首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large impacts not only create giant basins on terrestrial planets but also heat their interior by shock waves. We investigate the impacts that have created the largest basins existing on the planets: Utopia on Mars, Caloris on Mercury, Aitken on Moon, all formed at ∼4 Ga. We determine the impact-induced temperature increases in the interior of a planet using the “foundering” shock heating model of Watters et al. (Watters, W.A., Zuber, M.T., Hager, B.H. [2009]. J. Geophys. Res. 114, E02001. doi:10.1029/2007JE002964). The post-impact thermal evolution of the planet is investigated using 2D axi-symmetric convection in a spherical shell of temperature-dependent viscosity and thermal conductivity, and pressure-dependent thermal expansion. The impact heating creates a superheated giant plume in the upper mantle which ascends rapidly and develops a strong convection in the mantle of the sub-impact hemisphere. The upwelling of the plume rapidly sweeps up the impact-heated base of the mantle away from the core-mantle boundary and replaces it with the colder surrounding material, thus reducing the effects of the impact-heated base of the mantle on the heat flux out of core. However, direct shock heating of the core stratifies the core, suppresses the pre-existing thermal convection, and cripples a pre-existing thermally-driven core dynamo. It takes about 17, 4, and 5 Myr for the stratified cores of Mars, Mercury, and Moon to exhaust impact heat and resume global convection, possibly regenerating core dynamos.  相似文献   

2.
The chemical-dynamical properties of stars with giant planets are compared to those of a nearby star sample within the framework of a stellar orbital diffusion model. The stars-with-planets sample includes recently discovered extrasolar planets and the Sun. We find that the planet-bearing stars, 14 Her, ρ 1 Cnc and τ Boo, are much more metal-rich than stars of similar age and this cannot be easily explained by orbital diffusion. We also confirm previous claims that the motion of the Sun relative to the local standard of rest is very small compared to other G dwarfs of similar age, and we offer a possible explanation for this apparent anomaly.  相似文献   

3.
4.
The MIPAS instrument on board Envisat, in Earth orbit, the PFS and OMEGA instruments on Mars Express, and VIRTIS on board Venus Express are currently providing a dataset of limb measurements of the CO2 atmospheric fluorescence emission at 4.3‐μm from the upper atmosphere of the three planets. These measurements represent an excellent dataset to perform comparative studies between the terrestrial planets’ upper atmospheres, and also to test our theoretical understanding of these emissions. In order to exploit these datasets, we apply a set of non-local thermodynamic equilibrium (non-LTE) models developed at the IAA/CSIC, in Granada, Spain, to a selection of data. In general, the models can explain the main spectral features of the measurements, and also the altitude and solar zenith angle variations. However, the simulations for Mars and Venus give an incorrect ratio of the emissions at two wavelengths, 4.4 and . In order to explain this deficiency, a revision of the most uncertain non-LTE energy transfer parameters has been performed. The quenching rate of ν3 quanta of high-energy CO2 states by CO2 itself could reduce the model-data discrepancy if increased by a factor 2-4, still within its current uncertainty range. This factor, however, is subject to the uncertainty in the thermal structure. A number of simulations with the non-LTE models were also used to study and compare the role of radiative transfer in this spectral region in the three terrestrial planets. Sensitivity studies of density and temperature are also presented, and they permit an analysis of how the differences between the planets and between the three instruments affect their sounding capabilities.  相似文献   

5.
6.
We show that the surface of a planet growing by planetesimal impact is heated over the melting temperature of the surface materials due to the blanketing effect of an impact induced H2O atmosphere with the present H2O abundance of the Earth even when the accretion time is as long as 108 years. Hence, a magma ocean covering the entire surface was formed on the Earth and Moon and other terrestrial planets during their formations.  相似文献   

7.
The dynamics of the two Jupiter triangular libration points perturbed by Saturn is studied in this paper. Unlike some previous works that studied the same problem via the pure numerical approach, this study is done in a semianalytic way. Using a literal solution, we are able to explain the asymmetry of two orbits around the two libration points with symmetric initial conditions. The literal solution consists of many frequencies. The amplitudes of each frequency are the same for both libration points, but the initial phase angles are different. This difference causes a temporary spatial asymmetry in the motions around the two points, but this asymmetry gradually disappears when the time goes to infinity. The results show that the two Jupiter triangular libration points should have symmetric spatial stable regions in the present status of Jupiter and Saturn. As a test of the literal solution, we study the resonances that have been extensively studied in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006). The resonance structures predicted by our analytic theory agree well with those found in Robutel and Gabern (Mon Not R Astron Soc 372:1463–1482, 2006) via a numerical approach. Two kinds of chaotic orbits are discussed. They have different behaviors in the frequency map. The first kind of chaotic orbits (inner chaotic orbits) is of small to moderate amplitudes, while the second kind of chaotic orbits (outer chaotic orbits) is of relatively larger amplitudes. Using analytical theory, we qualitatively explain the transition process from the inner chaotic orbits to the outer chaotic orbits with increasing amplitudes. A critical value of the diffusion rate is given to separate them in the frequency map. In a forthcoming paper, we will study the same problem but keep the planets in migration. The time asymmetry, which is unimportant in this paper, may cause an observable difference in the two Jupiter Trojan groups during a very fast planet migration process.  相似文献   

8.
9.
In order to evaluate and develop mission concepts for a search for Terrestrial Exoplanets, we have prepared a list of potential target systems. In this paper we present and discuss the criteria for selecting potential target stars, suitable for the search for Earth-like planets, with a special emphasis on the aspects of the habitable zone for these stellar systems. Planets found within these zones would be potentially able to host complex life forms. We derive a final target star sample of potential target stars, the Darwin All Sky Star Catalogue (DASSC). The DASSC contains a sample of 2303 identified objects of which 284 are F-, 464 G-, 883 K- and 615 M-type stars and 57 stars without B-V index. Of these objects 949 objects are flagged in the DASSC as multiple systems, resulting in 1229 single main sequence stars of which 107 are F, 235 are G, 536 are K, and 351 are M type. We derive configuration dependent sub-catalogues from the DASSC for two technical designs, the initial baseline design and the advanced Emma design as well as a catalogue using an inner working angle cutoff. We discuss the selection criteria, derived parameters and completeness of sample for different classes of stars.  相似文献   

10.
In a previous paper (Hou et al. in Celest Mech Dyn Astron 119:119–142, 2014a), the problem of dynamical symmetry between two Jupiter triangular libration points (TLPs) with Saturn’s perturbation in the present configuration of the two planets was studied. A small short-time scale spatial asymmetry exists but gradually disappears with the time going, so the planar stable regions around the two Jupiter TLPs should be dynamically symmetric from a longtime perspective. In this paper, the symmetry problem is studied when the two planets are in migration. Several mechanisms that can cause asymmetries are discussed. Studies show that three important ones are the large short-time scale spatial asymmetry when Jupiter and Saturn are in resonance, the changing orbits of Jupiter and Saturn in the planet migration process, and the chaotic nature of Trojan orbits during the planet migration process. Their joint effects can cause an observable difference to the two Jupiter Trojan swarms. The thermal Yarkovsky effect is also found to be able to cause dynamical differences to the two TLPs, but generally they are too small to be practically observed.  相似文献   

11.
Using the Fourier Transform Spectrometer at the Canada-France-Hawaii Telescope, we observed a spectrum of Mars at the P-branch of the strongest CH4 band at 3.3 μm with resolving power of 180,000 for the apodized spectrum. Summing up the spectral intervals at the expected positions of the 15 strongest Doppler-shifted martian lines, we detected the absorption by martian methane at a 3.7 sigma level which is exactly centered in the summed spectrum. The observed CH4 mixing ratio is 10±3 ppb. Total photochemical loss of CH4 in the martian atmosphere is equal to , the CH4 lifetime is 340 years and methane should be uniformly mixed in the atmosphere. Heterogeneous loss of atmospheric methane is probably negligible, while the sink of CH4 during its diffusion through the regolith may be significant. There are no processes of CH4 formation in the atmosphere, so the photochemical loss must therefore be balanced by abiogenic and biogenic sources. Outgassing from Mars is weak, the latest volcanism is at least 10 million years old, and thermal emission imaging from the Mars Odyssey orbiter does not reveal any hot spots on Mars. Hydrothermal systems can hardly be warmer than the room temperature at which production of methane is very low in terrestrial waters. Therefore a significant production of hydrothermal and magmatic methane is not very likely on Mars. The calculated average production of CH4 by cometary impacts is 2% of the methane loss. Production of methane by meteorites and interplanetary dust does not exceed 4% of the methane loss. Methane cannot originate from an extinct biosphere, as in the case of “natural gas” on Earth, given the exceedingly low limits on organic matter set by the Viking landers and the dry recent history which has been extremely hostile to the macroscopic life needed to generate the gas. Therefore, methanogenesis by living subterranean organisms is a plausible explanation for this discovery. Our estimates of the biomass and its production using the measured CH4 abundance show that the martian biota may be extremely scarce and Mars may be generally sterile except for some oases.  相似文献   

12.
We continue former work on the modeling of potential effects of Gamma Ray Bursts on Phanerozoic Earth. We focus on global biospheric effects of ozone depletion and model the spectral reduction of light by NO2 formed in the stratosphere. We also illustrate the current complexities involved in the prediction of how terrestrial ecosystems would respond to this kind of burst. We conclude that more biological field and laboratory data are needed to reach even moderate accuracy in this modeling.  相似文献   

13.
The recent discovery of free-floating planets and their theoretical interpretation as celestial bodies, either condensed independently or ejected from parent stars in tight clusters, introduced an intriguing possibility. Namely, that some exoplanets are not condensed from the protoplanetary disk of their parent star. In this novel scenario a free-floating planet interacts with an already existing planetary system, created in a tight cluster, and is captured as a new planet. In the present work we study this interaction process by integrating trajectories of planet-sized bodies, which encounter a binary system consisting of a Jupiter-sized planet revolving around a Sun-like star. To simplify the problem we assume coplanar orbits for the bound and the free-floating planet and an initially parabolic orbit for the free-floating planet. By calculating the uncertainty exponent, a quantity that measures the dependence of the final state of the system on small changes of the initial conditions, we show that the interaction process is a fractal classical scattering. The uncertainty exponent is in the range (0.2–0.3) and is a decreasing function of time. In this way we see that the statistical approach we follow to tackle the problem is justified. The possible final outcomes of this interaction are only four, namely flyby, planet exchange, capture or disruption. We give the probability of each outcome as a function of the incoming planet’s mass. We find that the probability of exchange or capture (in prograde as well as retrograde orbits and for very long times) is non-negligible, a fact that might explain the possible future observations of planetary systems with orbits that are either retrograde (see e.g. Queloz et?al. Astron. Astrophys. 417, L1, 2010) or tight and highly eccentric.  相似文献   

14.
Radial velocity data for both components of W Crv are presented. In spite of providing full radial-velocity information, the new data are not sufficient to establish the configuration of this important system because of large seasonal light curve perturbations, which prevent a combined light curve/radial-velocity solution. It is noted that the primary minimum is free of photometric perturbations, and this property may help to explain the elusive source of these perturbations. Photometrically, the system appears to be a contact binary with poor or absent energy exchange, but such an explanation – in view of the presence of light curve perturbations – is no more plausible than any one of the semi-detached configurations, with either the more-massive or less-massive components filling the associated Roche lobes. Lengthening of the orbital period and the size of the less-massive component above its main-sequence value, both suggest that the system is the shortest-period (0.388 d) known Algol with non-degenerate components.  相似文献   

15.
Prior to the detection of its outermost Uranus-mass object, it had been suggested that GJ 876 could host an Earth-sized planet in a 15-day orbit. Observation, however, did not support this idea, but instead revealed evidence for the existence of a larger body in a ~125-day orbit, near a three-body resonance with the two giant planets of this system. In this paper, we present a detailed analysis of the dynamics of the four-planet system of GJ 876, and examine the possibility of the existence of other planetary objects interior to its outermost body. We have developed a numerical scheme that enables us to search the orbital parameter-space very effectively and, in a short time, identify regions where an object may be stable. We present details of this integration method and discuss its application to the GJ 876 four-planet system. The results of our initial analysis suggested possible stable orbits at regions exterior to the orbit of the outermost planet and also indicated that an island of stability may exist in and around the 15-day orbit. However, examining the long-term stability of an object in that region by direct integration revealed that the 15-day orbit becomes unstable and that the system of GJ 876 is most likely dynamically full. We present the results of our study and discuss their implications for the formation and final orbital architecture of this system.  相似文献   

16.
In a cosmological model developed by the author in previous articles the universe starts in a geometrical phase transition in Minkowski space. Here the source of the gravitational field is a Higgs-like scalar field $\bar{\phi}$ . A relation of this cosmological field $\bar{\phi}$ with the Higgs-field ? H in the gauge theory of electroweak interaction is established. This relation leads to two dimensionless constants. One of them is interpreted as a characteristic constant of the phase transition and is connected with the volume of huge bubbles of open universes.  相似文献   

17.
High-resolution (0.1-Å) spectra of the 6815-Å band of methane are presented for Jupiter, Saturn, Uranus, and Neptune. Spectra for Uranus, Neptune, and the equatorial region of Saturn were acquired with the SPIFI (W. H. Smith, T. R. Hicks, and J. P. Born (1978). Proceedings of the 4th International Colloquium on Astrophysics, Triest, July 3–7, 1978. pp. 593–599) at the 2.2-m telescope of the Mauna Kea Observatory during May and June 1980. Additional spectra were obtained for Jupiter and the northern temperate and polar regions of Saturn in December 1980 and January 1981 from Kitt Peak National Observatory's McMath Solar Telescope. The spectra show a dichotomy in strength of methane absorption between Jupiter-Saturn and Uranus-Neptune. A simple model analysis, based on homogeneous scattering models, is unable to resolve whether this dichotomy is due to an actual increase in the methane mixing ratio with solar distance or to the temperature dependence of line strengths and absorption pathlengths in these atmospheres. If the rotational quantum number for the prominent 6818.9-Å feature is J < 4, then significant aerosol extinction must exist within the visibly accessible portion of Uranus' atmosphere for the methane mixing ratio to be greater than the solar value.  相似文献   

18.
In 2007, a companion with planetary mass was found around the pulsating subdwarf B star V391 Pegasi with the timing method, indicating that a previously undiscovered population of substellar companions to apparently single subdwarf B stars might exist. Following this serendipitous discovery, the EXOTIME (http://www.na.astro.it/~silvotti/exotime/) monitoring program has been set up to follow the pulsations of a number of selected rapidly pulsating subdwarf B stars on time scales of several years with two immediate observational goals:
  1. determine $\dot{P}$ of the pulsational periods P
  2. search for signatures of substellar companions in O–C residuals due to periodic light travel time variations, which would be tracking the central star’s companion-induced wobble around the centre of mass
These sets of data should therefore, at the same time, on the one hand be useful to provide extra constraints for classical asteroseismological exercises from the $\dot{P}$ (comparison with “local” evolutionary models), and on the other hand allow one to investigate the preceding evolution of a target in terms of possible “binary” evolution by extending the otherwise unsuccessful search for companions to potentially very low masses. While timing pulsations may be an observationally expensive method to search for companions, it samples a different range of orbital parameters, inaccessible through orbital photometric effects or the radial velocity method: the latter favours massive close-in companions, whereas the timing method becomes increasingly more sensitive toward wider separations. In this paper we report on the status of the on-going observations and coherence analysis for two of the currently five targets, revealing very well-behaved pulsational characteristics in HS?0444+0458, while showing HS?0702+6043 to be more complex than previously thought.  相似文献   

19.
We perform a quantitative assessment for the potential for photosynthesis in hydrothermal vents in the deep ocean. The photosynthetically active radiation in this case is from geothermal origin: the infrared thermal radiation emitted by hot water, at temperatures ranging from 473 up to 673 K. We find that at these temperatures the photosynthetic potential is rather low in these ecosystems for most known species. However, species which a very high efficiency in the use of light and which could use infrared photons till 1300 nm, could achieve good rates of photosynthesis in hydrothermal vents. These organisms might also thrive in deep hydrothermal vents in other planetary bodies, such as one of the more astrobiologically promising Jupiter satellites: Europa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号