首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although zircon is the most widely used geochronometer to determine the crystallisation ages of granites, it can be unreliable for low-temperature melts because they may not crystallise new zircon. For leucocratic granites U–Pb zircon dates, therefore, may reflect the ages of the source rocks rather than the igneous crystallisation age. In the Proterozoic Capricorn Orogen of Western Australia, leucocratic granites are associated with several pulses of intracontinental magmatism spanning ~800 million years. In several instances, SHRIMP U–Pb zircon dating of these leucocratic granites either yielded ages that were inconclusive (e.g., multiple concordant ages) or incompatible with other geochronological data. To overcome this we used SHRIMP U–Th–Pb monazite geochronology to obtain igneous crystallisation ages that are consistent with the geological and geochronological framework of the orogen. The U–Th–Pb monazite geochronology has resolved the time interval over which two granitic supersuites were emplaced; a Paleoproterozoic supersuite thought to span ~80 million years was emplaced in less than half that time (1688–1659 Ma) and a small Meso- to Neoproterozoic supersuite considered to have been intruded over ~70 million years was instead assembled over ~130 million years and outlasted associated regional metamorphism by ~100 million years. Both findings have consequences for the duration of associated orogenic events and any estimates for magma generation rates. The monazite geochronology has contributed to a more reliable tectonic history for a complex, long-lived orogen. Our results emphasise the benefit of monazite as a geochronometer for leucocratic granites derived by low-temperature crustal melting and are relevant to other orogens worldwide.  相似文献   

2.
Late-stage Pan-African granitoids, including monzogranite, syenogranite and alkali granite, were collected from four separate localities in Sinai. They were selected to represent both the calc-alkaline and alkaline suites that have been viewed as forming separate magmatic episodes in the Eastern Desert of Egypt, with the transition to alkali granite at ~ 610 Ma taken to mark the onset of crustal extension. Although intrusive relations were observed in the field, the emplacement ages of the granitoids cannot be distinguished within analytical uncertainty and they all formed within a restricted time span from 579 to 594 Ma. This indicates that the two suites are coeval and that some calc-alkaline rocks were also likely generated during the late extensional phase. These ages are identical to those recently obtained from similar rocks in the North-Eastern Desert, confirming that Sinai is the northern extension of the Eastern Desert Pan-African terrane of Egypt. Rare inherited zircons with ages of ~ 1790 and ~ 740 Ma are present in syenogranite from northeastern Sinai and indicate that older material is present within the basement. A few zircons record younger ages and, although some may reflect later disturbance of the main zircon population, those with ages of ~ 570 and 535 Ma probably reflect thermal events associated with the extensive emplacement of mafic and felsic dykes in both northeastern and southern Sinai.  相似文献   

3.
The South-American continent is constituted of three major geologic–geotectonic entities: the homonym platform (consolidated at the end of the Cambrian), the Andean chain (essentially Meso-Cenozoic) and the Patagonian terrains, affected by tectonism and magmatism through almost all of the Phanerozoic. The platform is constituted by a series of cratonic nuclei (pre-Tonian, fragments of the Rodinia fission) surrounded by a complex fabric of Neoproterozoic structural provinces.  相似文献   

4.
In the northern extension of the Famatina and the southern Puna (NW Argentina) prominent rhyolitic volcanic rocks traditionally referred to as Ordovician are exposed, resting on metamorphic basement and covered by thick Late Paleozoic siliciclastic successions. We report new U–Pb SHRIMP ages from these rhyolites that show them to be of Mississippian (348–342 Ma) age, thus identifying a previously unknown volcanic event in this portion of western Gondwana. Whole-rock geochemistry and Sr–Nd isotopic analyses suggest a crustal source for these rocks but with a juvenile input (εNd(t) between ? 2.91 and ? 0.3, and TDM values between 1.09 and 1.1 Ga). This is different from the Early Paleozoic magmatism of western Argentina where crustal recycling took place without any involvement of mantle material. The Carboniferous magmatism is compatible with an extensional environment developed along the Terra Australis accretionary orogen as a result of tectonic switching processes. These rhyolites may be related to the coeval Mississippian A-type granites exposed to the east, in the Sierras Pampeanas, confirming the regional character of this magmatism.  相似文献   

5.
6.
Chronology of Neoproterozoic volcanosedimentary successions remains controversial for many regions of the Arabian–Nubian Shield, including the Dokhan Volcanics of NE Egypt. New U–Pb zircon SHRIMP ages have been obtained for 10 silica-rich ignimbrites and two subvolcanic dacitic bodies, mapped as Dokhan Volcanics, from the North Eastern Desert of Egypt. Crystallization ages range between 592 ± 5 and 630 ± 6 Ma (Early Ediacaran). Apparently, the late consolidation of the Arabian–Nubian Shield was accompanied by the evolution of isolated volcanic centres and basin systems which developed during a period of approx. 40 Ma, independently in space and time and probably under changing tectonic regimes. The obtained age data together with other previously published reliable ages for Dokhan Volcanics suggest two main pulses of volcanic activity: 630–623 Ma and 618–592 Ma. Five samples contain inherited zircons, with ages of 669, 715–746, 847 and 1530 Ma, supporting models that North Eastern Desert crust is mainly juvenile Neoproterozoic crust.  相似文献   

7.
We report SHRIMP U–Pb age of zircons in four samples of eclogite and one sample of orthogneiss from Sulu ultrahigh-pressure (UHP) zone in Yangkou area, eastern China. UHP rocks are distributed along the Sulu orogenic belt suturing North China Block with South China Block. In Yangkou area, UHP unit is well exposed for about 200 m along Yangkou beach section and consists mainly of blocks or lenses of ultramafic rocks and eclogite together with para- and orthogneiss which are highly sheared partly. Zircon grains examined in this study from eclogite show oscillatory zoning and overgrowth texture in CL images, and most of the grains have high Th/U ratio ranging from 0.8 to 2.1 indicating an igneous origin. The weighted mean 206Pb/238U ages of zircons from the four samples range from 690 to 734 Ma. These ages can be correlated to the magmatic stage of the protoliths. In rare cases, zircon grains possess a narrow rim with very low Th/U ratio (< 0.02). EPMA U–Th-total Pb dating of such rim yields younger ages that range from 240 to 405 Ma marking the metamorphic stage. On the other hand, zircons from the orthogneiss show irregular shape and zoning with inclusion-rich core and inclusion-free rim. These grains of zircon yield U–Pb discordia intercept ages of 226 ± 63 Ma and 714 ± 110 Ma (MSWD 0.78). Bulk of the areas of the rims rim of the zircons demonstrate younger 206Pb/238U ages close to the upper intercept, with low Th/U ratio (< 0.20) indicating their metamorphic origin. In contrast, the cores show older 206Pb/238U ages close to lower intercept and high Th/U ratio of (0.14–5.25) indicating their igneous origin. The upper intercept age is also commonly noted in zircons from eclogite. Our results suggest a bimodal igneous activity along this zone during the Neoproterozoic, probably related to the rifting of the Rodinia supercontinent.  相似文献   

8.
The Pulang complex is located tectonically at the southern margin of the Yidun–Zhongdian island arc belt in Yunnan province, China, and is closely related to formation of the Pulang copper deposit, which is the largest copper deposit in Asia. The Pulang complex can be divided into three intrusion stages based on contact relationships and petrological characteristics: (1) a first stage of quartz dioritic porphyry; (2) a second stage of quartz monzonitic porphyry; and (3) a third stage of granodioritic porphyry. The crystallization ages of these intrusion stages were determined by single-zircon U–Pb dating, yielding ages of 221.0 ± 1.0, 211.8 ± 0.5, and 206.3 ± 0.7 Ma for the first, second, and third stages, respectively. These dates, integrated with previous geochronological data and field investigations, indicate that the second-stage quartz monzonitic porphyry has a close spatial and temporal relationship with the large Pulang porphyry copper deposit. These age data, geochemical and Sr–Nd isotopic results suggest that the Pulang complex formed in the Indo-Chinese epoch (257 ~ 205 Ma) by multiphase intrusion of a mixture of mantle- and crust-derived magmas.  相似文献   

9.
Sedimentological characteristics and zircon provenance dating of the Babulu Formation in the Fohorem area, Timor-Leste, provide new insights into depositional process, detailed sedimentary environment and the distribution of source rocks in the provenance. Detrital zircon sensitive high-resolution ion microprobe (SHRIMP) U–Pb ages range from Neoarchean to Triassic, with the main age pulses being Paleozoic to Triassic. In addition, the maximum deposition ages based on the youngest major age peak (ca 256–238 Ma) of zircon grains indicate that the basal sedimentation of the Babulu Formation occurred after the early Upper Triassic. The formation consists predominantly of mudstone with minor sandstone, limestone and conglomerate that were deposited in a deep marine environment. These deposits are composed of six lithofacies that can be grouped into three facies associations (FAs) based on the constituent lithofacies and bedding features: basin plain deposits (FA I), distal fringe lobe deposits (FA II) and medial to distal lobe deposits (FA III). The predominance of mudstone (FA I) together with intervening thin-bedded sandstones (FA II) suggest that the paleodepositional environment was a low energy setting with slightly basin-ward input of the distal part of the depositional lobes. Discrete and abrupt occurrences of thick-bedded sandstone (FA III) within the FA I mudstone suggests that sandstone originated from a collapse of upslope sediments rather than a progressive progradation of deltaic turbidites. This combined petrological and geochronological study demonstrates that the Babulu Formation in the Fohorem area of the Timor-Leste was initiated as a submarine lobe system in a relatively deep marine environment during the Upper Triassic and represents the extension of the Gondwana Sequence at the Australian margin.  相似文献   

10.
The late Carboniferous to Triassic tectonic history of eastern Australia includes important periods of regional-scale crustal extension and contraction. Evidence for these periods of tectonism is recorded by the extensive Pennsylvanian (late Carboniferous) to Triassic basin system of eastern Australia. In this study, we investigate the use of U–Pb dating of detrital zircons in reconstructing the tectonic development of one of these basins, the eastern Galilee Basin of Queensland. U–Pb detrital zircon ages were obtained from samples of stratigraphically well-constrained Cisuralian and Lopingian (early and late Permian, respectively) sandstone in the Galilee Basin. Detrital zircons in these sandstones are dominated by a population with ages in the range of 300–250 Ma, and ages from the youngest detrital zircons closely approximate depositional ages. We attribute these two fundamental findings to (1) appreciable derivation of detrital zircons in the Galilee Basin from the New England Orogen of easternmost Australia and (2) syndepositional magmatism. Furthermore, Cisuralian sandstone of the Galilee Basin contains significantly more >300 Ma detrital zircons than Lopingian sandstone. The transition in detrital zircon population, which is bracketed between 296 and 252 Ma based on previous high-precision U–Pb zircon ages from Permian ash beds in the Galilee Basin, corresponds with the Hunter–Bowen Orogeny and reflects a change in the Galilee Basin from an earlier extensional setting to a later foreland basin environment. During the Lopingian foreland basin phase, the individual depocentres of the Galilee and Bowen basins were linked to form a single and enormous foreland basin that covered >300 000 km2 in central and eastern Queensland.  相似文献   

11.
Recrystallization of zircons under the influence of fluids was studied using examples from Precambrian rocks (microcline granites, metasedimentary, and mafic rocks) of the Kola Peninsula. All zircon crystals showed complex internal textures visible by cathodoluminescence and backscattered electron (BSE) imaging. Detailed mineralogical and geochemical studies with subsequent secondary ion mass spectrometer U–Pb dating of different zircon domains show that secondary texture formation can be interpreted in terms of metasomatic replacement of zircon crystals on the base of crystallogenetic experimental models. Mechanisms of zircon replacement and interpretation of U–Pb ages for secondary zircon domains are dependent on the degree of damage of the zircon structure and the fluid composition. The recrystallization of metamict zircon without additional supply of new zircon substance (Zr, SiO2) goes with the dissolution of amorphous domains and precipitation of new polycrystalline zircon, which preserves the U–Pb initial age, but loses radiogenic lead, and the lower intercept of Discordia lines with the Concordia curve determines the time of fluid influence. The recrystallization of metamict zircon or crystalline zircon with high contents of impurities with additional supply of Si and Zr forms monocrystalline replacements. Dissolution of primary zircon is accompanied by growth of new zircon domains differing in the composition of isomorphic impurities and zones of transitional composition, whose ages have no geological sense. The study is of particular importance for zircons from Precambrian rocks with long and complex histories.  相似文献   

12.
This paper presents a great number of detrital zircon U–Pb ages from the Middle Triassic to the Middle Jurassic sediments in the Jiyuan basin, southern North China. The results represent age spectra from 2.9 Ga to 216 Ma, with five peaks at 2.5 Ga, 1.9 Ga, 840 Ma, 440 Ma, and 270 Ma and two grains of ∼220 Ma. The ages of 2.5 Ga and 1.9 Ga are mainly derived from the Precambrian basement of the North China Block, whereas the others are typical characteristics of the Qinling orogenic belt. An important observation is that the Qinling-sourced detrital zircons become older as the strata get younger. Samples from the Middle Triassic to early Late Triassic strata are characterized by the age peak at 270 Ma, whereas the Late Late Triassic to Early Middle Jurassic samples are dominated by age peaks at 840 Ma and 440 Ma and minor grains within 800–650 Ma. Two grains of ∼220 Ma are preserved in the Late Middle Jurassic sample, which may be contributed by the Carnian deep plutons. These signatures indicate that the unroofing pattern of the Qinling orogenic belt developed by the denudation of materials from young covers to old basements and the Carnian deep plutons. Integrated with the data reported from the Hefei Basin, it is well-established that the intensity of unroofing increased from the Qinling to the Dabie orogen in the Early Jurassic, and the denudation timing of the ultra-high pressure (UHP) and high pressure (HP) rocks or Carnian plutons changed successively from the Early Jurassic in the Dabie to the Late Middle Jurassic in the Qinling orogen.  相似文献   

13.
Zircon ages recorded in gneissic rocks have recently been used as criteria to define and correlate various tectonic units and crustal blocks in the central European Variscides. A SHRIMP U–Pb zircon geochronological study of the Strzelin gneiss in the Fore-Sudetic Block (SW Poland) indicates the presence of: (1) inherited zircon cores of Palaeo- to Mesoproterozoic 206Pb-238U ages (between ca. 2,000 and 1,240 Ma), and (2) zoned rims of Neoproterozoic age with two distinct means of 600±7 and 568±7 Ma. The Proterozoic age range of the cores suggests that different Precambrian crustal elements were the source for the protolith of the gneiss. A likely scenario is the erosion of various Proterozoic granites and gneisses, sedimentation (after 1,240 Ma), and partial resistance of the original components to subsequent metamorphic dissolution and/or anatectic resorption (in Neoproterozoic times). The zoned zircon rims of both of the younger Neoproterozoic ages are indistinguishable in the cathodoluminescence images. The data are interpreted in terms of two different thermal events inducing zoned zircon overgrowth at ca. 600 and 568 Ma. In general, the new results confirm earlier assumptions of the Proterozoic age of the gneiss protoliths, and indicate their similarity to orthogneisses in the East Sudetes tectonic domain (e.g. the Velké Vrbno and Desná gneisses). The Neoproterozoic dates are different from the age of 504±3 reported earlier for the Gocicice gneiss from a neighbouring locality in the Strzelin Massif. The new data strongly indicate a Moravo-Silesian (Bruno-Vistulian) affinity for the Strzelin gneiss and support the hypothesis that the Strzelin Massif lies within the tectonic boundary zone between the West- and East Sudetes domains, which represents the northern continuation of the Moldanubian Thrust.  相似文献   

14.
Tuffaceous mudrocks are common in the banded iron‐formations (BIF) of the Brockman Iron Formation. These tuffaceous mudrocks are either stilpnomelane‐rich or siliceous. Their compositions reflect bimodal volcanic activity in the vicinity of the Hamersley BIF depositional site. They also contain complex zircon populations that record resedimentation, syndepositional volcanism and post‐depositional isotopic disturbance. The best estimates of depositional age are obtained from siliceous tuffaceous mudrocks in the Joffre Member that contain 2459 ± 3 Ma and 2454 ± 3 Ma zircon populations most likely derived from felsic volcanism coeval with BIF deposition. These dates constrain the sedimentation rates for the ~370 m‐thick Joffre Member BIF to >15 m per million years. Siliceous tuffaceous mudrocks are not present in the underlying ~120 m‐thick Dales Gorge Member and it is uncertain whether previously reported ages of ca 2479–2470 Ma for this unit reflect detrital/xenocrystic or syndepositional zircon populations in resedimented stilpnomelane‐rich tuffaceous mudrocks. The increased abundance of tuffaceous mudrocks in the Joffre Member suggests that a pulse of enhanced igneous and hydrothermal activity accompanied deposition of the bulk of the Brockman Iron Formation BIF after ca 2460 Ma. This preceded and culminated in the emplacement of the 2449 ± 3 Ma large igneous province represented by BIF and igneous rocks of the Weeli Wolli Formation and Woongarra Rhyolite.  相似文献   

15.
Fifty‐five new SHRIMP U–Pb zircon ages from samples of northern Australian ‘basement’ and its overlying Proterozoic successions are used to refine and, in places, significantly change previous lithostratigraphic correlations. In conjunction with sequence‐stratigraphic studies, the 1800–1580 Ma rock record between Mt Isa and the Roper River is now classified into three superbasin phases—the Leichhardt, Calvert and Isa. These three major depositional episodes are separated by ~20 million years gaps. The Isa Superbasin can be further subdivided into seven supersequences each 10–15 million years in duration. Gaps in the geological record between these supersequences are variable; they approach several million years in basin‐margin positions, but are much smaller in the depocentres. Arguments based on field setting, petrography, zircon morphology, and U–Pb systematics are used to interpret these U–Pb zircon ages and in most cases to demonstrate that the ages obtained are depositional. In some instances, zircon crystals are reworked and give maximum depositional ages. These give useful provenance information as they fingerprint the source(s) of basin fill. Six new ‘Barramundi’ basement ages (around 1850 Ma) were obtained from crystalline units in the Murphy Inlier (Nicholson Granite and Cliffdale Volcanics), the Urapunga Tectonic Ridge (‘Mt Reid Volcanics’ and ‘Urapunga Granite’), and the central McArthur Basin (Scrutton Volcanics). New ages were also obtained from units assigned to the Calvert Superbasin (ca 1740–1690 Ma). SHRIMP results show that the Wollogorang Formation is not one continuous unit, but two different sequences, one deposited around 1730 Ma and a younger unit deposited around 1722 Ma. Further documentation is given of a regional 1725 Ma felsic event adjacent to the Murphy Inlier (Peters Creek Volcanics and Packsaddle Microgranite) and in the Carrara Range. A younger ca 1710 Ma felsic event is indicated in the southwestern McArthur Basin (Tanumbirini Rhyolite and overlying Nyanantu Formation). Four of the seven supersequences in the Isa Superbasin (ca 1670–1580 Ma) are reasonably well‐constrained by the new SHRIMP results: the Gun Supersequence (ca 1670–1655 Ma) by Paradise Creek Formation, Moondarra Siltstone, Breakaway Shale and Urquhart Shale ages grouped between 1668 and 1652 Ma; the Loretta Supersequence (ca 1655–1645 Ma) by results from the Lady Loretta Formation, Walford Dolomite, the upper part of the Mallapunyah Formation and the Tatoola Sandstone between ca 1653 and 1647 Ma; the River Supersequence (ca 1645–1630 Ma) by ages from the Teena Dolomite, Mt Les and Riversleigh Siltstones, and Barney Creek, Lynott, St Vidgeon and Nagi Formations clustering around 1640 Ma; and the Term Supersequence (ca 1630–1615 Ma) by ages from the Stretton Sandstone, lower Doomadgee Formation and lower part of the Lawn Hill Formation, mostly around 1630–1620 Ma. The next two younger supersequences are less well‐constrained geochronologically, but comprise the Lawn Supersequence (ca 1615–1600 Ma) with ages from the lower Balbirini Dolomite, and lower Doomadgee, Amos and middle Lawn Hill Formations, clustered around 1615–1610 Ma; and the Wide Supersequence (ca 1600–1585 Ma) with only two ages around 1590 Ma, one from the upper Balbirini Dolomite and the other from the upper Lawn Hill Formation. The Doom Supersequence (<1585 Ma) at the top of the Isa Superbasin is essentially unconstrained. The integration of high‐precision SHRIMP dating from continuously analysed stratigraphic sections, within a sequence stratigraphic context, provides an enhanced chronostratigraphic framework leading to more reliable interpretations of basin architecture and evolution.  相似文献   

16.
Despite extensive geochemical study and their importance to granite studies, the geochronology of Silurian to early-Devonian granitic rocks of southeastern Australia is poorly understood. In order to provide an improved temporal framework, new ion microprobe U–Pb zircon ages are presented from these rocks, and previous work is critically reviewed. Geochronological control is best in the Berridale Batholith, where S- and I-type granites have a close spatial relationship. In this region, there is a small volume of I-type granite that crystallised at 436 Ma, followed closely by a large volume of S-type granite at 432 Ma. I-type granite is abundant in a second peak at ca 417 Ma, although the Jindabyne pluton from the Kosciuszko Batholith is slightly older, at 424 Ma. A broader survey of S-type granite throughout the eastern Lachlan Orogen shows that the 432 Ma event is ubiquitous. There is no temporal overlap between S- and I-type granites in the Kosciuszko and Berridale Batholiths, which suggests that factors other than variations in degree of crustal contamination (which may include variation in tectonic setting, heat-flow, mass transfer across the crust–mantle boundary and/or availability in source materials) contribute to the diversity in granite types. The S-type granitic rocks occupy an aerial extent of greater than 28 000 km2, and geochronological constraints suggest that the crystallisation of these granites took place over a relatively small interval, probably less than 10 m.y. This implies a magmatic flux of over 64 km3/Ma per km strike length, comparable to other high-flux granitic belts. Previous work has linked the Benambran Orogeny to the generation of the S-type granites, and so the age of these granites constrains the age of Benambran Orogenesis  相似文献   

17.
International Journal of Earth Sciences - U–Pb dating on inherited detrital zircons has been applied to obtain the probable maximum age of deposition of the detrital protolith of the...  相似文献   

18.
The widely distributed high-grade gneisses in the East Kunlun Orogenic Belt (EKOB) are keys to understand the Precambrian tectonic evolution of the Northern Tibetan Plateau. In this study, new LA-ICP-MS zircon U–Pb ages from paragneiss and schist of the Proterozoic Jinshuikou Group and quartzite of the Proterozoic Binggou Group are reported in an attempt to evaluate the Neoproterozoic and Paleozoic tectono-thermal events of the EKOB. These geochronologic data can be classified into 4 groups: Group 1 ages ranging from 2243 Ma to 3701 Ma are represented by inherited zircons from protolith and confirm the existence of Eoarchean to Paleoproterozoic continental nucleus in the source region of the Jinshuikou Group. Group 2 ranging from 928 Ma to 1849 Ma yields lower intercept ages of 0.9–1.0 Ga which represent the Neoproterozoic tectono-thermal event. This event, similar to that of the northern margin of Qaidam, might be a response to the assembly of Rodinia. Group 3 ranges from Neoproterozoic to early Paleozoic with lower intercept ages which are identical to the weighted mean ages of Group 4. These two age groups confirm the tectono-thermal event related to Paleozoic oceanic subduction. Moreover, based on the youngest age of 2.2 Ga in Group 1 and the upper intercept age of 1.8 Ga in Group 2, the depositional timing of the Jinshuikou and Binggou groups can be defined as Paleoproterozoic and Mesoproterozoic, respectively.  相似文献   

19.
The continental growth mechanism of the Altaids in Central Asia is still in controversy between models of continuous subduction–accretion versus punctuated accretion by closure of multiple oceanic basins. The Beishan orogenic belt, located in the southern Altaids, is a natural laboratory to address this controversy. Key questions that are heavily debated are: the closure time and subduction polarity of former oceans, the emplacement time of ophiolites, and the styles of accretion and collision. This paper reports new structural data, U- Pb and Ar–Ar ages from the eastern Beishan orogen that provide information on the accretion process and tectonic affiliation of various terranes. Our geochronological and structural results show that the younging direction of accretion was northwards and the subduction zone dipped southwards under the northern margin of the Shuangyingshan micro-continent. This long-lived and continuous accretion process formed the Hanshan accretionary prism. Our field investigations show that the emplacement of the Xiaohuangshan ophiolite was controlled by oceanic crust subduction beneath the forearc accretionary prism of the Shuangyingshan–Mazongshan composite arc to the south. Moreover, we address the age and terrane affiliation of lithologies in the eastern Beishan orogen through detrital zircon geochronology of meta-sedimentary rocks. We provide new information on the ages, subduction polarities, and affiliation of constituent structural units, as well as a new model of tectonic evolution of the eastern Beishan orogen. The accretionary processes and crustal growth of Central Asia were the result of multiple sequences of accretion and collision of manifold terranes.  相似文献   

20.
SHRIMP U–Pb zircon isotopic data have been obtained for four samples collected from granitoids and paragneisses in the Fraser Complex, a large composite metagabbroic body cropping out in the Mesoproterozoic Albany‐Fraser Orogen of Western Australia. The data are combined with the results of field mapping and petrographic analysis to revise a model for the geological evolution of the Fraser Complex. Three main phases of deformation are recognised in the Fraser Complex (D1–3) associated with two metamorphic events (M1–2), which involve four distinguishable episodes of recrystallisation. The first metamorphic event recognised (M1a/D1) reached granulite facies and is characterised by peak T ≥800°C and P = 600–700 MPa. A syn‐M1a/D1 charnockite has a U–Pb SHRIMP zircon age of 1301 ± 6 Ma, which also provides an estimate for the age of intrusion of Fraser Complex gabbroic rocks. Disequilibrium textures comprising randomly oriented minerals (M1b), consistent with approximately isobaric cooling, formed in various lithologies in the interval between D1 and D2. Post‐D1, pre‐D2 granites intruded at 1293 ± 8 Ma and were foliated during the D2 event, which culminated in the burial of the Fraser Complex to depths equivalent to 800–1000 MPa. Following burial, pyroxene granulites on the western boundary of the complex were pervasively retrogressed to garnet amphibolite (M2a). An igneous crystallisation age of 1288 ± 12 Ma from a syn‐M2a aplite dyke suggests that retrogression may have occurred only a few millions of years after the peak of granulite facies metamorphism. Exhumation to depths of less than ~400 MPa occurred within ~20–30 million years of the M2a pressure peak. Associated deformation (D3) is characterised by the development of mylonite and transitional greenschist/amphibolite facies disequilibrium textures (M2b).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号