首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report simultaneous observations of intense fluxes of quasi-trapped energetic electrons and substantial enhancements of ionospheric electron concentration (EC) at low and middle latitudes over the Pacific region during the geomagnetic storm on 15 December 2006. Electrons with energy of tens of keV were measured at altitude of ~800–900 km by POES and DMSP satellites. Experimental data from COSMIC/FS3 satellites and global network of ground-based GPS receivers were used to determine height profiles of EC and vertical total EC, respectively. A good spatial and temporal correlation between the electron fluxes and EC enhancements was found. This fact allows us to suggest that the quasi-trapped energetic electrons can be an important source of ionospheric ionization at middle latitudes during magnetic storms.  相似文献   

2.
Ultraviolet (UV) nightglow data from the SPICAV instrument (SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Venus) onboard the Venus Express spacecraft, currently in orbit around Venus, are presented. In its extended source mode, SPICAV has shown that the Venus nightglow in the UV contains essentially Lyman-α and Nitric Oxide (NO) emissions. In the stellar mode, when the slit of the spectrometer is removed, an emission is also observed at the limb in addition to the stellar spectrum. A forward model allows us to identify this feature as being an NO emission. Due to radiative recombination of N and O atoms produced on the dayside of Venus, and transported to the nightside, NO nightglow provides important constraints to the Solar-to-Anti Solar thermospheric circulation prevailing above 90 km. The forward model presented here allows us to derive the altitude of the peak of emission of the NO layer, found at 113.5±6 km, as well as its scale height, of 3.4±1 km and its brightness. The latter is found to be very variable with emissions between 19 Kilo-Rayleigh (kR) and 540 kR. In addition, the NO nightglow is sometimes very patchy, as we are able to observe two distinct emission zones in the field of view. Finally, systematic extraction of this emission from stellar occultations extends the database of the NO emission already reported elsewhere using limb observations.  相似文献   

3.
Ulysses had a “distant encounter” with Jupiter when it was within 0.8 AU of the planet during February, 2004. The passage of the spacecraft was from north to south, and observations of the Jovian radio waves were carried out for a few months from high to low latitudes (+80° to +10°) of Jupiter. The statistical study performed during this “distant encounter” event provided the occurrence characteristics of the Jovian broadband kilometric radiation (bKOM), including the high-latitude component as follows: (1) the emission intensity of bKOM was found to have a sinusoidal dependence with respect to the central meridian longitude (CML), showing a broad peak at ∼180°, (2) bKOM was preferably observed in the magnetic latitudinal range from ∼+30° to +90°, and the emission intensities at the high latitudes were found to be two times larger than that at the equatorial region, and (3) the emission intensity was controlled possibly by the sub solar longitude (SSL) of Jupiter. The intensity had a sharp peak around SSL ∼210°. A 3D ray tracing approach was applied to the bKOM in order to examine the source distribution. It was suggested that: (1) the R-X mode waves generated through the Cyclotron Maser Instability process would be unable to reproduce the intense high-latitude component of the bKOM, (2) the L-O mode, which was assumed to be generated at frequencies near the local plasma frequency, was considered to be the dominant mode for past and present observations at mid- and high-latitudinal regions, and (3) the high-latitude component of bKOM was found to have a source altitude of 0.9-1.5 Rj (Rj: Jovian radii), and to be distributed along magnetic field lines having L>10.  相似文献   

4.
The hydroxyl nightglow layer is an excellent tracer of the dynamical processes occurring within the mesosphere. A new stereo-imaging method is applied that not only measures the altitude of the airglow layer but also provides a three-dimensional map of the OH-layer centroid heights. A campaign was conducted in July 2006 in Peru to obtain NIR images of the OH nightglow layer which were simultaneously taken for two sites separated by 645 km: Cerro Cosmos (12°09′08.2″S, 75°33′49.3″W, altitude 4630 m) and Cerro Verde Tellolo (16°33′17.6″S, 71°39′59.4″W, altitude 2330 m). Data represented by pairs of images obtained during the nights of July 26-27 and 28-29 are analyzed to yield satellite-type views of the wave field. These are obtained by application of an inversion algorithm. In calculating the normalized cross-correlation parameter for the intensity, three-dimensional maps of the OH nightglow layer surface are retrieved. The mean altitude of the emission profile barycenter is found to be at 87.1 km on July 26 and 89.5 km on July 28. In these two cases the horizontal wavelengths determined are 21.1 and 24.6 km with periods of 18 and 34 min, respectively. A panoramic view of the OH nightglow emission obtained on July 29 at 8 h51-9 h26 UT is presented, in which the overall direction of the waves is found to be N-NW to S-SE, azimuth 150°-330° (counted from South). The wave kinetic energy density at the OH nightglow layer altitude is 3.9×10−4 W/kg, which is comparable to the values derived from partial reflection radiowave data.  相似文献   

5.
O. Muñoz  F. Moreno  D. Grodent  V. Dols 《Icarus》2004,169(2):413-428
We have studied the vertical structure of hazes at six different latitudes (−60°, −50°, −30°, −10°, +30°, and +50°) on Saturn's atmosphere. For that purpose we have compared the results of our forward radiative transfer model to limb-to-limb reflectivity scans at four different wavelengths (230, 275, 673.2, and 893 nm). The images were obtained with the Hubble Space Telescope Wide Field Planetary Camera 2 in September 1997, during fall on Saturn's northern hemisphere. The spatial distribution of particles appears to be very variable with latitude both in the stratosphere and troposphere. For the latitude range +50° to −50°, an atmospheric structure consisting of a stratospheric haze and a tropospheric haze interspersed by clear gas regions has been found adequate to explain the center to limb reflectivities at the different wavelengths. This atmospheric structure has been previously used by Ortiz et al. (1996, Icarus 119, 53-66) and Stam et al. (2001, Icarus 152, 407-422). In this work the top of the tropospheric haze is found to be higher at the southern latitudes than at northern latitudes. This hemispherical asymmetry seems to be related to seasonal effects. Different latitudes experience different amount of solar insolation that can affect the atmospheric structure as the season varies with time. The haze optical thickness is largest (about 30 at 673.2 nm) at latitudes ±50 and −10 degrees, and smallest (about 18) at ±30 degrees. The stratospheric haze is found to be optically thin at all studied latitudes from −50 to +50 degrees being maximum at −10° (τ=0.033). At −60° latitude, where the UV images show a strong darkening compared to other regions on the planet, the cloud structure is remarkably different when compared to the other latitudes. Here, aerosol and gas are found to be uniformly mixed down to the 400 mbar level.  相似文献   

6.
Periodicity in the 13–14 day range for full-disk UV fluxes comes mainly from episodes of solar activity with two peaks per rotation, produced by the solar rotational modulation from two groups of active regions roughly 180° apart in solar longitude. Thirteen-day periodicity is quite strong relative to the 27-day periodicity for the solar UV flux at most wavelengths in the 1750–2900 Å range, because the rapid decrease in UV plage emission on average with increasing solar central angle shapes the UV variations for two peaks per rotation into nearly a 13-day sinusoid, with deep minima when the main groups of active regions are near the limb. Chromospheric EUV lines and ground-based chromospheric indices have moderate 13-day periodicity, where the slightly greater emission of regions near the limbs causes a lower strength relative to the 27-day variations than in the above UV case. The lack of 13-day periodicity in the solar 10.7 cm flux is caused by its broad central angle dependence that averages out the 13-day variations and produces nearly sinusoidal 27-day variations. Optically thin full-disk soft X-rays can have 13-day periodicity out of phase with that of the UV flux because the X-ray emission peaks when both groups of active regions are within view, one group at each limb, when the optically thick UV flux is at a rotational minimum. The lack of 13-day periodicity in the strong coronal lines of Fexv at 284 Å and Fexvi at 335 Å during episodes of 13-day periodicity in UV and soft X-ray fluxes shows that the active region emission in these strong lines is not optically thin; resonant scattering is suggested to cause an effective optical depth near unity in these hot coronal lines for active regions near the limb.  相似文献   

7.
R. P. Lin 《Solar physics》1970,15(2):453-478
Electrons of ~ 40 keV energy observed at 1 AU are used as tracers to map the emission structure of a large active region, McMath plage 8905, which crossed the visible disk in July–August, 1967.The acceleration of 10–100 keV electrons is found to be a property of active regions with a certain stage of development, and is signaled by the emission of 20 keV X-rays. The emission of electrons into the interplanetary medium may be separate from the acceleration of the electrons. Type III radio emission at long wavelengths appears to indicate the escape of the electrons into the interplanetary medium.The subsequent electron propagation in the interplanetary medium is essentially scatter-free, and the profile of the electron appears to be determined predominantly by transport/storage processes in the solar corona. The emission structure for active region McMath plage 8905 consists of (1) an open cone of ~ 70° extent in solar longitude where electrons have direct access to interplanetary field lines; (2) a cone of propagation of 100° width in solar longitude, surrounding and including the open cone in which impulsive electron events are observed; and (3) an overall ~ 200° extent of solar longitude over which low, non-impulsive fluxes from the active region are observed. A model is presented to account for the observed structure. This type of emission structure may be present in other electron-active regions.  相似文献   

8.
Venus nightglow was observed at NASA IRTF using a high-resolution long-slit spectrograph CSHELL at LT = 21:30 and 4:00 on Venus. Variations of the O2 airglow at 1.27 μm and its rotational temperature are extracted from the observed spectra. The mean O2 nightglow is 0.57 MR at 21:30 at 35°S-35°N, and the temperature increases from 171 K near the equator to ∼200 K at ±35°. We have found a narrow window that covers the OH (1-0) P1(4.5) and (2-1) Q1(1.5) airglow lines. The detected line intensities are converted into the (1-0) and (2-1) band intensities of 7.2 ± 1.8 kR and <1.4 kR at 21:30 and 15.5 ± 2 kR and 4.7 ± 1 kR at 4:00. The f-component of the (1-0) P1(4.5) line has not been detected in either observation, possibly because of resonance quenching in CO2. The observed Earth’s OH (1-0) and (2-1) bands were 400 and 90 kR at 19:30 and 250 and 65 kR at 9:40, respectively. A photochemical model for the nighttime atmosphere at 80-130 km has been made. The model involves 61 reactions of 24 species, including odd hydrogen and chlorine chemistries, with fluxes of O, N, and H at 130 km as input parameters. To fit the OH vibrational distribution observed by VEX, quenching of OH (v > 3) in CO2 only to v ? 2 is assumed. According to the model, the nightside-mean O2 emission of 0.52 MR from the VEX and our observations requires an O flux of 2.9 × 1012 cm−2 s−1 which is 45% of the dayside production above 80 km. This makes questionable the nightside-mean O2 intensities of ∼1 MR from some observations. Bright nightglow patches are not ruled out; however, the mean nightglow is ∼0.5 MR as observed by VEX and supported by the model. The NO nightglow of 425 R needs an N flux of 1.2 × 109 cm−2 s−1, which is close to that from VTGCM at solar minimum. However, the dayside supply of N at solar maximum is half that required to explain the NO nightglow in the PV observations. The limited data on the OH nightglow variations from the VEX and our observations are in reasonable agreement with the model. The calculated intensities and peak altitudes of the O2, NO, and OH nightglow agree with the observations. Relationships for the nightglow intensities as functions of the O, N, and H fluxes are derived.  相似文献   

9.
Li  K.J.  Liu  X.H.  Xiong  S.Y.  Liang  H.F.  Zhan  L.S.  Zhao  H.J. 《Solar physics》2002,211(1-2):165-177
In the present work, the phase relation between activities of solar active prominences respectively at low and high latitudes in the period 1957–1998 has been studied. We found that from the solar equator to the solar poles, the activity of the solar active prominences occurs earlier at higher latitudes, and that the cycle of the solar active prominences at high latitudes (larger than 50°) leads by 4 years both the sunspot cycle and the corresponding cycle of the solar active prominences at low latitudes (less than 40°).  相似文献   

10.
《Planetary and Space Science》2007,55(14):2164-2172
Both the MARSIS ionospheric sounder and the charged particle instrument package ASPERA-3 are experiments on board the Mars Express spacecraft. Joint observations have shown that events of intense ionospheric electron density enhancements occur in the lower ionosphere of magnetic cusp regions, and that these enhancements are not associated with precipitation of charged particles above a few hundred electron volts (<300 eV). To account for the enhancement by particle precipitation, electron fluxes are required with mean energy between 1 and 10 keV. No ionizing radiation, neither energetic particles nor X-rays, could be identified, which could produce the observed density enhancement only in the spatially limited cusp regions. Actually, no increase in ionizing radiation, localized or not, was observed during these events. It is argued that the process causing the increase in density is controlled mainly by convection of ionosphere plasma driven by the interaction between the solar wind and crustal magnetic field lines leading to excitation of two-stream plasma waves in the cusp ionosphere. The result is to heat the plasma, reduce the electron–ion recombination coefficient and thereby increase the equilibrium electron density.  相似文献   

11.
The fluxes of extreme ultraviolet (EUV) and soft X-ray emission are key parameters for modelling the ionosphere and upper atmosphere. A new aspect is considered in using these fluxes for diagnostics and short-term prediction of proton radiation danger from the flare. The EUV (λ < 105 nm) and soft X-ray (0.1–0.8 nm) fluxes were compared for two types of solar flares. The first type is followed by a strong enhancement in solar energetic (E >10 MeV) proton flux, the second is not followed by any enhancement in proton flux. It was discovered that the flare UV flux was considerably higher for flares with protons than for those without protons. Soft X-ray fluxes were approximately equal in both cases. An excess of EUV emission in proton flares grows with increasing proton flux. An analytic expression was found for the growth in proton flux as a function of the excess of EUV radiation at a given X-ray flux. These results can be used in predicting flare radiation danger.  相似文献   

12.
F. Altieri  L. Zasova  G. Bellucci  B. Gondet 《Icarus》2009,204(2):499-511
We present a method to derive the 2D maps of the O2 (a1Δg) airglow emission at 1.27 μm from the OMEGA/MEx nadir observations. The OMEGA imaging capabilities allow monitoring the 2D distribution, daily and seasonal variation of the O2 emission intensities with a detection limit of 4 MR. The highest values, of the order of ∼31 MR, are found on the south pole for 11 h < LT < 13 h, during the early spring (186° < Ls < 192°) of martian year (MY) 27, according to the Mars Year numbering scheme of Clancy et al. [Clancy, R.T., Wolff, M.J., Christensen, P.R., 2003. Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. J. Geophys. Res. 108. doi: 10.1029/2003JE002058]. In the polar regions the day-by-day variability, associated with polar vortex turbulences, is obtained of the order of 30-50% as predicted by the model [Lefévre, F., Lebonnois, S., Montmessin, F., Forget, F., 2004. Three-dimensional modeling of ozone on Mars. J. Geophys. Res. 109, E07004. doi: 10.1029/2004JE002268] and found by SPICAM [Perrier, S., Bertaux, J.-L., Lebonnois, S., Korablev, O., Fedorova, A., 2006. Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. J. Geophys. Res. 111, E09S06. doi: 10.1029/2006JE002681]. In the considered set of data a maximum of the O2 emission is observed between 11 h and 15 h LT in the latitude range 70-85° during early spring on both hemispheres, while for the southern autumn-winter season a maximum is found between 50° and 60° in the southern hemisphere for MY28. Increase of intensity of the O2 emission observed from Ls 130° to 160° at southern high latitudes may be explained by increase of solar illumination conditions in the maps acquired during the considered period.Atmospheric waves crossing the terminator on the southern polar regions are observed for the first time during the MY28 early spring. The spatial scale of the waves ranges from 100 to 130 km, and the intensity fluctuations are of the order of 4MR.This study confirms the high potentiality of O2 (a1Δg) day glow as a passive tracer of the martian atmosphere dynamics at high latitudes.  相似文献   

13.
An additional electron flux at an energy above 100 MeV was observed in the experiments carried out with high-altitude balloons flown at geomagnetic latitudes 46° and 49°, in the upper layers of the atmosphere, on the days following magnetic perturbations.Its intensity, equal to 6 × 10–2 cm–2s–1 sr–1, decreased over 20–30 hours. The effect observed confirms the presence of high-energy electrons in the regions of the trapped radiation.  相似文献   

14.
Using the Hubble Space Telescope's Space Telescope Imaging Spectrograph we have obtained for the first time spatially resolved 2000-3000 Å spectra of Io's Prometheus plume and adjoining regions on Io's anti-jovian hemisphere in the latitude range 60° N-60° S, using a 0.1″ slit centered on Prometheus and tilted roughly 45° to the spin axis. The SO2 column density peaked at 1.25×1017 cm−2 near the equator, with an additional 5×1016 cm−2 enhancement over Prometheus corresponding to a model volcanic SO2 output of 105 kg s−1. Apart from the Prometheus peak, the SO2 column density dropped fairly smoothly away from the subsolar point, even over regions that included potential volcanic sources. At latitudes less than ±30°, the dropoff rate was consistent with control by vapor pressure equilibrium with surface frost with subsolar temperature 117.3±0.6 K, though SO2 abundance was higher than predicted by vapor pressure control at mid-latitudes, especially in the northern hemisphere. We conclude that, at least at low latitudes on the anti-jovian hemisphere where there are extensive deposits of optically-thick SO2 frost, the atmosphere is probably primarily supported by sublimation of surface frost. Although the 45° tilt of our slit prevents us from separating the dependence of atmospheric density on solar zenith angle from its dependence on latitude, the pattern is consistent with a sublimation atmosphere regardless of which parameter is the dominant control. The observed drop in gas abundance towards higher latitudes is consistent with the interpretation of previous Lyman alpha images of Io as indicating an atmosphere concentrated at low latitudes. Comparison with previous disk-resolved UV spectroscopy, Lyman-alpha images, and mid-infrared spectroscopy suggests that Io's atmosphere is denser and more widespread on the anti-jovian hemisphere than at other longitudes. SO2 gas temperatures were in the range of 150-250 K over the majority of the anti-jovian hemisphere, consistent with previous observations. SO was not definitively detected in our spectra, with upper limits to the SO/SO2 ratio in the range 1-10%, roughly consistent with previous observations. S2 gas was not seen anywhere, with an upper limit of 7.5×1014 cm−2 for the Prometheus plume, confirming that this plume is significantly poorer in S2 than the Pele plume (S2 /SO2<0.005, compared to 0.08-0.3 at Pele). In addition to the gas absorption signatures, we have observed continuum emission in the near ultraviolet (near 2800 Å) for the first time. The brightness of the observed emission was directly correlated with the SO2 abundance, strongly peaking in the equatorial region over Prometheus. Emission brightness was modestly anti-correlated with the jovian magnetic latitude, decreasing when Io intersected the torus centrifugal equator.  相似文献   

15.
The response of the stratosphere and lower mesosphere to quasi-eleven-year solar activity cycle (indicated by sunspot variations) is studied by using temperature data obtained from rockets which are mostly based on datasonde system throughout the decade 1969–1978. It is suggested that the solar trace is evident at wintertime in the strato-mesosphere over low and middle latitudes. At summertime in the lower mesosphere over high latitudes the solar trace is absent. During springtime the solar signal appears over low latitudes and diminishes to the middle and high latitudes. The reverse occurs at falltime. The observed stratospheric temperature and ozone variations during the solar activity cycle are possibly within model calculations of UV and solar particle enhancements at solar maximum.  相似文献   

16.
S.A. Haider  S.P. Seth  V.R. Choksi 《Icarus》2006,185(1):102-112
The production rate, ion density and electron density are calculated between longitudes 0° and 360° E due to incident radiation of wavelength range 1-102.57 nm in the dayside atmosphere of Mars. These calculations are made by using global analytical yield spectrum (AYS) model at solar zenith angle 80° between latitudes 50° and 70° N for spring equinox and medium solar activity condition. These conditions are appropriate for Mars Global Surveyor (MGS) Phase 2 aerobraking period during which both the accelerometer and the radio occultation data are used. The calculated results are compared with MGS radio occultation measurements carried out at different latitudes (64.7°-67.3° N) and longitudes (0°-360° E) in December 1998 between solar zenith angle 78° and 81°. This measurement shows primary and secondary ionization peaks, which are varying with longitudes. Our calculation suggests that first peak is produced by photoionization and photoelectron impact ionization processes due to absorption of solar EUV radiation (9-102.57 nm). The second peak is produced by photoelectron impact ionization of soft X-ray photon (1-9 nm). There is a good agreement between our calculation and measurement as far as the maximum and the minimum values of primary peak altitude/peak density of electrons are concerned. However, the calculated values of secondary peak density and peak altitude are higher than the measured values by a factor of 1.5-2.0 and 1.1, respectively. The secondary peak is brought into agreement with the measurement using low X-ray flux by a factor of 2 to 3 below 9 nm. The longitudinal distribution of calculated and measured peak density and peak altitude are fitted by least-square method with 0.95 confidence limits.  相似文献   

17.
In this paper, the daily solar radiation incident at the top of Saturn's atmosphere and taking into account both the oblateness of the planet and the shadow of the ring system is calculated. It is found that the decrease of the daily insolation in winter is important near the solstices up to mid-latitudes and in the neighborhood of the equinoxes for equatorial and low latitudes. The combined effect of Saturn's rings and its flattening on the mean winter and annual daily insolations is also studied. The numerical results show that the mean wintertime insolation falls gradually in the (0–20 °) latitude region to a peak value of about 50%. Beyond 20° the loss of insolation decreases and from approximately 45 up to polar region latitudes the decrease reaches a practically constant level of 35%. The mean annual daily insolation is maximally reduced by about 20° at localities of 20°.  相似文献   

18.
We report observations of MeV heavy ions made with Explorer 45 in the earth's radiation belts during the 7-month period June–December 1972 when four major magnetic storms occurred. Significant fluxes of ions heavier than fluorine (i.e. with nuclear charge Z ? 9) were observed stably trapped in the interior of the radiation belts at L ~ 2–4. These energetic very heavy ions, were found to appear suddenly during the August 1972 magnetic storm period and their fluxes decayed during the following months on time scales typically several tens of days. Simultaneously, strong increases in the geomagnetically trapped MeV helium and CNO ion fluxes were observed, and the post-injection flux decay of these ions was found to be slower than that of the Z ? 9 ions. The relative enhancements in trapped fluxes during the storm increased with increasing ion mass and/or increasing ion energy.  相似文献   

19.
For a variety of reasons, Jupiter's polar areas are probably the less observed regions of the planet. To study the dynamics and cloud vertical structure in the polar regions of the planet (latitudes 50° to 80° in both hemispheres) we have used images of Jupiter obtained from the ultraviolet to near infrared (258 to 939 nm) by the Cassini Imagining Science Subsystem (ISS) in December 2000. The temporal coverage was complemented with archived images from the Hubble Space Telescope (1993-2006) in a similar spectral range. The zonal wind velocities have been measured at three Cassini ISS wavelengths (CB2, MT3 and UV1, corresponding to 750, 890 and 258 nm) sounding different altitude levels. The three eastward jets detected in CB2 images (lower cloud) go to zero velocity when measured in the UV1 filter (upper haze). A radiative transfer analysis has been performed to characterize the vertical structure of cloud and hazes distribution at the poles. We also present a characterization (phase speed, amplitude and zonal wavenumber) of the previously detected circumpolar waves at 67° N and S at 890 nm and at about 50° N and −57° S at 258 nm that are a permanent phenomenon in Jupiter with some variability in its structure during the analyzed period. From the ensemble of data analyzed we propose the waves are Rossby waves whose dynamic behavior constrains plausible values for their meridional and vertical wavenumbers. This work demonstrates the long-term nature of Jupiter's polar waves, providing a dynamical and vertical characterization which supports a detailed analysis of these phenomena in terms of a Rossby wave model.  相似文献   

20.
The atmosphere of Mars does little to attenuate incoming ultraviolet (UV) radiation. Large amounts of UV radiation sterilize the hardiest of terrestrial organisms within minutes, and chemically alter the soil such that organic molecules at or near the surface are rapidly destroyed. Thus the survival of any putative martian life near the surface depends to a large extent on how much UV radiation it receives. Variations in small-scale geometry of the surface such as pits, trenches, flat faces and overhangs can have a significant effect on the incident UV flux and may create “safe havens” for organisms and organic molecules. In order to examine this effect, a 1-D radiative transfer sky model with 836 meshed points (plus the Sun) was developed which includes both diffuse and direct components of the surface irradiance. This model derives the variation of UV flux with latitude and an object's Geometric Shielding Ratio (a ratio which describes the geometry of each situation). The best protection is offered by overhangs with flux reduced to a factor of 1.8±0.2×10−5 of the unprotected value, a reduction which does not vary significantly by latitude. Pits and cracks are less effective with a reduction in UV flux of only up to 4.5±0.5×10−3 for the modeled scenarios; however, they are more effective for the same geometric shielding ratio than overhangs at high latitudes due to the low height of the Sun in the sky. Lastly, polar faces of rocks have the least effective shielding geometry with at most a 1.1±0.1×10−1 reduction in UV flux. Polar faces of rocks are most effective at mid latitudes where the Sun is never directly overhead, as at tropical latitudes, and never exposes the back of the rock, as at polar latitudes. In the most favorable cases, UV flux is sufficiently reduced such that organic in-fall could accumulate beneath overhanging surfaces and in pits and cracks. As well, hardy terrestrial microorganisms such as Bacillus pumilus could persist for up to 100 sols on the outer surfaces of typical spacecraft or several tens of martian years in the most shielded surface niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号