet and plagioclase. The deviation from this trend, as indicated by the concurrent increase inthe grossular content of garnet and anorthite content of plagioclase, arises from the breakdown of epidote. The calculated metamorphic reactions, mass balance analysis, and changes in mineral chemistry during metamorphism reinforce the evidence for the isochemical character of processes with respect to most components of the system. The minimum volume of the system in which chemical exchange between reacting phases is balanced for all major and trace elements did not exceed ~ 1 mm3. The total HREE balance requires a greater reaction volume (up to ~ 8 mm ) involved in the redistribution of these elements, which provide evidence for their relatively higher mobility during metamorphism relative to other rare earth elements. The specific distribution and quite substantial mass transport of HREE are controlled by heterovalent isomorphic substitution between these elements and CaO in garnet.  相似文献   

11.
洪东铭  简星  黄鑫  张巍  马金戈 《地学前缘》2020,27(3):191-201
石榴石是沉积物中常见的重矿物,其可来源于多种岩石,而且不同类型母岩中石榴石具有多样的地球化学组成,因此碎屑石榴石的地球化学分析在沉积物源研究中应用广泛。通过电子探针分析可以容易地获得单颗粒碎屑石榴石的主量元素地球化学组成,可借此探讨其母岩类型,但也存在一定的局限性,比如中酸性火成岩和部分变沉积岩来源的石榴石通常都具有高Fe、Mn的特征,不易于区分。本文系统地收集了不同岩石类型的石榴石微量元素数据,尝试利用微量元素地球化学的差异性对碎屑石榴石物源分析进行补充。最终得出以下结论:(1)石榴石的稀土元素(REE)组成与钇(Y)元素指标可区分中酸性火成岩和变沉积岩来源的碎屑石榴石;(2)基性岩(橄榄岩、辉石岩)及所对应的变基性岩石(榴辉岩)中石榴石的微量元素地球化学组成相近,但部分橄榄岩来源的石榴石在镨/钬(PrN/HoN)值和重稀土总量(ΣHREE含量)上与辉石岩和榴辉岩的有显著差别,这一特点可运用于以基性岩母岩为主的碎屑沉积物源研究中;(3)夕卡岩中的石榴石在主量元素地球化学组成上表现为高度一致的高Ca特征,而稀土元素组成具有两种典型的分配模式,岩浆型(指示富铁、氧化环境)与热液型(指示富铝、还原环境)。综上所述,石榴石微量元素地球化学可以有效地运用于沉积物源分析研究中,是其主量元素物源分析方法的重要补充。  相似文献   

12.
The relative timing of two discrete pulses of metamorphic fluid flow is constrained based on chemical zoning in several garnet crystals from Kvaløya, Troms, northern Norway. The garnet crystals measured 1–2 cm in diameter and were contained within c. 1.6 Ga, staurolite grade metasediments. Major element zoning indicates that garnet grew under normal prograde conditions in the garnet and/or staurolite zones. Timing constraints are based on comparisons between major and trace element chemical zoning, oxygen isotope (δ18O) zoning and deformational (inclusion trail) zoning in one of the garnet. We interpret at least two pulses of metamorphic fluid flow. The first pulse occurred during the syn‐tectonic growth interval. The δ18O zoning was reversed relative to ‘normal’ prograde zoning and the δ18O maximum was located within the syn‐tectonic growth zone, displaced 3–4 mm from the garnet core. The fluid might have been sourced in neighbouring calcareous pelites and may also have caused formation of an Y ring. The second (and subsequent) pulse(s) occurred during/after the post‐tectonic growth interval. δ18O was locally increased at the garnet rim, particularly where the rim was sheared. The incomplete rim was also enriched in calcium. Transport of oxygen and calcium by metamorphic fluids is well documented. Transport of Y is both problematic and poorly understood, but might have been facilitated by complexing with F and/or CO2.  相似文献   

13.
Reconciling the diverse records of magmatic events preserved by multiple crystals and minerals in the same sample is often challenging. In the case of basaltic–andesites from Volcán Llaima (Chile), Mg zoning in olivine is always simpler than Ca zoning in plagioclase. A model that explains a number of chemical patterns is that Llaima magmas stall in the upper crust, where they undergo decompression crystallization and form crystal-mush bodies. Frequent magma inputs from deeper reservoirs provide the potential for remobilization and eruption. The records of multiple recharge events in Llaima plagioclase versus an apparent maximum of one such event in coexisting olivine are addressed by using trace element zoning in olivine phenocrysts. We have integrated elements that (1) respond to changes in magma composition due to recharge or mixing (Mg, Fe, Ni, Mn, ±Ca), with (2) elements that are incorporated during rapid, disequilibrium crystal growth (P, Ti, Sc, V, Al). A more complex history is obtained when these elements are evaluated considering their partition coefficients, diffusivities, and crystal growth rates. The olivine archive can then be reconciled with the plagioclase archive of magma reservoir processes. Olivine (and plagioclase) phenocrysts may experience up to three or more recharge events between nucleation and eruption. Diffusion modeling of major and trace element zoning in two dimensions using a new lattice Boltzmann model suggests that recharge events occur on the order of months to a couple of years prior to eruption, whereas crystal residence times are more likely to be on the order of a few years to decades.  相似文献   

14.
Highly variable distributions of yttrium and rare earth elements (Y+REEs) are documented in pelitic garnet from the Picuris Mountains, New Mexico, and from Passo del Sole, Switzerland, and in mafic garnet from the Franciscan Complex, California. The wide variety of these Y+REE zoning patterns, and those described previously in other occurrences, imply diverse origins linked to differing degrees of mobility of these elements through the intergranular medium during garnet growth. In the Picuris Mountains, large, early‐nucleating crystals have radial profiles of Y+REE dominated by central peaks and annular maxima, in patterns that vary systematically with atomic number. Superimposed on these features are narrow spikes in HREEs and MREEs, located progressively rimward with decreasing atomic number. In contrast, profiles in small, late‐nucleating crystals contain only broad central maxima for all Y+REEs. In garnet from Passo del Sole, Y+REE zoning varies radically from sample to sample: in some rocks, crystals of all sizes display only central peaks for all Y+REEs; in others, profiles exhibit irregular fluctuations in Y+REE contents that match up with small‐scale patchy zoning in Y and Ca X‐ray maps. In the Franciscan Complex, Y+REE in garnet cores fluctuate unsystematically, but mantles and rims display concentric oscillatory zoning for both major elements and Y+REEs. Our interpretation of the complexity of Y+REE distributions in metamorphic garnet centres on the concept that these distributions vary primarily in response to the length scales over which these elements can equilibrate during garnet growth. Very short length scales of equilibration, due to low intergranular mobility, produce overprint zoning characterized by small‐scale irregularities. Higher but still restricted mobility yields diffusion‐controlled uptake, characterized by patterns of central peaks and annular maxima that vary with atomic number and are strongly influenced by T–t paths during garnet growth. Still greater mobility permits progressively greater, potentially rock‐wide, equilibration with major‐ and accessory‐phase assemblages, leading to mineralogical controls: an unchanging mineral assemblage during garnet growth produces bell‐shaped profiles resembling those produced by Rayleigh fractionation, whereas changes in major‐ and/or accessory‐phase assemblages produce profiles with distinct annuli and sharp discontinuities in concentration. The very high mobility associated with influxes of Y+REE‐bearing fluids can cause these element distributions to be dominated by factors external to the rock, yielding profiles characterized by abrupt shifts or oscillations that are not correlated to changes in mineral assemblages.  相似文献   

15.
高压-超高压变质岩石中石榴石的环带和成因   总被引:2,自引:2,他引:0  
夏琼霞  郑永飞 《岩石学报》2011,27(2):433-450
在俯冲带变质过程中,石榴石是高压-超高压变质榴辉岩和片麻岩的常见变质矿物。由于石榴石具有难熔和流体中的低溶解能力的特点,通常可以很好地保存下来,并且能够保留复杂的化学成分环带,以及不同类型的矿物或流体包裹体,为解释石榴石寄主岩石经历的变质演化历史提供了重要信息。石榴子石的主微量元素成分受控于很多因素,如全岩成分、变质的温压条件、控制石榴子石形成的相关变质反应、与石榴子石共生的矿物种类和成分等。因此,在利用石榴石探讨超高压变质的演化历史时,对石榴石进行系统的主要元素、微量元素、氧同位素以及矿物包裹体分析,以及相互间的成因关系。同时,对石榴石中的锆石或独居石包裹体并进行原位U-Pb定年和微量元素分析,可以为变质石榴石的形成时代提供直接的时间制约。深入研究超高压变质岩中石榴石的生长阶段,不仅可以为含石榴石寄主岩石的变质过程提供岩石学和地球化学证据,而且对于理解石榴石的形成机制、生长规律及其变质化学动力学过程具有重要的科学意义。  相似文献   

16.
一个新的矿物面扫描分析方法开发和地质学应用   总被引:12,自引:10,他引:12  
LA-ICP-MS面扫描分析近些年来发展的新兴技术,相对于其他面扫描仪器,其具有样品制样流程简单、仪器购置和分析成本低、分析时间短、检测限低、多元素表面分析(5μm)、近乎无损等分析优势,在地球科学和生物学领域有着大量的应用。本文系统介绍了作者应用Photon Machines激光剥蚀系统与安捷伦ICP-MS新开发矿物元素面扫描分析方法。该方法基于近些年来开发的双室样品仓技术和Matlab软件,通过自主开发的LaIcpMsSoftware(LIMS)进行数据处理来完成的。本次研究开发的激光面扫描分析技术可以在短时间内(2小时)分析3mm×3mm区域,并同时给出多组元素(包括稀土元素等)在二维平面的分布特征。论文详细描述了LIMS工作原理和特点,相对于国外同类型软件,LIMS具有操作简单,并具有多种数据显示模式和剖面切割展示,元素比值面分布分析等优势,便于后期数据分析与解译。同时,还展示了对斜长石、白钨矿和石榴子石进行面扫描分析的初步结果。研究表明,通过LA-ICP-MS面扫描,可以获得比点分析更为准确的元素分布特征,并能够更为直观的展示不同元素在矿物分布特征和相关关系,更好的开展矿物地球化学研究。  相似文献   

17.
Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information. This study systematically investigates the geochemistry and geochronology of garnet and zircon in the Dafang Au-Pb-Zn-Ag deposit, which represents prominent gold mineralization in southern Hunan, China. Garnet samples with distinct zoning patterns and compositional variations were identified using various analytical techniques, including Backscattered Electron (BSE) imaging, Cathodoluminescence (CL) response, textural characterization, and analysis of rare-earth elements (REE), major contents, and trace element compositions. The garnet was dated U-Pb dating, which yielded a lower intercept age of 161.06 ± 1.93 Ma. This age is older than the underlying granodiorite porphyry, which has a concordia age of 155.13 ± 0.95 Ma determined by zircon U-Pb dating. These results suggest that the gold mineralization may be related to the concealed granite. Two groups of garnet changed from depleted Al garnet to enriched Al garnet, and the rare earth element (REE) patterns of these groups were converted from light REE (LREE)-enriched and heavy REE (HREE)-depleted with positive europium (Eu) anomalies to medium REE (MREE)-enriched from core to rim zoning. The different REE patterns of garnet in various zones may be attributed to changes in the fluid environment and late superposition alteration. The development of distal skarn in the southern Hunan could be a significant indicator for identifying gold mineralization.  相似文献   

18.
Apatites from the Shap Granite, northern England, are strongly zoned, reflecting multiple generations of growth and dissolution. Such chemical zoning is most readily displayed in cathodoluminescence images and correlates well with trace element variation determined using LA-ICP-MS analyses. The zoned apatites provide a detailed record of the changing scales of permeability during progressive crystallisation within the magma chamber. Early periods of apatite growth are preserved within cores and represent both early growth within a magma chamber dominated by vigorous mixing processes and inherited grains with significantly different chemistries. The main phase of apatite growth within the magma was strongly controlled by the presence of adjacent biotite phenocrysts and is characterised by fine scale oscillatory zoning, followed by the growth of a thin rim of relatively uniform composition. The chemical evolution of the later phases of apatite growth and the stratigraphy of the zoning appear to record late stage crystallisation within progressively more isolated interstitial melt pockets.Editorial responsibility: I. Parsons  相似文献   

19.
Ultramafic rocks in contact to gneisses in the Mt. Hochwart HP mélange (Eastern Italian Alps) preserve a series of metasomatic mineral zones. A phlogopitite with minor tremolite and accessory zircon and apatite forms close to the gneiss (Zone 1). Zone 2 consists of tremolite, phlogopite and anthophyllite followed by Zone 3 with anthophyllite plus minor chlorite and talc. Zone 3 grades into an amphibole–garnet peridotite lens. This reaction zone has been generated by infiltration of hydrous fluids at T of 660–700 °C and P < 1.2 GPa, which occurred during exhumation of coupled continental crust and mantle peridotites.The reaction zone between a trace element-rich (gneiss) and a trace element depleted reservoir (peridotite) allows assessment of local trace element mobility in aqueous fluids. We present the results of in situ LA-ICP-MS trace element analysis of minerals from the reaction zone. Phlogopite is the main host for Large Ion Lithophile Elements (LILE) and contributes significantly to the Li, Ti, Nb, Ta, Pb and Sc budget. Anthophyllite is the main host for Li whereas all other trace elements including Rare Earth Elements (REE) are preferentially incorporated into tremolite. Combined with the abundance of these minerals over the contact zone, the mineral trace element data suggests that the LILE and REE were mobile on a small scale of a few centimetres only. Limited mobility of Ta, which is generally regarded as barely mobile in fluids, is documented in elevated contents of Ta in anthophyllite coupled with low Nb/Ta. The high Li content in minerals throughout the reaction zone suggests that Li was the most mobile element.The studied metasomatic zones mirror geochemical processes occurring in subduction zones at the slab–mantle interface. Phlogopite crystallization at the slab–mantle interface is an efficient mechanism to filter LILE from the aqueous fluid. Thus, such reaction zones, forming at temperatures < 660–700 °C, likely prevents that the typical slab signature with enriched LILE is transported by aqueous fluids over long distances in the mantle wedge. However, if coupled to the downgoing slab, phlogopite- and tremolite-rich rocks from such reaction zones might be able to act as carriers of trace elements and water into deeper parts of the subduction zone.  相似文献   

20.
赵振华  严爽 《岩石学报》2019,35(1):31-68
单颗粒矿物微量元素激光原位定量分析测试数据的大量积累和研究,使矿物成为矿床地球化学研究和矿床勘查的重要示踪剂。本文重点选择磁铁矿、磷灰石、石榴子石、榍石、锆石、绿泥石和绿帘石等的原位分析研究所获得的认识,介绍单颗粒矿物成分组合及变化在矿床类型划分、成矿年龄测定、氧逸度、成矿过程与物质来源、找矿与勘探等方面的应用。不同矿床类型中普遍存在的矿物,如磁铁矿、磷灰石等的微量元素含量及组合差异,提供了矿床类型识别的标志。单颗粒矿物,特别是矿石矿物和密切共生矿物如锡石、铌钽铁矿、赤铁矿、石榴子石、方解石等的原位定年,使成矿年龄的直接准确测定成为现实。矿物中变价元素,如Fe、V、Mn、Ce、Eu含量和/或比值的变化,指示了成矿过程氧逸度及其变化特点。从矿物核部向震荡环带与边部的微量元素含量或同位素组成的变化,示踪了成矿过程中流体来源或性质的变化。斑岩和矽卡岩矿床中与成矿作用关系密切的蚀变矿物,如绿泥石、绿帘石的形成温度、特征微量元素比值,如Ti/Sr、Ti/Co、V/Ni、Mg/Sr等,与距矿床中心距离呈线性函数关系,可定量预测距矿床中心的距离,使以绿泥石、绿帘石为代表的找矿指示矿物研究迅速发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号