首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The scientific rationale of the ROY multi-satellite mission addresses multiscale investigations of plasma processes in the key magnetospheric regions with strong plasma gradients, turbulence and magnetic field annihilation in the range from electron inertial length to MHD scales.The main scientific aims of ROY mission include explorations of:
(a)
turbulence on a non-uniform background as a keystone for transport processes;
(b)
structures and jets in plasma flows associated with anomalously large concentration of kinetic energy; their impact on the energy balance and boundary formation;
(c)
transport barriers: plasma separation and mixing, Alfvenic collapse of magnetic field lines and turbulent dissipation of kinetic energy;
(d)
self-organized versus forced reconnection of magnetic field lines;
(e)
collisionless shocks, plasma discontinuities and associated particle acceleration processes.
In the case of autonomous operation, 4 mobile spacecrafts of about 200 kg mass with 60 kg payload equipped with electro-reactive plasma engines will provide 3D measurements at the scales of 100-10000 km and simultaneous 1D measurements at the scales 10-1000 km. The latter smaller scales will be scanned with the use of radio-tomography (phase-shift density measurements within the cone composed of 1 emitting and 3 receiving spacecrafts).We also discuss different opportunities for extra measurement points inside the ROY mission for simultaneous measurements at up to 3 scales for the common international fleet.Combined influence of intermittent turbulence and reconnection on the geomagnetic tail and on the nonlinear dynamics of boundary layers will be explored in situ with fast techniques including particle devices under development, providing plasma moments down to 30 ms resolution.We propose different options for joint measurements in conjunction with the SCOPE and other missions:
simultaneous sampling of low- and high-latitudes magnetopause, bow shock and geomagnetic tail at the same local time;
tracing of magnetosheath streamlines from the bow shock to near-Earth geomagnetic tail;
passing “through” the SCOPE on the inbound orbit leg;
common measurements (with SCOPE and other equatorial spacecraft) at distances of ∼ few thousand km for durations of ∼several hours per orbit.
The orbit options and scientific payload of possible common interest are discussed in this work, including FREGAT cargo opportunities for extra payload launching and the “Swarm” campaigns with ejection of nano- and pico-satellites.  相似文献   

2.
R.J. Soare  J.S. Kargel  F. Costard 《Icarus》2007,191(1):95-112
We have identified a number of gullies that could be aqueous in origin near or at the rim of several impact craters in Utopia Planitia and western Elysium Planitia (30.0°-59.0° N; 241.0°-291.0° W). Based on the sharpness of their incisions and the general absence of superposed craters, we ascribe a relatively recent origin to the gullies. Scalloped depressions are commonplace throughout the region, as well as on the crater walls, rims and floors near the areas of gully issuance. Occasionally, the depressions cross-cut the gully debris-aprons, suggesting that the formation of some depressions is even more recent than that of the gullies. Previous research has proposed that the depressions are collapse basins formed by thermokarst processes. On Earth, thermokarst landforms occur in areas of low gradient topography where the permanently frozen ground (permafrost) is ice rich and has undergone a change in thermal equilibrium. This change can be triggered by long-term or episodic/cyclic climate change and accompanying rises in mean temperatures towards ∼0 °C as well as by rises in seasonally sustained summer temperatures well above ∼0 °C. In order to explain the origin of the rim or near-rim gullies we invoke high obliquity and the possibility that this region of Mars experienced obliquity-driven rises in temperature, atmospheric pressure and humidity sufficient to keep surface water and near-surface ground-ice stable for extended periods of time. We propose that gully formation is closely related to local freeze-thaw processes that, in turn, generate a thermokarst landscape (of which the gullies are a part). This geological and climatological scenario comprises the following steps:
1.
An inundation of meltwater at high obliquity (due to the thawing of an atmospherically-deposited snowpack or ice-sheet) and the subsequent saturation of the underlying regolith to tens of metres of depth.
2.
Loss of water on the surface, perhaps as obliquity decreases slightly, followed by the progressive freezing of the saturated regolith; this creates an aggrading mass of ice-rich regolith.
3.
Obliquity-induced temperature rises that engender the thaw, drainage and partial evaporation of the near-surface, ice-rich regolith.
4.
Localised formation of thermokarst collapse-basins (alases), as water is evacuated from these basins.
5.
Formation of gullies near, or at, some impact-crater rims as the result of meltwater migration from nearby alases through the thawed regolith to the areas of gully issuance.
Although the plains' materials in this region are in part very old (possibly Hesperian or even Noachian), the mantling deposits and their deformation by thermokarst processes appears to be relatively young. This suggests that recent climatic conditions could have been episodically warmer and wetter than had been previously thought.  相似文献   

3.
4.
Hydrogen is the most abundant element in the universe. Molecular hydrogen is the dominant chemical species in the atmospheres of the giant planets. Because of their low masses, neutral and ionized hydrogen atoms are the dominant species in the high atmospheres of many planets. Finally, protons are the principal heavy component of the solar wind.Here we present a critical evaluation of the current state of understanding of the chemical reaction rates and collision cross sections for several important hydrogen collision processes in planetary atmospheres, ionospheres, and magnetospheres. Accurate ab initio quantum theory will play an important role. The collision processes are grouped as follows:
(a)
H++H charge transfer,
(b)
H++H2(v) charge transfer and vibrational relaxation, and
(c)
H2(v,J)+H2 vibrational, rotational, and ortho-para relaxation.
In each case we provide explicit representations as tabulations or compact formulas. Particularly important conclusions are that H++H2(v) collisions are more likely to result in vibrational relaxation than charge transfer and H2 ortho-para conversion is at least an order-of-magnitude faster than previously assumed.  相似文献   

5.
Forthcoming human planetary exploration will require increased scientific return (both in real time and post-mission), longer surface stays, greater geographical coverage, longer and more frequent EVAs, and more operational complexities than during the Apollo missions. As such, there is a need to shift the nature of astronauts’ scientific capabilities to something akin to an experienced terrestrial field scientist. To achieve this aim, the authors present a case that astronaut training should include an Apollo-style curriculum based on traditional field school experiences, as well as full immersion in field science programs. Herein we propose four Learning Design Principles (LDPs) focused on optimizing astronaut learning in field science settings. The LDPs are as follows:
(1)
LDP#1: Provide multiple experiences: varied field science activities will hone astronauts’ abilities to adapt to novel scientific opportunities
(2)
LDP#2: Focus on the learner: fostering intrinsic motivation will orient astronauts towards continuous informal learning and a quest for mastery
(3)
LDP#3: Provide a relevant experience—the field site: field sites that share features with future planetary missions will increase the likelihood that astronauts will successfully transfer learning
(4)
LDP#4: Provide a social learning experience—the field science team and their activities: ensuring the field team includes members of varying levels of experience engaged in opportunities for discourse and joint problem solving will facilitate astronauts’ abilities to think and perform like a field scientist.
The proposed training program focuses on the intellectual and technical aspects of field science, as well as the cognitive manner in which field scientists experience, observe and synthesize their environment. The goal of the latter is to help astronauts develop the thought patterns and mechanics of an effective field scientist, thereby providing a broader base of experience and expertise than could be achieved from field school alone. This will enhance their ability to execute, explore and adapt as in-field situations require.  相似文献   

6.
Three methods permitting to characterize space and onboard spacecraft radiation environment have been developed and/or upgraded in our laboratories: MDU equipment with a semiconductor detector as sensitive element devoted to register energy deposition spectra in the Si-diode; a spectrometer of the linear energy transfer (LET) based on chemically etched polyallyldiglycolcarbonate (PADC) track etch detectors (TED); and thermoluminescent detectors (TLDs) with different dependences of relative TL yield on the LET of particles transferring their energy in them.We have used all these types of dosimetry equipments onboard spacecrafts since several years and succeeded to treat directly read data in terms of both quantitative and qualitative dosimetry characteristics and deduce from them related radiation risk.During last few years all these three types of detectors have been intensely studied to understand still better their possibilities to characterize space radiation fields. Particularly:
1.
Both PADC TED LET spectrometer and TLDs have been exposed in heavier ion beams with LET in water ranging from 1 to about 700 keV/μm with the goal to upgrade their calibration curves;
2.
A new method of MDU directly read data has been developed, permitting to measure not only dose in Si-detector, but also to estimate radiation protection quantities and the neutron contribution to the onboard exposure level;
3.
All three methods have been tested onboard spacecrafts during several missions.
Contribution presents, analyses and discusses the results obtained in items 1-3 and, also, the possibilities of these detectors to help in characterizing radiation fields during longer space missions, above 1 year.  相似文献   

7.
8.
9.
10.
Uwe Fink 《Icarus》2009,201(1):311-334
A summary is presented of our spectroscopic survey of comets extending for roughly 19 years from 1985 to 2004 comprising data for 92 comets of which 50 showed good emissions. All data were re-analyzed using consistent reduction techniques. Our observations of comets over several apparitions and comets observed over an extended period indicate no major changes in compositional classification. To our regret, no major unidentified cometary features were found in our surveyed spectral region of 5200-10400 Å. Absolute production rates for the dominant parent molecule H2O and the daughter species C2, NH2 and CN are determined within the limits of the Haser model as are values for the dust continuum, Afρ. From these data, production rate ratios are calculated for C2/H2O, NH2/H2O, CN/H2O and Afρ/H2O. Excluding the odd Comets Yanaka (1988r), 43P/Wolf-Harrington and 19P/Borrelly, with unusual spectra, our set of comets exhibited relatively uniform composition. Detailed analyses of our data resulted in four taxonomic classes:
-
Comets of typical composition (∼70%); exhibiting typical ratios with respect to water of C2, NH2, and CN.
-
Tempel 1 type (∼22%); having a deficiency in C2 but normal NH2 abundance.
-
G-Z type (∼6%); having both low C2 and NH2 ratios.
-
The unusual object Yanaka (1988r) (∼2%?); no detectable C2 or CN emission but normal NH2.
It is uncertain whether there is a clear separation between the comets of typical composition and those with C2 depletion, or whether the latter consists of a group showing a continuum of decreasing C2/CN ratios. Our spectroscopic investigations result in a visual record of the various compositional classes, which are illustrated in a number of figures. Production rate comparisons with the comet photometry program of Schleicher and A'Hearn [A'Hearn, M.F., and 4 colleagues, 1995. Icarus 118, 223-270] for 13 comets in common yielded good agreement once the different scale lengths are taken into account. An investigation into the possible origin of our compositional groups with respect to dynamical families of comets shows that the Halley family exhibits essentially no C2 depletion. These objects were presumably formed in the region of Saturn and Uranus and scattered into the Oort cloud. Comets formed in the space near Neptune, responsible for the scattered Kuiper Belt show a mixture of “typical” and C2 depleted objects, while we associate comets formed in-situ in the classical Kuiper belt with our C2 depleted group.  相似文献   

11.
12.
13.
14.
15.
16.
Microscopic liquid layers of water can evolve via adsorption on grain and mineral surfaces at and in the soil of the surface of Mars. The upper parts of these layers will start to freeze at temperatures clearly below the freezing point of bulk water (freezing point depression). A sandwich structure with layers of ice (top), liquid water (in between) and mineral surface (bottom) can evolve. The properties of the interfacial water (of adsorption water and premelted ice) on grain surfaces are described by a sandwich-model of a layer of liquid-like adsorption water between the adsorbing mineral surface layer and an upper ice layer. It is shown that the thickness or number of mono-layers of the interfacial water (of adsorption water and premelted ice) depends on temperature and atmospheric relative humidity. The derived equations for the sandwich model fit well to a known phenomenological relation between thickness of the liquid layer and relative humidity, and can be a tool to estimate or to determine for appropriate materials Hamaker's constant for van der Waals interactions on grains and in porous media. The curvature of grain surfaces is shown to have no remarkable effects for particles in the μm-range and larger. The application of these equations to thermo-physical conditions on Mars shows that the thickness of frost-layers, which can evolve over several hours on cooling surface parts of Mars, is typically of the order or a few tenths of one millimeter or less. This is in agreement with observations. Furthermore, an equation is derived, which relates the freezing point depression for van der Waals force governed interfacial water to the value of the Hamaker constant, to the latent heat of solidification, to the mass density of water ice, and to the thickness of the liquid-like layer. Again, this equation fits well to a known phenomenological relation between freezing point depression and thickness of the liquid-like layer. The derived equation shows that the lower limiting temperature of the liquid phase can reach about 180 K under martian conditions having an atmospheric water content of around 10 pr μm. An “Equilibrium Moisture Content” (EMC)/“Equilibrium Relative Humidity” (ERH) relation for the water content of martian soil has been derived, which relates, for equilibrium conditions, soil water content and atmospheric relative humidity. This relation indicates that the content of liquid interfacial water in the upper surface of Mars can reach up to 10% by weight and more in course of saturation during night hours, and it can be of about 2% by weight during the dry daytime hours.  相似文献   

17.
18.
An attempt is made to construct a trial Qμ(l) distribution in the silicate mantle of Mars. With the allowance for the fact that on the PT plane the Earth’s geotherm is close to the distribution of areotherms, it was concluded that Qμ(l) should be distributed in the Martian interior topologically close to the Qμ(l) distribution in the Earth. The initial distribution was specified by the four-layer piecewise-constant distribution from the QML9 model. An important step was to select the power index in the frequency dependence of Qμ. Based on the laboratory data and on the experience of studying this problem for the Earth, n was specified in the interval 0.1–0.3. It was found that with the conversion of the initial distribution to the orbital period of Phobos around Mars, which is the only constraint for the problem derived from the observations, this distribution agrees reasonably well with the observational data at n = 0.1.  相似文献   

19.
It is investigated whether conditions for melting can be temporarily created in the upper sub-surface parts of snow/ice-packs on Mars at subzero surface temperatures by means of the solid-state greenhouse effect, as occurs in snow- and ice-covered regions on Earth. The conditions for this possible temporary melting are quantitatively described for bolometric albedo values A = 0.8 and A = 0.2, and with model parameters typical for the thermo-physical conditions at snow/ice sites on the surface of present Mars. It is demonstrated by numerical modelling that there are several sets of parameters which will lead to development of layers of liquid water just below the top surface of snow- and ice-packs on Mars. This at least partial liquefaction occurs repetitively (e.g. diurnally, seasonally), and can in some cases lead to liquid water persisting through the night-time in the summer season. This liquid water can form in sufficient amounts to be relevant for macroscopic physical (rheology, erosion), for chemical, and eventually also for biological processes. The creation of temporary pockets of sub-surface water by this effect requires pre-existing snow or ice cover, and thus is more likely to take place at high latitudes, since the present deposits of snow/ice can mainly be found there. Possible rheologic and related erosion consequences of the appearance of liquid sub-surface water in martian snow/ice-packs are discussed in view of current observations of recent rheologic processes.  相似文献   

20.
In this interview, William Hartmann (Bill, Fig.  1 ) describes how he was inspired as a teenager by a map of the Moon in an encyclopedia and by the paintings by Chesley Bonestell. Through the amateur journal “Strolling Astronomer,” he shared his interests with other teenagers who became lifelong colleagues. At college, he participated in Project Moonwatch, observing early artificial satellites. In graduate school, under Gerard Kuiper, Bill discovered Mare Orientale and other large concentric lunar basin structures. In the 1960s and 1970s, he used crater densities to study surface ages and erosive/depositional effects, predicted the approximately 3.6 Gyr ages of the lunar maria before the Apollo samples, discovered the intense pre‐mare lunar bombardment, deduced the youthful Martian volcanism as part of the Mariner 9 team, and proposed (with Don Davis) the giant impact model for lunar origin. In 1972, he helped found (what is now) the Planetary Science Institute. From the late 1970s to early 1990s, Bill worked mostly with Dale Cruikshank and Dave Tholen at Mauna Kea Observatory, helping to break down the Victorian paradigm that separated comets and asteroids, and determining the approximately 4% albedo of comet nuclei. Most recently, Bill has worked with the imaging teams for several additional Mars missions. He has written three college textbooks and, since the 1970s, after painting illustrations for his textbooks, has devoted part of his time to painting, having had several exhibitions. He has also published two novels. Bill Hartmann won the 2010 Barringer Award for impact studies and the first Carl Sagan Award for outreach in 1997.
Figure 1 Open in figure viewer PowerPoint William K. Hartmann taken 2010 Aug 2 (Photo: Gayle Hartmann).
  • DS
  • Bill thank you very much for doing this. I would like to start with a very general question. What is the one incident in your life above all others that has determined the nature of your career?
  • WKH
  • I would say that what initially stirred my excitement for this topic were the books I stumbled across as a teenager. One event I recall was that my brother, who was 8 years older than I was, had a young person's encyclopedia called the Book of Knowledge. One day I was looking at that book and there was this map of the Moon. Craters, mountains, plains, all sorts of features. That blew me away. The concept that there was this other land, not just a shining thing in the sky, but a geological body, a new geographical place. There was also a book by Willy Ley and Chesley Bonestell, Conquest of Space, which had all these marvelous paintings by Bonestell, visualizing what it was like on other planets. It came out in 1949. I am fond of my copy of that book because my father somehow managed to get Willy Ley, a German expatriate colleague of von Braun's, a writer and popularizer for space, to come to our town and give a talk and autograph my book. Many years later I met Chesley Bonestell and got him to autograph the book. There are not very many copies of that book with the signatures of both authors! The paintings gave me a real desire to want to know what it would be like on other worlds.
  •   相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号