首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Baerzhe Be–Nb–Zr–REE deposit is hosted in alkaline granite (125 Ma) which intrudes in the late Jurassic Baiyingaolao Formation in the middle of the Great Hinggan Metallogenic Belt in China. The ore‐forming granite consists of three lithological facies: arfvedsonite‐bearing alkaline granite at the bottom, aegirine‐bearing albite aplite in the middle and pegmatite crust on the top. The albite aplite is the main orebody. We recognized three magmatic‐hydrothermal stages: orthomagmatic stage, late‐magmatic stage and hydrothermal stage, with the late‐magmatic stage being divided into two substages, the pegmatite substage and the aplite substage. Petrographic study on the granite, the microthermometric study on fluid inclusions and in situ laser‐ablation inductively coupled plasma mass spectrometry analysis for quartz‐hosted melt inclusions reveal the process of magmatic‐hydrothermal evolution. The finding indicates that primary magma evolved to more peralkaline by fractional crystallization, with synchronously increasing high field strength elements. An extremely high content of Zr and Nb are in the melt inclusions from last stage albite aplite (Zr, min 52 548 ppm, and Nb, min 4104 ppm). This implies that the residual magma directly formed the orebody of rare metal elements. Meanwhile, volatility was increasing during the magma evolution process and F‐bearing aqueous fluid was oversaturated at temperatures higher than 800°C. The separation of fluid from magma caused Li‐REE enrichment in F‐bearing fluid and depletion in residual melt, and led to the difference of the Y/Ho ratio between whole rock compositions and melt inclusion data. Fluid separated into a high‐salinity liquid and a low density vapor phase above 697°C, and enriched REE in the high‐salinity liquid. The oxygen isotope data shows mixing between primary magmatic‐hydrothermal fluid and meteoric water. The ubiquitous pseudo‐secondary fluid inclusions have a wide range of salinity below 462°C, which is similar to the melting temperatures of REE‐bearing daughter minerals. A model involving the mixing by meteoric water could be a mechanism for precipitation of REE minerals.  相似文献   

2.
The Jinwozi lode gold deposit in the eastern Tianshan Mountains of China includes auriferous quartz veins and network quartz veins that are exemplified by the Veins 3 and 210, respectively. This paper presents H‐, O‐isotope compositions and gas compositions of fluid inclusions hosted in sulfides and quartz, and S‐, Pb‐isotope compositions of sulfide separates collected from the principal Stage 2 ores in Veins 3 and 210. Fluid inclusions trapped in quartz and sphalerite are pseudo‐secondary and primary. They were trapped from the fluids during the successive or alternate precipitation of quartz with sulfides. H‐ and O‐isotope compositions of fluid inclusion of three pyrite and one quartz separates from Vein 210 plot within the field of degassed melt, which is evidence for the incorporation of magmatic fluid as well with some possibility of contribution of metamorphic water to the hydrothermal system since the two datasets show a higher oxygen isotopic ratio than those of degassed melt. However, δD and δ18O values of fluid inclusions hosted in sulfides and quartz from Vein 3 are distinctly lower than those from Vein 210. In addition, salinities of fluid inclusion from Vein 3, approximately 3 to 6 wt% NaCl equivalent, are considerably lower than those from Vein 210, which are approximately 8 to 14 wt% NaCl equivalent. Ore‐forming fluids of Veins 3 and 210 have migrated through the relatively high and low levels in the imbricate‐thrust column where rock deformation is characterized by dilatancy or ductile–brittle transition, respectively. Therefore, the ore‐forming fluid of Vein 3 is interpreted to have mixed with greater amounts of meteoric‐derived groundwater than that of Vein 210. Fluid inclusions hosted in sulfides contain considerably higher abundances of gaseous species of CO2, N2, H2S, and so on, than those hosted in quartz. Many of these gaseous species exhibit linear correlations with H2O. These linear trends are interpreted in terms of mixing between magmatic fluid and groundwater. The relative enrichment of gaseous species in fluid inclusions hosted in sulfides, coupled with the banded ore structure, suggests that the magmatic fluid was involved with the ore‐forming fluid in pulsation. Lead isotope compositions of 21 pyrite and galena separates form a linear trend, suggesting mixing of metallic materials from diverse reservoirs. The δ34S values of pyrite and galena range from +5.6‰ to +7.9‰ and from +3.1‰ to +6.3‰, respectively, indicating sulfur of the Jinwozi deposit has been leached mainly from the granodiorite and partly from the Jinwozi Formation by the circulating ore‐forming fluid.  相似文献   

3.
《Ore Geology Reviews》2003,22(1-2):61-90
Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan.The Mt Morgan Au–Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite–trondhjemite–dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au–Cu ore is associated with a later quartz–chalcopyrite–pyrite stockwork mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au–Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45–80% seawater salinity) and temperatures of 210 to 270 °C estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array of CO2-bearing fluids. Comparison with active submarine hydrothermal vents shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au–Cu mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu originated from the Mt Morgan intrusions and a particular volcanic strata that shows elevated Cu background.  相似文献   

4.
Lithium is an important geochemical tracer for fluids or solids. However, because the electron microprobe cannot detect Li, variations of Li abundance at the micrometric scale are most often estimated from bulk analyses. In this study, the Li intense emission line at 670.706 nm in optical emission spectroscopy was used to perfect the analysis of Li at the micrometric scale by means of laser-induced breakdown spectroscopy (LIBS). To estimate lithium content for different geological materials, LIBS calibration of the emission line at 670.706 nm was achieved by use of synthetic glasses and natural minerals. The detection limit for this method is ∼5 ppm Li. Three applications to geological materials show the potential of LIBS for lithium determination, namely for Li-bearing minerals, melt inclusions, quartz, and associated fluid inclusions.For spodumene and petalite from granite pegmatite dikes (Portugal), the Li2O concentrations are 7.6 ± 1.6 wt% and 6.3 ± 1.3 wt%, respectively, by use of LIBS. These values agree with ion microprobe analyses, bulk analyses, or both. For eucryptite crystals, the Li concentrations are scattered because grain size is smaller than the LIBS spatial resolution (6 to 8 μm). Lithium concentrations of melt inclusions from the Streltsovka U deposit (Siberia) are in the range of 2 to 6.2 wt% (Li2O) for Li-rich daughter minerals. Lithium estimations on silicate glasses display values between 90 and 400 ppm.Lithium was also analyzed as a trace element in quartz. Transverse profiles were performed in hydrothermal barren quartz veins from the Spanish Central System (Sierra de Guadarrama). The highest Li concentrations (250 to 370 ppm) were found in specific growth bands in conjunction with the observed variation in optical cathodoluminescence intensity. Considering the fluid inclusion analysis, the source of fluid responsible to the Li enrichment in quartz is probably high-salinity fluids derived from sedimentary basins.  相似文献   

5.
The Baerzhe alkaline granite pluton hosts one of the largest rare metal (Zr, rare earth elements, and Nb) deposits in Asia. It contains a geological resource of about 100 Mt at 1.84 % ZrO2, 0.30 % Ce2O3, and 0.26 % Nb2O5. Zirconium, rare earth elements (REE), and Nb are primarily hosted by zircon, yttroceberysite, fergusonite, ferrocolumbite, and pyrochlore. Three types of zircon can be identified in the deposit: magmatic, metamict, and hydrothermal. Primary magmatic zircon grains occur in the barren hypersolvus granite and are commonly prismatic, with oscillatory zones and abundant melt and mineral inclusions. The occurrence of aegirine and fluorite in the recrystallized melt inclusions hosted in the magmatic zircon indicates that the parental magma of the Baerzhe pluton is alkali- and F-rich. Metamict zircon grains occur in the mineralized subsolvus granite and are commonly prismatic and murky with cracks, pores, and mineral inclusions. They commonly show dissolution textures, indicating a magmatic origin with later metamictization due to deuteric hydrothermal alteration. Hydrothermal zircon grains occur in mineralized subsolvus granite and are dipyramidal with quartz inclusions, with murky CL images. They have 608 to 2,502 ppm light REE and 787 to 2,521 ppm Nb, much higher than magmatic zircon. The texture and composition of the three types of zircon indicate that they experienced remobilization and recrystallization during the transition from a magmatic to a hydrothermal system. Large amounts of Zr, REE, and Nb were enriched and precipitated during the transitional period to form the giant low-grade Baerzhe Zr–REE–Nb deposit.  相似文献   

6.
Quartz from granites, greisens and quartz veins from a 1596 m long vertical section through the Cínovec/Zinnwald Li-Sn-W deposit (Czech Republic) was studied using cathodoluminescence (CL) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS). The trace contents of Al, Ti, Li and the Ge/Ti and Al/Ti values in quartz reflect the degree of fractionation of parental melt from which primary quartz crystallized. From the biotite granite to the younger zinnwaldite granite, quartz is characterized by increasing contents of Al (from 136–176 to 240–280 ppm) and decreasing Ti (from 16–54 to 6–14 ppm), while the contents of Li and Ge are similar (15–36 and 0.8–1.7 ppm, respectively). Quartz of the greisen stage and vein stage is poor in all measured elements (26–59 ppm Al, 0.5–1.6 ppm Ti, 2–13 ppm Li, 0.8–1.6 ppm Ge). The youngest low-temperature quartz forming thin coatings in vugs in greisen and veins differs in its extreme enrichment in Al (>1000 ppm) and Li (∼100 ppm) and very low Ti (<1 ppm). Within the greisen, remnants of primary magmatic quartz should be distinguished from metasomatic greisen-stage quartz in their higher intensity of CL and relatively higher Ti contents. A part of primary magmatic quartz may by secondarily purified via infiltration of hydrothermal fluids and dissolution–reprecipitation processes. Such quartz parallels newly formed greisen-stage quartz in its chemical and CL properties; the share of greisen-stage quartz may by therefore overestimated.  相似文献   

7.
吉伯特铁矿是新疆阿勒泰地区产于泥盆纪海相火山岩中的小型矿床。本文对吉伯特铁矿床的包裹体开展了研究,识别了熔体包裹体、熔体-流体包裹体以及富晶体的流体包裹体,并对其进行了初步的显微测温、激光拉曼光谱和电子探针等研究。熔体包裹体中含有富Si玻璃质、贫Si富Fe熔体、石英、萤石、方解石、磁铁矿等多种成分,它们分别组成不同的包裹体组合。熔体包裹体、熔体-流体包裹体和流体包裹体的存在表明它们被捕获时是一种熔体与流体共存的不混溶状态,这充分说明了吉伯特铁矿床的形成与岩浆熔体、岩浆-热液过渡性流体有直接的成因联系。吉伯特铁矿床中Fe的矿化是一个熔体相逐渐减少,流体相逐渐增加的连续演化过程,它受岩浆作用、岩浆-热液过渡性流体以及矽卡岩作用的共同制约。  相似文献   

8.
Abstract. The occurrence of a distinct type of multi-solid, highly-saline fluid inclusions, hosted in igneous quartz phe-nocrysts from the Llamo porphyry, in the Zaldivar porphyry copper deposit of northern Chile is documented. Total homoge-nization of the multi-solid type inclusions occurs at magmatic temperatures (over 750C), well above the typical temperatures of hydro thermal fluids (less than 600C) usually recorded in porphyry copper systems. The analysis of this type of fluid inclusions, using a combination of non-destructive microthermometry, Raman and PIXE techniques and the identification of daughter minerals by SEM method, indicates that the trapped fluid was a dense, complex chloride brine in which Cl, Na, K, Fe, Cu, and Mn are dominant. The high chlorine and metal contents indicate that the metals were separated from the crystallizing magma as homogeneous aqueous chloride-rich solutions that represent the primary magmatic fluids exsolved at high temperatures and depth during the crystallization of the parental intrusive.
The multi-solid type inclusion illustrates the mechanism by which ore components are sequestered from the crystallizing parental magma and concentrated in the exsolved magmatic aqueous fluids. These fluids are significant with respect to the origin of porphyry copper deposits, as they are responsible for the first enrichment of metals and represent the precursors of metal-bearing hydrothermal fluids in a porphyry copper system.  相似文献   

9.
Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type.  相似文献   

10.
Microscopic melt inclusions found in magmatic minerals are undoubtedly one of the most important sources of information on the chemical composition of melts. This paper reports on the successful application of near-infrared (NIR) femtosecond laser ablation (LA) - inductively coupled plasma-mass spectrometry to in situ determination of incompatible trace elements (Li, Rb, Sr, Y, Zr, Nb, Cs, Ba, REE, Ta, Th, U) and ore metals (As, Mo, Pb) in individual melt inclusions hosted in quartz from the Mount Pinatubo dacites, Philippines. The determined elements cover a concentration range of five orders of magnitude. Femtosecond LA-ICP-MS analyses of twenty-eight individual melt inclusions demonstrate the efficiency of the microanalytical technique and suggests a spectacular homogeneity of the entrapped melt, at least with respect to the following incompatible trace elements: Rb, Sr, Nb, Cs, Ba, La, Ce, Pr, Nd, Pb, Th. The analytical precision (1s) for Na, Ca, Rb, Sr, Y, Nb, Ba and LREE ranged from 3 to 20%. Comparison of trace element concentrations in Mt. Pinatubo melt inclusions determined by femtosecond LA-ICP-MS with those of melt inclusions previously analysed by secondary ion mass spectrometry analysis (SIMS) and those of matrix glasses previously determined by nanosecond LA-ICP-MS showed an agreement typically within 30–40%. The homogeneity of trace element concentrations of the Mt. Pinatubo melt inclusions and the matrix glasses is consistent with the melt inclusion origin as homogeneous rhyolitic melt that was trapped in quartz phenocrysts at the final crystallisation stages of the host adakite (dacite) magma.  相似文献   

11.
The ~200-km-long intensely deformed Singhbhum Shear Zone (SSZ) in eastern India hosts India’s largest U and Cu deposits and related Fe mineralization. The SSZ separates an Archaean cratonic nucleus to the south from a Mesoproterozoic fold belt in the North and has a complex geologic history that obscures the origin of the contained iron-oxide-rich mineral deposits. This study investigates aspects of the history of mineralization in the SSZ by utilizing new petrographic and electron microprobe observations of pyrite textures and zoning in the Turamdih U–Cu(–Fe) deposit. Mineralization at Turamdih is hosted in intensively deformed quartz–chlorite schist. Sulfides and oxides include, in inferred order of development: (a) magmatic Fe(–Ti–Cr) oxide and Fe–Cu(–Ni) sulfide minerals inferred to be magmatic (?) in origin; followed by (b) uranium, Fe-oxide, and Fe–Cu(–Co) sulfide minerals that predate most or all ductile deformation, and are inferred to be of hydrothermal origin; and (c) Fe–Cu sulfides that were generated during and postdating ductile deformation. These features are associated with the formation of three compositionally and texturally distinct pyrites. Pyrite (type-A), typically in globular–semiglobular composite inclusions of pyrite plus chalcopyrite in magnetite, is characterized by very high Ni content (up to 30,700 ppm) and low Co to Ni ratios (0.01–0.61). The textural and compositional characteristics of associated chalcopyrite and rare pyrrhotite suggest that this pyrite could be linked to the magmatic event via selective replacement of magmatic pyrrhotite. Alternatively, this pyrite and associated sulfide inclusions might be cogenetic with hydrothermal Fe-oxide. Type-B pyrite that forms elongate grains and irregular relics and cores of pyrite with high Co contents (up to 23,630 ppm) and high Co to Ni ratios (7.2–140.9) are interpreted to be related to hydrothermal mineralization predating ductile deformation. A third generation of pyrite (type C) with low Co, low Ni, and moderate Co to Ni ratios (0.19–13.93) formed during and postdating the ductile deformation stage overgrowing, replacing, and surrounding type-B pyrite. The textural evolution of pyrite parallels the tectonometamorphic evolution of the shear zone demonstrating grain elongation during progressive ductile deformation and prograde metamorphism, annealing at the peak metamorphic condition, porphyroblastic growth at the retrograde path and cataclasis following porphyroblastic growth. Compositional characteristics of hydrothermal pyrite and available geological information suggest that the U–Cu(–Fe) deposit at Turamdih might be a variant of the Fe oxide (–Cu–U–rare earth elements) family of deposits.  相似文献   

12.
甲基卡位于松潘-甘孜造山带内,为特大型花岗伟晶岩型锂-铍矿床.前人以锂辉石中发育的富子晶包裹体为研究对象,着重剖析了甲基卡锂成矿的物理化学条件.然而,就伟晶岩熔(流)体的演化过程,特别是稀有金属成矿的富集机制和物理化学条件,仍缺乏有效制约.308号脉作为甲基卡出露最大的钠长石型锂-铍伟晶岩脉,具有良好的内部分带,较完整...  相似文献   

13.
Boron in the Bolivian tin belt   总被引:1,自引:0,他引:1  
Tourmaline alteration and high boron contents are typical features of the magmatic-hydrothermal systems of the Bolivian tin province. The average boron content in melt inclusions of quartz phenocrysts from tin porphyry systems is 225 ppm (1σ-variation range: 110–420 ppm; n=12) and suggests a magmatic boron input to the hydrothermal tin systems, and not shallow post-magmatic leaching of boron from pelitic country rocks. Boron data from melt inclusions correlate positively with cesium, rubidium and arsenic, and negatively with lithium, titanium and zirconium, and define magmatic fractionation trends. The generally high B, As, Cs and Li contents in melt inclusions suggest involvement of pelitic source lithologies undepleted in these fluid-mobile components, i.e. first-cycle metamorphic rocks. Magmatic fractionation modified the trace-element contents within a one-log-unit range. Bulk-rock Nd isotope data (ɛNd−5 to −10) are in agreement with the dominantly intracrustal geochemical signature of the Bolivian tin porphyry systems, but also imply a variable but minor mantle input. The metallogeny of the tin belt is likely a consequence of intracrustal melting of Lower Paleozoic pelitic and slightly carbonaceous source material, combined with an extended magmatic evolution. The long-lived thermal preparation of the root zones of the silicic systems is provided by mafic magma which also leaves a chemical imprint in the form of the hybrid dacitic bulk composition of the tin porphyry systems. Received: 6 August 1998 / Accepted: 19 August 1999  相似文献   

14.
ABSTRACT Despite the close association with volcanic activity, the source of metals and ligands in the epithermal ore deposits is still controversial. In order to explore the magmatic–hydrothermal connection further, silicate melt, saline- and water-rich fluids, and CO2 vapours are documented that are trapped as inclusions in quartz phenocrysts from dacitic dykes associated with epithermal gold/base metal mineralization in the Shila district (Peru). Melt inclusion characteristics, and microthermometric and laser Raman fluid inclusion data are presented. The investigation of melt and fluid inclusions reveals that the volatile phase of magmas might represent the precursors to the early chlorine-rich ore-forming epithermal solutions. Microthermometric investigations in magmatic quartz crystals and data on quartz mineralized veins suggest that the fluid evolution and ore deposition may be the result of several processes including: release of an evolving magmatic fluid, and/or boiling, and/or mixing.  相似文献   

15.
The Sn–W mineralized Mole Granite in Eastern Australia hosts zircon populations that crystallized at several stages during a protracted magmatic to hydrothermal evolution. Thirty-four elements have been quantified by laser-ablation inductively-coupled-plasma mass-spectrometric microanalysis with the aim of relating the chemistry of zircon to its growth environment. Trace element contents are highly variable for all textural occurrences. Zircon inclusions in earliest quartz phenocryst suggest that zircon was a liquidus phase that crystallized probably deep in the crust. Trace element contents are conspicuously high, showing only a slight positive Ce anomaly but a pronounced negative Eu-anomaly. Successive crystallization stages of magmatic zircon are characterized by progressive depletion in trace element contents, notably the rare earth elements, with an increasingly important positive Ce-anomaly. This evolution reflects saturation of REE accepting minerals such as monazite, thorite, xenotime and possibly apatite and is affected little by the exsolution of a magmatic–hydrothermal fluid. Zircon that is interpreted to have precipitated from aqueous fluids in Sn–W-bearing quartz veins shows REE patterns indistinguishable from those of late magmatic zircon. When combined with experimental evidence on the fluid–melt partitioning of REE, it indicates that the REE distribution coefficients for zircon/melt and zircon/fluid are largely comparable.

The second example of hydrothermal zircon crystallized some 2 My after the host granite. These crystals reveal an intragranular zonation of increasing trace element concentrations from core to rim. Therefore, REE abundances and patterns alone are not conclusive indicators of the geological environment in which zircon crystallized. Nevertheless, variations in trace element contents of zircon that relate to the chemistry of the melt or fluid from which zircon crystallized, as measured in cogenetic melt and fluid inclusions, are promising for future petrogenetic modeling.

Lead and Cs are strongly incompatible in hydrothermal zircon, with estimated zircon–fluid distribution coefficients D ≤ 0.001, while Sn and Li are moderately incompatible, DSn  0.6 and DLi  0.1, and Ce is compatible, DCe  14. Moreover, hydrothermal zircon has a more pronounced negative Eu-anomaly and higher Ta/Nb and U/Th ratios than the magmatic zircons of the Mole Granite.  相似文献   


16.
本研究首次报道了早白垩世济南辉长岩中橄榄石斑晶捕获的熔体包裹体的研究结果。济南辉长岩中橄榄石的Fo(60.3~74.6),Mn(2500~3500μg/g),Ni(70~1349μg/g),Fe/Mn比值(61.2~83.5),与源区母岩为纯的橄榄岩形成的熔体结晶出的橄榄石性质不同,可能与源区存在辉石岩的贡献有关。橄榄石中熔体包裹体主量元素具有较大的变化范围。熔体包裹体成分的标准矿物计算(CIPW)表明,MgO10%的熔体包裹体为含有霞石和橄榄石标准矿物分子的硅不饱和熔体,Mg O10%时为含石英标准矿物分子的硅饱和熔体。橄榄石中包裹有辉石和斜长石,说明岩浆演化过程应该处于开放环境。熔体包裹体的(~208Pb/~206Pb)i和(~207Pb/~206Pb)i与MgO具有良好的负相关关系,与SiO_2具有良好的正相关关系,以及熔体包裹体具有较高的SiO_2特征表明岩浆演化过程中可能有下地壳长英质组分的加入。熔体包裹体的Pb同位素落在EMI附近并向EMII延伸,其源区可能有EMI和EMII的贡献,熔体包裹体的主量元素成分说明其源区母岩可能有橄榄岩和辉石岩的贡献。  相似文献   

17.
The Mantos Blancos copper deposit (500 Mt at 1.0% Cu) was affected by two superimposed hydrothermal events: (i) phyllic alteration related to a rhyolitic dome emplacement and brecciation at ca 155 Ma; and (ii) potassic, sodic and propylitic alteration at ca 142 Ma, coeval with stocks and sills emplacement of dioritic and granodioritic porphyries, that locally grade upwards into polymictic magmatic hydrothermal breccias. Major hypogene copper sulfide mineralization is related to the second event. A late‐ore mafic dike swarm cross‐cuts all rocks in the deposit. Two types of granodioritic porphyries can be distinguished from petrographic observations and geochemical data: granodiorite porphyry I (GP I) and granodiorite porphyry II (GP II), which resulted from two different trends of magmatic evolution. The concave shape of the rare earth element (REE) distribution pattern together with the weak or absence of negative Eu anomalies in mafic dikes, dioritic and GP I porphyries, suggest hornblende‐dominated fractionation for this magmatic suite. In contrast, distinct negative Eu anomalies and the flat REE patterns suggest plagioclase‐dominated fractionation, at low oxygen fugacity, for the GP II porphyry suite. But shallow mixing and mingling between silicic and dioritic melts are also likely for the formation of the GP II and polymictic breccias, respectively. Sr‐Nd isotopic compositions suggest that the rhyolitic dome rocks were generated from a dominantly crustal source, while the GP I has mantle affinity. The composition of melt inclusions (MI) in quartz crystals from the rhyolitic dome is similar to the bulk composition of their host rock. The MI analyzed in quartz from GP II and in the polymictic magmatic hydrothermal breccia of the deposit are compositionally more evolved than their host rocks. Field, geochemical and petrographic data provided here point to dioritic and siliceous melt interaction as an inducing mechanism for the release of hydrothermal fluids to form the Cu mineralization.  相似文献   

18.
浙江洋滨黄玉花岗质斑岩的包裹体研究   总被引:1,自引:1,他引:1  
浙江洋滨黄玉花岗质斑岩的石英斑晶中含有大量原生包裹体,作者对其进行了大量的均一温度、盐度、化学成分等方面的测试工作,在此基础上,将这些包裹体划分为熔融包裹体、羟基化硅酸盐熔体—流体包裹体、不均一捕获多相包裹体、液相包裹体(包括高盐度液相包裹体和低盐度液相包裹体)、气相包裹体等五大类型。并按岩浆阶段、岩浆解聚阶段、岩浆/流体不混溶阶段、热液为主阶段探讨了本区包裹体的形成机制,为本区黄玉花岗质斑岩的岩浆成因解释提供了有力的依据  相似文献   

19.
Inductively coupled plasma-mass spectrometry (ICP-MS) has been used to determine rare earth element concentrations in aqueous solutions extracted from fluid inclusions. Quartz has been sampled from ores of three major types of polygenic gold hydrothermal systems of North-Eastern Russia: (1) gold-quartz-sulphide (Au-Q, Nezhdaninsk); (2) gold-antimony (Au-Sb, Sarylakh) and (3) intrusion-related gold-bismuth-siderite-polysulphide (Au-Bi-Sid, Arkachan) large deposits located in terrigenous rocks of the Verkhoyansk fold belt. The total concentration of REE in the fluid inclusions is not high (up to 52 ppm). The contribution of LREE dominates in REE balance (??LREE/??HREE=7.4?C112.1). The chondrite-normalized REE patterns of inclusion fluids for the Au-Q and Au-Bi-Sid deposits are characterized by LREE enrichment with a positive or negative Eu anomaly. REE patterns for the regenerated quartz from Au-Sb deposits are characterized by pronounced differentiation between light and heavy lanthanides in fluid inclusions. Significant total REE concentration decreasing (on 1?C2 order) from early to late stages of Nezhdaninsk and Arkachan deposits is revealed. The positive correlations of total REE concentrations with Rb, Cs, Li and B contents in fluid inclusions are shown. The REE distribution in fluid inclusions can be used as indicators of the contribution of magmatic fluid in the hydrothermal system.  相似文献   

20.
The Miocene Qulong porphyry Cu‐Mo deposit, which is located at the Gangdese orogenic belt of Southern Tibet, is the largest porphyry‐type deposit in China, with confirmed Cu ~10 Mt and Mo ~0.5 Mt. It is spatially and temporally associated with multiphase granitic intrusions, which is accompanied by large‐scale hydrothermal alteration and mineralization zones, including abundant hydrothermal anhydrite. In addition to hydrothermal anhydrite, magmatic anhydrite is present as inclusions in plagioclase, interstitial minerals between plagioclase and quartz, and phenocrysts in unaltered granodiorite porphyry, usually in association with clusters of sulfur‐rich apatite in the Qulong deposit. These observations indicate that the Qulong magma‐hydrothermal system was highly oxidized and sulfur‐rich. Three main types of fluid inclusions are observed in the quartz phenocrysts and veins in the porphyry: (i) liquid‐rich; (ii) polyphase high‐salinity; and (iii) vapor‐rich inclusions. Homogenization temperatures and salinities of all type inclusions decrease from the quartz phenocrysts in the porphyry to hydrothermal veins (A, B, D veins). Microthermometric study suggests copper‐bearing sulfides precipitated at about 320–400°C in A and B veins. Fluid boiling is assumed for the early stage of mineralization, and these fluids may have been trapped at about 35–60 Mpa at 460–510°C and 28–42 Mpa at 400–450°C, corresponding to trapping depths of 1.4–2.4 km and 1.1–1.7 km, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号