首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This contribution evaluates the relation between protracted zircon geochronological signal and protracted crustal melting in the course of polyphase high to ultrahigh temperature (UHT; T?>?900 °C) granulite facies metamorphism. New U–Pb, oxygen isotope, trace element, ion imaging and cathodoluminescence (CL) imaging data in zircon are reported from five samples from Rogaland, South Norway. The data reveal that the spread of apparent age captured by zircon, between 1040 and 930 Ma, results both from open-system growth and closed-system post-crystallization disturbance. Post-crystallization disturbance is evidenced by inverse age zoning induced by solid-state recrystallization of metamict cores that received an alpha dose above 35 × 1017 α  g?1. Zircon neocrystallization is documented by CL-dark domains displaying O isotope open-system behaviour. In UHT samples, O isotopic ratios are homogenous (δ18O = 8.91?±?0.08‰), pointing to high-temperature diffusion. Scanning ion imaging of these CL-dark domains did not reveal unsupported radiogenic Pb. The continuous geochronological signal retrieved from the CL-dark zircon in UHT samples is similar to that of monazite for the two recognized metamorphic phases (M1: 1040–990 Ma; M2: 940–930 Ma). A specific zircon-forming event is identified in the orthopyroxene and UHT zone with a probability peak at ca. 975 Ma, lasting until ca. 955 Ma. Coupling U–Pb geochronology and Ti-in-zircon thermometry provides firm evidence of protracted melting lasting up to 110 My (1040–930 Ma) in the UHT zone, 85 My (ca. 1040–955 Ma) in the orthopyroxene zone and some 40 My (ca. 1040–1000 Ma) in the regional basement. These results demonstrate the persistence of melt over long timescales in the crust, punctuated by two UHT incursions.  相似文献   

2.
U–Pb sensitive high resolution ion microprobe (SHRIMP) zircon geochronology, combined with REE geochemistry, has been applied in order to gain insight into the complex polymetamorphic history of the (ultra) high pressure [(U)HP] zone of Rhodope. Dating included a paragneiss of Central Rhodope, for which (U)HP conditions have been suggested, an amphibolitized eclogite, as well as a leucosome from a migmatized orthogneiss at the immediate contact to the amphibolitized eclogite, West Rhodope. The youngest detrital zircon cores of the paragneiss yielded ca. 560 Ma. This date indicates a maximum age for sedimentation in this part of Central Rhodope. The concentration of detrital core ages of the paragneiss between 670–560 Ma and around 2 Ga is consistent with a Gondwana provenance of the eroded rocks in this area of Central Rhodope. Metamorphic zircon rims of the same paragneiss yielded a lower intercept 206Pb/238U age of 148.8±2.2 Ma. Variable post-148.8 Ma Pb-loss in the outermost zircon rims of the paragneiss, in combination with previous K–Ar and SHRIMP-data, suggest that this rock of Central Rhodope underwent an additional Upper Eocene (ca. 40 Ma) metamorphic/fluid event. In West Rhodope, the co-magmatic zircon cores of the amphibolitized eclogite yielded a lower intercept 206Pb/238U age of 245.6±3.9 Ma, which is interpreted as the time of crystallization of the gabbroic protolith. The metamorphic zircon rims of the same rock gave a lower intercept 206Pb/238U age of 51.0±1.0 Ma. REE data on the metamorphic rims of the zircons from both the paragneiss of Central Rhodope and the amphibolitized eclogite of West Rhodope show no Eu anomaly in the chondrite-normalized patterns, indicating that they formed at least under HP conditions. Flat or nearly flat HREE profiles of the same zircons are consistent with the growth of garnet at the time of zircon formation. Low Nb and Ta contents of the zircon rims in the amphibolitized eclogite indicate concurrent growth of rutile. Based on the REE characteristics, the 148.8±2.2 Ma age of the garnet–kyanite paragneiss, Central Rhodope and the 51.0±1.0 Ma age of the amphibolitized eclogite, West Rhodope are interpreted to reflect the time close to the (U)HP and HP metamorphic peaks, respectively, with a good approximation. The magmatic zircon cores of the leucosome in the migmatized orthogneiss, West Rhodope, gave a lower intercept 206Pb/238U age of 294.3±2.4 Ma for the crystallization of the granitoid protolith of the orthogneiss. Two oscillatory zircon rims around the Hercynian cores, yielded ages of 39.7±1.2 and 38.1±0.8 Ma (2σ errors), which are interpreted as the time of leucosome formation during migmatization. The zircons in the leucosome do not show the 51 Ma old HP metamorphism identified in the neighboring amphibolitized eclogite, possibly because the two rock types were brought together tectonically after 51 Ma. If one takes into account the two previously determined ages of ca. 73 Ma for (U)HP metamorphism in East Rhodope, as well as the ca. 42 Ma for HP metamorphism in Thermes area, Central Rhodope, four distinct events of (U)HP metamorphism throughout Alpine times can be distinguished: 149, 73, 51 and 42 Ma. Thus, it is envisaged that the Rhodope consists of different terranes, which resulted from multiple Alpine subductions and collisions of micro-continents, rather similar to the presently accepted picture in the Central and Western Alps. It is likely that these microcontinents were rifted off from thinned continental margins of Gondwana, between the African and the European plates before the onset of Alpine convergence.  相似文献   

3.
The U–Pb isotopic system in zircon is the tool of choice to interrogate high-temperature geological processes, yet this system has potential to investigate lower temperature fluid–rock interaction as well. In some cases, removal of radiogenic Pb is incomplete, potentially allowing regression of discordant U–Pb data on a concordia diagram to determine both the age of crystallization and the timing of fluid-driven isotopic disturbance. However, in rocks preserving more complex histories, simple regression is not effective at resolving multiple Pb loss events. Here, we use a ‘concordant–discordant comparison’ (CDC) test to establish the times of U–Pb disturbance in the Acasta Gneiss Complex (AGC), Canada. AGC c. 4.03 to c. 3.40 Ga orthogneisses experienced a long and complex post-crystallization history, for which U–Pb zircon data reflects not only the heterogeneous nature of the rock, but also the varying degrees and duration of crustal reworking that inevitably involved open system processes. The CDC test calculates the similarity between the concordant age structure and a modelled age structure, the latter inferred from discordant analyses, over a wide range of potential disturbance times. Our analysis reveals concordant zircon components implying new growth and/or recrystallization at 3992 ± 5, 3501 ± 6, 3442 ± 5 and 3126 ± 6 Ma. In addition, we establish episodes of radiogenic-Pb loss driven by fluid–rock interaction at 3150 ± 50 Ma, and probably at 2875 ± 50 Ma and c. 2590 Ma. These Pb-loss episodes correlate with previously recognised events recording growth of zircon rims during metamorphism, granite emplacement, and unroofing. Pb-loss within the AGC shows an antithetic relationship in different samples that are in close geographic proximity. We suggest that zircon alteration and associated new growth effectively rendered those grains that underwent Pb-loss at a particular time less susceptible to alteration during the next episode of fluid interaction.  相似文献   

4.
SHRIMP U–Pb ages have been obtained for zircon in granitic gneisses from the aureole of the Rogaland anorthosite–norite intrusive complex, both from the ultrahigh temperature (UHT; >900 °C pigeonite‐in) zone and from outside the hypersthene‐in isograd. Magmatic and metamorphic segments of composite zircon were characterised on the basis of electron backscattered electron and cathodoluminescence images plus trace element analysis. A sample from outside the UHT zone has magmatic cores with an age of 1034 ± 7 Ma (2σ, n = 8) and 1052 ± 5 Ma (1σ, n = 1) overgrown by M1 metamorphic rims giving ages between 1020 ± 7 and 1007 ± 5 Ma. In contrast, samples from the UHT zone exhibit four major age groups: (1) magmatic cores yielding ages over 1500 Ma (2) magmatic cores giving ages of 1034 ± 13 Ma (2σ, n = 4) and 1056 ± 10 Ma (1σ, n = 1) (3) metamorphic overgrowths ranging in age between 1017 ± 6 Ma and 992 ± 7 Ma (1σ) corresponding to the regional M1 Sveconorwegian granulite facies metamorphism, and (4) overgrowths corresponding to M2 UHT contact metamorphism giving values of 922 ± 14 Ma (2σ, n = 6). Recrystallized areas in zircon from both areas define a further age group at 974 ± 13 Ma (2σ, n = 4). This study presents the first evidence from Rogaland for new growth of zircon resulting from UHT contact metamorphism. More importantly, it shows the survival of magmatic and regional metamorphic zircon relics in rocks that experienced a thermal overprint of c. 950 °C for at least 1 Myr. Magmatic and different metamorphic zones in the same zircon are sharply bounded and preserve original crystallization age information, a result inconsistent with some experimental data on Pb diffusion in zircon which predict measurable Pb diffusion under such conditions. The implication is that resetting of zircon ages by diffusion during M2 was negligible in these dry granulite facies rocks. Imaging and Th/U–Y systematics indicate that the main processes affecting zircon were dissolution‐reprecipitation in a closed system and solid‐state recrystallization during and soon after M1.  相似文献   

5.
《International Geology Review》2012,54(16):2060-2082
The Kazda?? Massif was previously considered as the metamorphic basement of the Sakarya Zone, a microcontinental fragment in NW Anatolia. Our new field mapping, geochemical investigations, and radiometric dating lead to a re-evaluation of previous suggested models of the massif. The Kazda?? metamorphic succession is subdivided into two major units separated by a pronounced unconformity. The lower unit (the Tozlu metaophiolite) is a typical oceanic crust assemblage consisting of ultramafic rocks and cumulate gabbros. It is unconformably overlain by a thick platform sequence of the upper group (the Sar?k?z unit). The basement ophiolites and overlying platform strata were subjected to a single stage of high-temperature metamorphism under progressive compression during the Alpine orogeny, accompanied by migmatitic metagranite emplacement. Radiometric age data obtained from the Kazda?? metamorphic succession reveal a wide range of ages. Metagranites of the Kazda?? metamorphic succession define a U–Pb discordia upper intercept age of ca. 230 Ma and a lower intercept age of 24.8 ± 4.6 Ma. This younger age agrees with 207Pb/206Pb single-zircon evaporation ages of 28.2 ± 4.1 to 26 ± 5.6 Ma. Moreover, a lower intercept age of 28 ± 10 Ma from a leucocratic metagranite supports the Alpine ages of the massif within error limits. Reconnaissance detrital zircon ages constrain a wide range of possible transport and deposition ages of the metasediments in the Sar?k?z unit from ca. 120 to 420 Ma. Following high-temperature metamorphism and metagranite emplacement, the Kazda?? sequence was internally imbricated by Alpine compression, and the lowermost Tozlu ophiolite thrust southward onto the Sar?k?z unit. Field mapping, internal stratigraphy, and new radiometric age data show that the Sar?k?z unit is the metamorphic equivalent of the Mesozoic platform succession of the Sakarya Zone. The underlying metaophiolites are remnants of the Palaeo tethys Ocean, which closed during the early Alpine orogeny. After strong deformation attending nappe emplacement, the unmetamorphosed Miocene Evciler and Kavlaklar granites intruded the tectonic packages of the Kazda?? Massif. During Pleistocene time, the Kazda?? Massif was elevated by EW trending high-angle normal faults dipping to Edremit Gulf, and attained its present structural and topographic position. Tectonic imbrication, erosion and younger E–W-trending faulting were the main cause of the exhumation of the massif.  相似文献   

6.
Integrated textural and chemical characterisation of zircon is used to refine the U–Pb geochronology of the Archaean, ultra-high temperature Napier Complex, east Antarctica. Scanning electron microscope characterisation of zircon and the rare earth element compositions of zircon, garnet and orthopyroxene are integrated to place zircon growth in an assemblage context, thereby providing tighter constraints on the timing of magmatic and metamorphic events. Data indicate that magmatism occurred in the central and northern Napier Complex at ca. 2,990 Ma. A regional, relatively low-pressure metamorphic event occurred at ca. 2,850–2,840 Ma. Mineral REE data from garnet-bearing orthogneiss indicate that ca. 2,490–2,485 Ma U–Pb zircon ages provide an absolute minimum age for the ultrahigh temperature (UHT) foliation preserved in this rock. Internal zircon zoning relationships and estimated zircon-garnet DREE values from paragneiss suggest that an absolute minimum age of ultra-high temperature metamorphism is ca. 2,510 Ma, but that it is more likely to be older than ca. 2,545 Ma. We suggest that the high proportion of published zircon U–Pb data with ages between ca. 2,490–2,450 Ma reflects late, post-peak zircon growth and does not date the timing of peak UHT metamorphism.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

7.
Ultrahigh temperature (UHT) metamorphism is traditionally recognized by the development of characteristic mineral associations in Mg–Al-rich metapelitic rocks. However, recognition of UHT metamorphism in non-supracrustal rocks is more difficult. UHT metamorphic conditions are recorded by a migmatite from the North Dabie Terrane (NDT) of the Dabie orogen, east China. The migmatite is composed of intercalated layers of melanosome and K-feldspar-rich leucosome. Zircon grains in the migmatite have a core–rim structure comprising a metamorphic core and an anatectic rim. The metamorphic cores have low U contents (mainly <657 ppm) and low Th/U ratios (<0.2), and are depleted in heavy rare earth element (HREE). The metamorphic domains yield concordant 206Pb/238U ages ranging from 205.1 ± 4.8 Ma to 248.0 ± 4.1 Ma with a weighted mean of 217.7 ± 4.3 Ma (n = 20, MSWD = 4.2). They contain a granulite-facies inclusion assemblage of garnet + clinopyroxene + plagioclase + quartz + rutile. Conventional geobarometry and Ti-in-zircon thermometry constrain PT conditions to approximately 11–12 kbar and 900–950 °C, suggesting UHT metamorphism. The discovery of Triassic UHT metamorphism in the Dabie orogen, which was previously best known for ultrahigh pressure metamorphism, provides new insights into the thermal structure and geodynamics of the orogeny during continental collision. The anatectic rims of zircon grains have relatively high U contents and low Th/U ratios (<0.14), and are enriched in HREE. They yield concordant 206Pb/238U ages of 133.6 ± 1.1 Ma to 156.4 ± 2.2 Ma, indicating that anatexis occurred during post-collisional collapse of the Dabie orogen.  相似文献   

8.
Mineralogy and Petrology - A transmission electron microscope (TEM) study of Paleoproterozoic zircon that has experienced ultra-high temperature (UHT) metamorphism at ca. 570&nbsp;Ma in the...  相似文献   

9.
The formation conditions and age of the Sukhoi Log gold deposit are considered on the basis of new isotopic-geochemical data. The U-Pb isotopic study of zircon and monazite from high-grade ore and host black slates at the Sukhoi Log deposit was carried out with SIMS technique using a SHRIMP II instrument. Two generations of monazite are distinguished on the basis of optical and scanning electron microscopy, cathodoluminescence, and micro X-ray spectroscopy. Monazite I is characterized by black opaque porphyroblasts with microinclusions of minerals pertaining to metamorphic slates and structural attributes of pre- and synkinematic formation. Monazite II occurs only within the ore zone as transparent crystals practically free of inclusions and as rims around monazite I. The REE contents are widely variable in both generations. Porphyroblastic monazite I differs in low U and Th (0.01–0.7 wt % ThO2) contents, whereas transparent monazite II contains up to 4 wt % ThO2. The average weighted U-Pb isotopic age of monazite I is 650 ± 8.1 Ma (MSWD = 1.6; n = 9) and marks the time of metamorphism or catagenesis. The U-Pb age estimates of synore monazite II cover the interval of 486 ± 18 to 439 ± 17 Ma. Zircons of several populations from 0.5 to 2.6 Ga in age are contained in the ore. Most detrital zircon grains have porous outer rims composed of zircon and less frequent xenotime with numerous inclusions of minerals derived from slates. The peaks of 206Pb/238U ages in the most abundant zircon populations fall on 570 and 630 Ma and correspond to the age of newly formed metamorphic mineral phases. The discordant isotopic ages indicate that the U-ThPb isotopic system of ancient detrital zircons was disturbed 470–440 Ma ago in agreement with isotopic age of monazite II and the Rb-Sr whole -rock isochron age of black slates (447 ± 6 Ma). The new data confirm the superimposed character of the gold-quartz-sulfide mineralization at the deposit. Black shales of the Khomolkho Formation of the Bodaibo Synclinorium were affected by metamorphism over a long period; the peaks of metamorphism and catagenesis are dated at 570 and 650–630 Ma. The high-temperature ore formation was probably related to a hidden granitic pluton emplaced 450–440 Ma ago, that is, 200 Ma later than the events of greenschist metamorphism. Hercynian granitoid magmatism (320–270 Ma) did not exert a substantial effect on the U-Th-Pb isotopic system in accessory minerals from the ore and could not have been a major source of ore-forming fluids.  相似文献   

10.
The Madurai Block (MB) is the largest Precambrian crustal block in the Southern Granulite Terrane (SGT) of India and hosts rare cordierite- and orthopyroxene-bearing granulites. Investigations based on field study, petrology, metamorphic PT estimation, and detrital zircon geochronology of these granulites are crucial for understanding the ultrahigh-temperature (UHT) metamorphism and crustal evolution in this block. Here we investigate the petrology and zircon U–Pb geochronology of two new localities of cordierite granulites at Kottayam (southern MB; SMB) and Munnar (central MB; CMB). Petrographic observations and phase equilibria modelling results indicate that these rocks experienced UHT metamorphism with the peak temperature exceeding 950℃ and involving clockwise P–T paths. The prograde mineral assemblages define the PT conditions of 6.8–8.7 kbar and 750–875℃. The peak conditions are estimated using pseudosection modelling and geothermometry, which yield PT estimates of 7.1–9.1 kbar and 955–985℃. The retrograde cooling and decompression are inferred at 860–790℃ and <6.5 kbar, respectively. Partial melting played an important role during metamorphism and contributed to the overgrowth around detrital zircons. The melt production process was probably related to biotite dehydration melting, and was mainly triggered by heating, with or without the effect of decompression. Detrital zircons in cordierite granulite samples from the two localities show similar age distributions and have dominantly Neoproterozoic ages (1024–760 Ma). The zircon cores show oscillatory zoning with a wide range of Th/U ratios (0.01–0.96), implying complex protoliths from multiple Neoproterozoic provenances from both southern and central domains of the MBs. Zircon rims and homogeneous bright zircons yield mean ages of 549 ± 5 Ma, 536 ± 6 Ma, and 544 ± 6 Ma, which are interpreted to represent zircon overgrowths during the post-peak cooling and decompression process. The timing of peak UHT metamorphism is constrained as 549–599 Ma, which coincides with the assembly of the Gondwana supercontinent.  相似文献   

11.
Microtextural, U–Pb, trace element and Lu–Hf analyses of zircons from gneisses dredged from the Chukchi Borderland indicate a long-lived, Cambrian–Ordovician, granulite facies metamorphism. These results reveal a complete prograde, peak and cooling history of zircon growth during anatexis. Early increasing temperatures caused modification and Pb-loss of Precambrian zircons by recrystallization and dissolution/re-precipitation of existing grains. Small variations in initial 176Hf/177Hf results (0.282325–0.282042) and flat HREE patterns of these zircons indicate that they grew by dissolution/re-precipitation in the presence of garnet. Zircons subsequently crystallized from a partial melt during peak to post-peak metamorphism from 530 to 485 Ma. A broad range of initial 176Hf/177Hf ratios (0.282693–0.282050) and mineral inclusions within zircons suggest that this phase of growth incorporated Zr and Hf obtained from the breakdown of Zr-enriched phases. Microtextural evidence along with trace element and isotopic data suggests that final growth of metamorphic rims on zircon occurred during slow cooling and crystallization of residual partial melts during the early Ordovician (485–470 Ma). Younger, late Ordovician–Silurian (420–450 Ma) euhedral, oscillatory-zoned, trace element-enriched zircons crystallized within leucocratic veins that intrude the gneisses. Their age corresponds to granitoids dated from this same dredge. The intrusives and veins provide evidence that the Chukchi Borderland rifted from a position near Pearya and northwest Svalbard, which represent the northern continuation of the Caledonian orogen. Evidence for earlier Cambrian metamorphism has not been reported from this region. The age of granulite facies metamorphism reported here represents the earliest phase of deformation in the Arctic Caledonides.  相似文献   

12.
Behavior of zircon at the schist/migmatite transition is investigated. Syn-metamorphic overgrowth is rare in zircon in schists, whereas zircon in migmatites has rims with low Th/U that give 90.3 ± 2.2 Ma U–Pb concordia age. Between inherited core and the metamorphic rim, a thin, dark-CL annulus containing melt inclusion is commonly developed, suggesting that it formed contemporaneous with the rim in the presence of melt. In diatexites, the annulus is further truncated by the brighter-CL overgrowth, suggesting the resorption and regrowth of the zircon after near-peak metamorphism. Part of the zircon rim crystallized during the solidification of the melt in migmatites. Preservation of angular-shaped inherited core of 5–10 μm in zircon included in garnet suggests that zircon of this size did not experience resorption but developed overgrowths during near-peak metamorphism. The Ostwald ripening process consuming zircon less than 5–10 μm is required to form new overgrowths. Curved crystal size distribution pattern for fine-grained zircons in a diatexite sample may indicate the contribution of this process. Zircon less than 20 μm is confirmed to be an important sink of Zr in metatexites, and ca. 35-μm zircon without detrital core are common in diatexites, supporting new nucleation of zircon in migmatites. In the Ryoke metamorphic belt at the Aoyama area, monazite from migmatites records the prograde growth age of 96.5 ± 1.9 Ma. Using the difference of growth timing of monazite and zircon, the duration of metamorphism higher than the amphibolite facies grade is estimated to be ca. 6 Myr.  相似文献   

13.
In‐situ SIMS analyses of O and U‐Pb isotopes were carried out for zircons from a quartz vein hosted by ultrahigh‐pressure metagranite (UHP) in the Dabie orogen. The results are integrated to decipher the property of unusual U‐rich aqueous fluids and their effects on both metamorphic and magmatic zircons during exhumation of the UHP metagranite. In CL images, most zircon grains show distinct core‐rim structures. Relict cores are bright and exhibit oscillatory or patchy zonation, giving Neoproterozoic upper‐intercept ages of 795 ± 26 Ma. Newly grown rims are dark and exhibit no zoning, yielding Triassic concordant ages of 215 ± 5 Ma. The cores give Th contents of 59 to 463 ppm and U contents of 98 to 558 ppm, with Th/U ratios of 0.263 to 1.423. The rims yield reduced Th contents of 11 to 124 ppm but significantly elevated U contents of 1051 to 3531 ppm, with Th/U ratios of 0.010 to 0.035. Comparison with the cores of magmatic origin, the unusual enrichment in U but depletion in Th in the rims of metamorphic origin are interpreted as zircon growth from Cl‐rich oxidized vein‐forming aqueous fluids that were produced by dehydration reactions of the wallrock during continental exhumation. The cores have variably positive δ18O values with concordant or discordant Neoproterozoic U‐Pb ages, suggesting their solid‐state modification of both O and U‐Pb isotopes through interaction with the fluids. The rims yield negative δ18O values, indicating their growth from the negative δ18O fluids. Taken together, the proposed Cl‐rich oxidized negative‐δ18O vein‐forming aqueous fluids have such an ability to not only cause variable metamorphic recrystallization in the relict magmatic zircons but also produce dramatic fractionation of U over Th in the metamorphic zircons during quartz veining, and potentially impact on the overlain metasomatite in the mantle wedge.  相似文献   

14.
Isotopic analyses of ancient mantle-derived magmatic rocks are used to trace the geochemical evolution of the Earth’s mantle, but it is often difficult to determine their primary, initial isotope ratios due to the detrimental effects of metamorphism and secondary alteration. We present in situ analyses by LA-MC-ICPMS for the Pb isotopic compositions of igneous plagioclase (An75–89) megacrysts and the Hf isotopic compositions of BSE-imaged domains of zircon grains from two mantle-derived anorthosite complexes from south West Greenland, Fiskenæsset and Nunataarsuk, which represent two of the best-preserved Archean anorthosites in the world. In situ LA-ICPMS U–Pb geochronology of the zircon grains suggests that the minimum crystallization age of the Fiskenæsset complex is 2,936 ± 13 Ma (2σ, MSWD = 1.5) and the Nunataarsuk complex is 2,914 ± 6.9 Ma (2σ, MSWD = 2.0). Initial Hf isotopic compositions of zircon grains from both anorthosite complexes fall between depleted mantle and a less radiogenic crustal source with a total range up to 5 εHf units. In terms of Pb isotopic compositions of plagioclase, both anorthosite complexes share a depleted mantle end member yet their Pb isotopic compositions diverge in opposite directions from this point: Fiskenæsset toward a high-μ, more radiogenic Pb, crustal composition and Nunataarsuk toward low-μ, less radiogenic Pb, crustal composition. By using Hf isotopes in zircon in conjunction with Pb isotopes in plagioclase, we are able to constrain both the timing of mantle extraction of the crustal end member and its composition. At Fiskenæsset, the depleted mantle melt interacted with an Eoarchean (~3,700 Ma) mafic crust with a maximum 176Lu/177Hf ~0.028. At Nunataarsuk, the depleted mantle melt interacted with a Hadean (~4,200 Ma) mafic crust with a maximum 176Lu/177Hf ~0.0315. Evidence from both anorthosite complexes provides support for the long-term survival of ancient mafic crusts that, although unidentified at the surface to date, could still be present within the Fiskenæsset and Nunataarsuk regions.  相似文献   

15.
The post-Mesoproterozoic tectonometamorphic history of the Musgrave Province, central Australia, has previously been solely attributed to intracontinental compressional deformation during the 580 -520 Ma Petermann Orogeny. However, our new structurally controlled multi-mineral geochronology results,from two north-trending transects, indicate protracted reactivation of the Australian continental interior over ca. 715 million years. The earliest events are identified in the hinterland of the orogen along the western transect. The first tectonothermal event, at ca. 715 Ma, is indicated by40 Ar/39 Ar muscovite and U e Pb titanite ages. Another previously unrecognised tectonometamorphic event is dated at ca. 630 Ma by Ue Pb analyses of metamorphic zircon rims. This event was followed by continuous cooling and exhumation of the hinterland and core of the orogen along numerous faults, including the Woodroffe Thrust,from ca. 625 Ma to 565 Ma as indicated by muscovite, biotite, and hornblende40 Ar/39 Ar cooling ages. We therefore propose that the Petermann Orogeny commenced as early as ca. 630 Ma. Along the eastern transect,40 Ar/39 Ar muscovite and zircon(Ue Th)/He data indicate exhumation of the foreland fold and thrust system to shallow crustal levels between ca. 550 Ma and 520 Ma, while the core of the orogen was undergoing exhumation to mid-crustal levels and cooling below 600-660℃. Subsequent cooling to 150 -220℃ of the core of the orogen occurred between ca. 480 Ma and 400 Ma(zircon [Ue Th]/He data)during reactivation of the Woodroffe Thrust, coincident with the 450 -300 Ma Alice Springs Orogeny.Exhumation of the footwall of the Woodroffe Thrust to shallow depths occurred at ca. 200 Ma. More recent tectonic activity is also evident as on the 21 May, 2016(Sydney date), a magnitude 6.1 earthquake occurred, and the resolved focal mechanism indicates that compressive stress and exhumation along the Woodroffe Thrust is continuing to the present day. Overall, these results demonstrate repeated amagmatic reactivation of the continental interior of Australia for ca. 715 million years, including at least 600 million years of reactivation along the Woodroffe Thrust alone. Estimated cooling rates agree with previously reported rates and suggest slow cooling of 0.9 -7.0℃/Ma in the core of the Petermann Orogen between ca. 570 Ma and 400 Ma. The long-lived, amagmatic, intracontinental reactivation of central Australia is a remarkable example of stress transmission, strain localization and cratonization-hindering processes that highlights the complexity of Continental Tectonics with regards to the rigid-plate paradigm of Plate Tectonics.  相似文献   

16.
The age of Proterozoic granulite facies metamorphism and deformation in the Strangways Metamorphic Complex (SMC) of central Australia is determined on zircon grown in syn-metamorphic and syn-deformational orthopyroxene-bearing, enderbitic, veins. SHRIMP zircon studies suggest that M 1–M 2 and the correlated periods of intense deformation (D 1–D 2) are part of a single tectonothermal event between 1,717±2 and 1,732±7 Ma. It is considered unlikely that the two metamorphic phases (M 1, M 2) suggested by earlier work represent separate events occurring within 10–25 Ma of each other. Previous higher estimates for the age of M 1 granulite metamorphism in the SMC (Early Strangways event at ca. 1,770 Ma) based on U–Pb zircon dating of granitic, intrusive rocks, are not believed to relate to the metamorphism, but to represent pre-metamorphic intrusion ages. Conventional multi-grain U–Pb monazite analyses on high-grade metasediments from three widely spaced localities in the western SMC yield 207Pb/ 235U ages between 1,728±11 and 1,712±2 Ma. The age range of the monazites corresponds to the SHRIMP zircon ages in the granulitic veins and is interpreted to record monazite growth (prograde in the metasedimentary rocks). The data imply a maximum time-span of 30 Ma for high-grade metamorphism and deformation in the SMC. There is, thus, no evidence for an extremely long period of continuous high-temperature conditions from 1,770 to ca. 1,720 Ma as previously proposed. The results firmly establish that the SMC has a very different high-grade metamorphic history than the neighbouring Harts Range, where upper amphibolite facies metamorphism in the Palaeozoic caused widespread growth or recrystallization of monazite.  相似文献   

17.
Zircons from anatectic melts of the country rocks of three Proterozoic mafic–ultramafic intrusions from the Sveconorwegian Province in SW Sweden were microanalyzed for U–Th–Pb and rare earth elements. Melting and interaction of the wall rocks with the intrusions gave rise to new magmas that crystallized zircon as new grains and overgrowths on xenocrysts. The ages of the intrusions can be determined by dating this newly crystallized zircon. The method is applied to three intrusions that present different degrees of complexity, related to age differences between intrusion and country rocks, and the effects of post-intrusive metamorphism. By careful study of cathodoluminescent images and selection of ion probe spots in zircon grains, we show that this approach is a powerful tool for obtaining accurate and precise ages. In the contact melts around the 916?±?11?Ma Hakefjorden Complex, Pb-loss occurred in some U-rich parts of xenocrystic zircon due to the heat from the intrusion. In back-veins of the 1624?±?6?Ma Olstorp intrusion we succeeded in geochemically distinguishing new magmatic from xenocrystic zircon despite small age differences. At Borås the mafic intrusion mixed with country rock granite to form a tonalite in which new zircon grew at 1674?±?8?Ma. Reworking of zircon occurred during 930+33/–34?Ma upper amphibolite facies Sveconorwegian metamorphism. Pb-loss was the result of re-equilibration with metamorphic fluids. REE-profiles show consistent differences between xenocrystic, magmatic, and metamorphic zircon in all cases. They typically differ in Lu/LaN, Ce/Ce*, and Eu/Eu*, and igneous zircon with marked positive Ce/Ce* and negative Eu/Eu* lost its anomalies during metamorphism.  相似文献   

18.
《International Geology Review》2012,54(15):1856-1883
ABSTRACT

Here we report new LA-ICPMS U–Pb zircon geochronology of ultrahigh temperature (UHT) metasedimentary rocks and associated crystallized melt patches, from the central Highland Complex (HC), Sri Lanka. The detrital zircon 206Pb/238U age spectra range between 2834 ± 12 and 722 ± 14 Ma, evidencing new and younger depositional ages of sedimentary protoliths than those known so far in the HC. The overgrowth domains of zircons in these UHT granulites yield weighted mean 206Pb/238U age clusters from 665.5 ± 5.9 to 534 ± 10 Ma, identified as new metamorphic ages of the metasediments in the HC. The zircon ages of crystallized in situ melt patches associated with UHT granulites yield tight clusters of weighted mean 206Pb/238U ages from 558 ± 1.6 to 534 ± 2.4 Ma. Thus, using our results coupled with recently published geochronological data, we suggest a new geochronological framework for the evolutionary history of the metasedimentary package of the HC. The Neoarchean to Neoproterozoic ages of detrital zircons indicate that the metasedimentary package of the HC has derived from ancient multiple age provenances and deposited during the Neoproterozoic Era. Hence, previously reported upper intercept ages of ca. 2000–1800 Ma from metaigneous rocks should be considered as geochronological evidence for existence of a Palaeoproterozoic igneous basement which possibly served as a platform for the deposition of younger supracrustal rocks, rather than timing of magmatic intrusions into the already deposited ancient sediments, as has been conventionally interpreted. The intense reworking of entire Palaeoproterozoic basement rocks in the Gondwana Supercontinent assembly may have caused sediments of multiple ages and provenances to incorporate within supra-crustal sequences of the HC. Further, our data supports a convincing geochronological correlation between the HC of Sri Lanka and the Trivandrum Block of Southern India, disclosing the Gondwanian linkage between the HC of Sri Lanka and Southern Granulite Terrain of India.  相似文献   

19.
《International Geology Review》2012,54(12):1446-1461
ABSTRACT

Meta-pelitic rocks with interlayers of meta-psammites within the inner thermal aureole of the Alvand plutonic complex (Sanandaj-Sirjan Zone (SaSZ), western Iran) underwent partial melting; generating various types of migmatites. The mesosome of the Hamedan migmatites is classified into two groups: (1) cordierite-rich and Al-silicate-poor mesosomes and (2) cordierite-poor, Al-silicate-rich groups. Leucosomes are also variable, ranging from plagioclase-rich to K-feldspar-rich leucosomes. Mineral-chemical studies and thermobarometric estimations indicate temperature and pressure of 640–700°C and 3–5 kbar, respectively, for the formation of mesosomes. U–Pb zircon geochronology on 214 grains from the mesosome of migmatites indicates ages of 160–180 Ma (ca ~170 Ma) for zircon metamorphic rims and variable ages of 190–2590 Ma for the inherited detrital zircon cores. Inherited core ages show various age populations, but age populations at 200–600 Ma are more frequent. The age populations of the detrital zircons clarify that the provenance of the younger zircon grains (200–500 Ma) was more likely the Iranian plate, whereas the older grains (600 Ma to >2.5 Ga) may be sourced from both northern Gondwana (such as Arabian-Nubian Shield) and the neighbouring, old cratons like as Africa. We suggest that magmatic activities, especially mafic plutonism at ~167 Ma, are the main triggers for the heat source of metamorphism, partial melting, and migmatization. In contrast to a presumed idea for a Cretaceous regional metamorphic event in the NW parts of the SaSZ, this study attests that the metamorphism should be older and can be associated with Jurassic magmatic pulses.  相似文献   

20.
We report here U–Pb electron microprobe ages from zircon and monazite associated with corundum- and sapphirine-bearing granulite facies rocks of Lachmanapatti, Sengal, Sakkarakkottai and Mettanganam in the Palghat–Cauvery shear zone system and Ganguvarpatti in the northern Madurai Block of southern India. Mineral assemblages and petrologic characteristics of granulite facies assemblages in all these localities indicate extreme crustal metamorphism under ultrahigh-temperature (UHT) conditions. Zircon cores from Lachmanapatti range from 3200 to 2300 Ma with a peak at 2420 Ma, while those from Mettanganam show 2300 Ma peak. Younger zircons with peak ages of 2100 and 830 Ma are displayed by the UHT granulites of Sengal and Ganguvarpatti, although detrital grains with 2000 Ma ages are also present. The Late Archaean-aged cores are mantled by variable rims of Palaeo- to Mesoproterozoic ages in most cases. Zircon cores from Ganguvarpatti range from 2279 to 749 Ma and are interpreted to reflect multiple age sources. The oldest cores are surrounded by Palaeoproterozoic and Mesoproterozoic rims, and finally mantled by Neoproterozoic overgrowths. In contrast, monazites from these localities define peak ages of between 550 and 520 Ma, with an exception of a peak at 590 Ma for the Lachmanapatti rocks. The outermost rims of monazite grains show spot ages in the range of 510–450 Ma.While the zircon populations in these rocks suggest multiple sources of Archaean and Palaeoproterozoic age, the monazite data are interpreted to date the timing of ultrahigh-temperature metamorphism in southern India as latest Neoproterozoic to Cambrian in both the Palghat–Cauvery shear zone system and the northern Madurai Block. The data illustrate the extent of Neoproterozoic/Cambrian metamorphism as India joined the Gondwana amalgam at the dawn of the Cambrian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号