首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We compare the electron densities of two martian ionospheric layers, which we call M1 and M2, measured by Mars Global Surveyor during 9-27 March 1999, with the electron densities of the terrestrial E and F1 layers derived from ionosonde data at six sites. The day-to-day variations are all linked to changes in solar activity, and provide the opportunity of making the first simultaneous study of four photochemical layers in the solar system. The ‘ionospheric layer index’, which we introduce to characterize ionospheric layers in general, varies between layers because different atmospheric chemistry and solar radiations are involved. The M2 and F1 layer peaks occur at similar atmospheric pressure levels, and the same applies to the M1 and E layers.  相似文献   

2.
We study the thermal fields over Olympus Mons separating seasons (northern spring and summer against southern spring and summer) and local time observations (day side versus night side). Temperature vertical profiles retrieved from Planetary Fourier Spectrometer on board Mars Express (PFS-MEX) data have been used. In many orbits (running north to south along a meridian) passing over the top of the volcano there is evidence of a hot air on top of the volcano, of two enhancement of the air temperature both north and south of it and in between a collar of air that is colder than nearby at low altitudes, and warmer than nearby at high altitudes. Mapping together many orbits passing over or near the volcano we find that the hot air has the tendency to form an hot ring around it. This hot structure occurs mostly between LT = 10.00 and 15.00 and during the northern summer. Distance of the hot structure from the top of the volcano is about 600 km (10° of latitude). The hot atmospheric region is 300-420 km (5-7°) wide. Hot ring temperature contrasts of about 40 K occur at 2 km above the surface and decrease to 20 K at 5 km and to 10 K at 10 km. The atmospheric circulation over an area of 40° × 40° (latitudes and longitudes) is affected by the topography and the presence of Olympus Mons (−133°W, 18°N). We discuss also the thermal stability of the atmosphere over the selected area using the potential temperatures. The temperature field over the top of the volcano shows unstable atmosphere within 10 km from the surface. Finally, we interpret the hot temperatures around volcano as an adiabatic compression of down-welling branch coming from over the top of volcano.Different air temperature profiles are observed in the same seasons during the night, or in different seasons. In northern spring-summer during the night the isothermal contours do not show the presence of the volcano until we reach close to the surface very much, where a thermal inversion is observed. The surface temperature shows higher values (by 10 K) in correspondence of the scarp (an abrupt altimetry variation of roughly 5 km) on south (6°N) and north (30°N) sides of volcano. During the southern spring-summer, on the contrary the isothermal curves run parallel to the surface even on top the volcano, just like the GCM have predicted.  相似文献   

3.
A general circulation model is used to evaluate changes to the circulation and dust transport in the martian atmosphere for a range of past orbital conditions. A dust transport scheme, including parameterized dust lifting, is incorporated within the model to enable passive or radiatively active dust transport. The focus is on changes which relate to surface features, as these may potentially be verified by observations. Obliquity variations have the largest impact, as they affect the latitudinal distribution of solar heating. At low obliquities permanent CO2 ice caps form at both poles, lowering mean surface pressures. At higher obliquities, solar insolation peaks at higher summer latitudes near solstice, producing a stronger, broader meridional circulation and a larger seasonal CO2 ice cap in winter. Near-surface winds associated with the main meridional circulation intensify and extend polewards, with changes in cap edge position also affecting the flow. Hence the model predicts significant changes in surface wind directions as well as magnitudes. Dust lifting by wind stress increases with obliquity as the meridional circulation and associated near-surface winds strengthen. If active dust transport is used, then lifting rates increase further in response to the larger atmospheric dust opacities (hence circulation) produced. Dust lifting by dust devils increases more gradually with obliquity, having a weaker link to the meridional circulation. The primary effect of varying eccentricity is to change the impact of varying the areocentric longitude of perihelion, l, which determines when the solar forcing is strongest. The atmospheric circulation is stronger when l aligns with solstice rather than equinox, and there is also a bias from the martian topography, resulting in the strongest circulations when perihelion is at northern winter solstice. Net dust accumulation depends on both lifting and deposition. Dust which has been well mixed within the atmosphere is deposited preferentially over high topography. For wind stress lifting, the combination produces peak net removal within western boundary currents and southern midlatitude bands, and net accumulation concentrated in Arabia and Tharsis. In active dust transport experiments, dust is also scoured from northern midlatitudes during winter, further confining peak accumulation to equatorial regions. As obliquity increases, polar accumulation rates increase for wind stress lifting and are largest for high eccentricities when perihelion occurs during northern winter. For dust devil lifting, polar accumulation rates increase (though less rapidly) with obliquity above o=25°, but increase with decreasing obliquity below this, thus polar dust accumulation at low obliquities may be increasingly due to dust lifted by dust devils. For all cases discussed, the pole receiving most dust shifts from north to south as obliquity is increased.  相似文献   

4.
Suspended dust is a dominant component of the Martian environment. It has a major influence on atmospheric circulation and it is deposited widely over the planetary surface causing a serious hazard to instrumentation. In order to study dust transport, quantification of the wind flow and dust concentration are vital. A simple laser-based anemometer system is presented that is able to measure suspended dust grain velocity and turbulence from a landed spacecraft. This system has advantages over other techniques of wind speed determination in being insensitive to contamination or atmospheric conditions such as temperature, pressure or composition. For the first time it would allow direct measurement of the suspended dust concentration on Mars. A prototype instrument has been constructed and successfully tested in a wind tunnel facility under simulated Martian conditions. The optics are simple in design, light weight and the instrument has low power consumption. It is also robust and the output signal is easily interpreted, producing only a small data volume. Future improvements will be discussed, specifically modification to measure wind direction, the possibility of obtaining information about dust grain size and the construction of a flight model.  相似文献   

5.
Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars’ Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.  相似文献   

6.
Laboratory simulations using the Arizona State University Vortex Generator (ASUVG) were run to simulate sediment flux in dust devils in terrestrial ambient and Mars-analog conditions. The objective of this study was to measure vortex sediment flux in the laboratory to yield estimations of natural dust devils on Earth and Mars, where all parameters may not be measured. These tests used particles ranging from 2 to 2000 μm in diameter and 1300 to 4800 kg m−3 in density, and the results were compared with data from natural dust devils on Earth and Mars. Typically, the cores of dust devils (regardless of planetary environment) have a pressure decrease of ∼0.1-1.5% of ambient atmospheric pressure, which enhances the lifting of particles from the surface. Core pressure decreases in our experiments ranged from ∼0.01% to 5.00% of ambient pressure (10 mbar Mars cases and 1000 mbar for Earth cases) corresponding to a few tenths of a millibar for Mars cases and a few millibars for Earth cases. Sediment flux experiments were run at vortex tangential wind velocities of 1-45 m s−1, which typically correspond to ∼30-70% above vortex threshold values for the test particle sizes and densities. Sediment flux was determined by time-averaged measurements of mass loss for a given vortex size. Sediment fluxes of ∼10−6-100 kg m−2 s−1 were obtained, similar to estimates and measurements for fluxes in dust devils on Earth and Mars. Sediment flux is closely related to the vortex intensity, which depends on the strength of the pressure decrease in the core (ΔP). This study found vortex size is less important for lifting materials because many different diameters can have the same ΔP. This finding is critical in scaling the laboratory results to natural dust devils that can be several orders of magnitude larger than the laboratory counterparts.  相似文献   

7.
Downward-looking spectra of the martian surface from the Miniature Thermal Emission spectrometer (Mini-TES), onboard each of the two Mars Exploration Rovers, are modeled in order to retrieve surface and near-surface atmospheric temperatures. By fitting the observed radiance in the vicinity of the 15-μm CO2 absorption feature, the surface temperature and the near-surface atmospheric temperature, approximately 1.1 m above the surface, are determined. The temperatures from the first 180 sols (martian days) of each surface mission are used to characterize the diurnal dependence of temperatures. The near-surface atmospheric temperatures are consistently 20 K cooler than the surface temperatures in the warmest part of each sol, which is 1300-1400 LTST (local true solar time) depending on the location. Seasonal cooling trends are seen in the data by displaying the temperatures as a function of sol. Long ground stares, 8.5 min in duration, show as much as 8 K fluctuation in the near-surface atmospheric temperatures during the early afternoon hours when the near-surface atmosphere is unstable.  相似文献   

8.
We report observations of a set of surface features on Mars that form a distinct class of avalanche scars. These features have a horizontal scale of hundreds of meters, but a depth scale of meters distinguishes them from the shallower features known as slope streaks. The meters-thick avalanche scars have escaped previous attention because of weak contrast between the interiors of the scarred regions and their surroundings. Often the most visible feature is a shadow cast by the trough wall, a band 1-3 pixels wide in Mars Orbiter Camera narrow angle images, indicating maximum depths of 4-10 m. We investigate the morphology of more than 500 such features. Slopes upon which the avalanches occur average about 27°. Impact craters are seen at the heads of some avalanche scars; this subset exhibits statistically wider opening angles. The scars span an estimated several Ma in age. Those found so far occurred mainly in the Olympus Mons lower aureole. We compare shapes of slope streaks to shapes of meters-thick avalanches, and the results support the notion that the two classes are distinct. The newly-discovered avalanches resemble some terrestrial flows of loose, dry material such as dry snow and glass beads. On the basis of these analogs, we suggest a physical model.  相似文献   

9.
Dust is a major environmental factor on the surface and in the atmosphere of Mars. Knowing the electrical charge state of this dust would be of both scientific interest and important for the safety of instruments on the Martian surface. In this study the first measurements have been performed of dust electrification using suspended Mars analogue material. This has been achieved by attracting suspended dust onto electrodes placed inside a Mars simulation wind tunnel. The Mars analogue used was from Salten Skov in Denmark, this contained a high concentration of ferric oxide precipitate. Once suspended, this dust was found to consist of almost equal quantities of negatively (46±6%) and positively (44±15%) charged grains.These grains were estimated to typically carry a net charge of around 105e, this is sufficient to dominate the processes of adhesion and cohesion of this suspended dust. Evidence is presented for electrostatic aggregation of the dust while in suspension. Development of a simple instrument for measuring electrical charging of the suspended dust on Mars will be discussed.  相似文献   

10.
Ralph D. Lorenz 《Icarus》2009,203(2):683-684
Estimates from visual surveys of the frequency of dust devils, even at terrestrial localities known for their abundance, vary by some four orders of magnitude, making a quantitative hazard assessment difficult. Here I show (1) that new high-quality observations from Mars fit a power law size distribution, (2) that such a power law population can unify the discrepant terrestrial surveys, and (3) that the populations on the two planets appear similar.  相似文献   

11.
The rate of granule ripple movement on Earth and Mars   总被引:1,自引:0,他引:1  
The rate of movement for 3- and 10-cm-high granule ripples was documented in September of 2006 at Great Sand Dunes National Park and Preserve during a particularly strong wind event. Impact creep induced by saltating sand caused ∼24 granules min−1 to cross each cm of crest length during wind that averaged ∼9 m s−1 (at a height well above 1 m), which is substantially larger than the threshold for saltation of sand. Extension of this documented granule movement rate to Mars suggests that a 25-cm-high granule ripple should require from hundreds to thousands of Earth-years to move 1 cm under present atmospheric conditions.  相似文献   

12.
This work is devoted to the analysis of the variation of albedo measured by orbiting instruments with atmospheric opacity on Mars. The study has been conduced by analysing Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data from martian regions with different surface albedo.In support of these data, synthetic spectra with different surface albedo and atmospheric opacities have been computed, so that a comparison has been performed. The synthetic spectra have been retrieved by using two different grain sizes for suspended dust (0.5 and 1.2 μm), allowing a comparison between the two models and the observations.Using the DCI, a parameter describing the quantity of dust deposited on the surface, the effectiveness of the single scattering approximation has been tested for low atmospheric opacity by analysing the quality of the linear fit up to different atmospheric opacity.For more opaque conditions two kinds of fits have been applied to the data, linear and second-order degree polynomial. In this case, we found that the polynomial fit better describes the observations.The analysis of these data made it possible to notice a peculiar trend, already reported by Christensen (1988), of the albedo over Syrtis Major after the occurrence of dust storms, but, differently from that work, now the study of DCI together with atmospheric opacity and albedo allowed us to robustly confirm the hypothesis made by Christensen.Finally, the comparison between observations and synthetic spectra computed with models with different particles grain sizes indicates that dust particles of 0.5 μm diameter are the most effective to change the aerosol atmospheric opacity on Mars.  相似文献   

13.
Windborne dust is one of the most important and dynamic factors affecting the Martian surface and its atmosphere, yet there lacks a detailed physical understanding how it is transported. We present a miniature laser-based optoelectronic instrument for use on a Mars lander. It integrates sensors capable of quantifying important parameters needed for the understanding and modeling of dust transport on Mars, these include wind speed, wind direction, suspended dust concentration, dust deposition and removal rates as well as the electrification of the Martian dust. Dust electrification has been seen from experimental simulations to be of considerable importance to the processes of adhesion and cohesion, specifically prompting the formation of low mass density dust aggregates. Testing of this prototype instrument has been performed under simulated Martian conditions in a wind tunnel facility. The results and analysis of its functionality will be presented.  相似文献   

14.
D. Reiss  J. Raack  H. Hiesinger 《Icarus》2011,211(1):917-920
We report on the first observations of bright dust devil tracks (BDDTs) on Earth, observed in the Turpan depression desert in northwestern China, where raindrop impacts on sand surfaces form aggregates of sand, silt and clay resulting in rough surface textures, which are destroyed by passages of dust devils leading to smooth surface textures within the tracks. The differences in photometric properties between the track and outside the tracks cause the albedo differences leading to the formation of BDDTs and similar processes might lead to BDDTs on Mars in areas with thick dust covers.  相似文献   

15.
The Phoenix Lander landed on Mars on 25 May 2008. It has instruments on board to explore the geology and climate of subpolar Mars and to explore if life ever arose on Mars. Although the Phoenix mission is not a life detection mission per se, it will look for the presence of organic compounds and other evidence to support or discredit the notion of past or present life.The possibility of extant life on Mars has been raised by a reinterpretation of the Viking biology experiments [Houtkooper, J. M., Schulze-Makuch, D., 2007. A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. International Journal of Astrobiology 6, 147-152]. The results of these experiments are in accordance with life based on a mixture of water and hydrogen peroxide instead of water. The near-surface conditions on Mars would give an evolutionary advantage to organisms employing a mixture of H2O2 and H2O in their intracellular fluid: the mixture has a low freezing point, is hygroscopic and provides a source of oxygen. The H2O2-H2O hypothesis also explains the Viking results in a logically consistent way. With regard to its compatibility with cellular contents, H2O2 is used for a variety of purposes in terran biochemistry. The ability of the anticipated organisms to withstand low temperatures and the relatively high water vapor content of the atmosphere in the Martian arctic, means that Phoenix will land in an area not inimical to H2O2-H2O-based life. Phoenix has a suite of instruments which may be able to detect the signatures of such putative organisms.  相似文献   

16.
With the continued success of the Mars Exploration Rovers and the return of humans to the Moon within the next decade, a considerable amount of research is being done on the technologies required to provide surface mobility and the tools required to provide scientific capability. Here, we explore the utility of lidar and the mobile Scene Modeler (mSM) - which is based on a stereo camera system - as scientific tools. Both of these technologies have been, or are being considered for, technological applications such as autonomous satellite rendezvous and rover navigation. We carried out a series of field tests at the 23 km diameter, 39 Ma, Haughton impact structure located on Devon Island in the Canadian Arctic. Several sites of geological interest were investigated, including polygonal terrain, gullies and channels, slump/collapse features, impact melt breccia hills, and a site of impact-associated hydrothermal mineralization. These field tests show that lidar and mSM provide a superior visual record of the terrain, from the regional (km) to outcrop (m to cm) scale and in 3-D, as compared to standard digital photography. Thus, a key strength of these technologies is in situ reconnaissance and documentation. Lidar scans also provide a wealth of geometric and structural information about a site, accomplishing the equivalent of weeks to months of manual surveying and with much greater accuracy than traditional tools, making this extremely useful for planetary exploration missions. An unexpected result of these field tests is the potential for lidar and mSM to provide qualitative, and potentially quantitative, composition information about a site. Given the high probability of lidar and mSM being used on future lunar missions, we suggest that it would be beneficial to further investigate the potential for these technologies to be used as science tools.  相似文献   

17.
We present interferometric mapping of the 225.9-GHz HDO and 203.4-GHz lines on Mars obtained with the IRAM Plateau de Bure facility (PdBI). The observations were performed during martian year 28 (MY28), at Ls=320.3° for the HDO line, and at Ls=324.3° for the line. The HDO line is detected at the eastern (morning) and western (evening) limbs of the northern hemisphere, corresponding to a water column density in the range 3-6 pr.-μm. The line is not detected, which is compatible with the column densities derived from the HDO line. Quasi-simultaneous far infrared measurements obtained by the Planetary Fourier Spectrometer (PFS) onboard the Mars Express spacecraft confirm our PdBI results, yielding a 5±1 pr.-μm meridionally constant water column abundance.Such a low water abundance during the southern mid-autumn of MY28 does not correspond to the standard martian climatology as observed during the previous years. It was however already retrieved from near-infrared observations performed by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter spacecraft [Smith, M.D., Wolff, M.J., Clancy, R.T., Murchie, S.L. 2009. CRISM observations of water vapor and carbon monoxide. J. Geophys. Res. 114, doi: 10.1029/2008JE003288]. Our observations thus confirm that the planet-encircling dust storm that occurred during MY28 significantly affected the martian water cycle. Our observations also demonstrate the usefulness of interferometric submillimeter observations to survey the martian water cycle from ground-based facilities.  相似文献   

18.
High-resolution observations of atmospheric phenomena by the Mars Odyssey Thermal Emission Imaging System (THEMIS) during its first mapping year are presented. An atmospheric campaign was implemented on the basis of previous spacecraft imaging. This campaign, however, proved of limited success. This appears to be due to the late local time of the Odyssey orbit (the locations of activity at 4–6 p.m. appear to be different from those at 2 p.m.). Ironically, images targeting the surface were more useful for study of the atmosphere than those images specifically targeting atmospheric features. While many previously recognized features were found, novel THEMIS observations included persistent clouds in the southern polar layered deposits, dust or condensate plumes on the northern polar layered deposits, dust plumes as constituent parts of local dust storms, and mesospheric clouds. The former two features tend to be aligned parallel and normal to polar troughs, respectively, suggesting a wind system directed normal to troughs and radially outward from the center of the polar deposits. This is consistent with katabatic drainage of air off the polar deposits, analogous to flow off Antarctica. The observation of dust lifting plumes at unprecedented resolution associated with local dust storms not only demonstrates the importance of mean wind stresses (as opposed to dust devils) in initiation of dust storms, but is also seen to be morphologically identical to dust lifting in terrestrial dust storms. As Odyssey moves to earlier local times, we suggest that the atmospheric campaign from the first mapping year be repeated.  相似文献   

19.
20.
Greenhouse warming due to carbon dioxide atmospheres may be responsible for maintaining the early Earth's surface temperature above freezing and may even have allowed for liquid water on early Mars. However, the high levels of CO2 required for such warming should have also resulted in the formation of CO2 clouds. These clouds, depending on their particle size, could lead to either warming or cooling. The particle size in turn is determined by the nucleation and growth conditions. Here we present laboratory studies of the nucleation and growth of carbon dioxide on water ice under martian atmospheric conditions. We find that a critical saturation, S=1.34, is required for nucleation, corresponding to a contact parameter between solid water and solid carbon dioxide of m=0.95. We also find that after nucleation occurs, growth of CO2 is very rapid, and we report the growth rates at a number of supersaturations. Because growth would be expected to continue until the CO2 pressure is lowered to its vapor pressure, we expect particles larger than those being currently suggested for the present and past martian atmospheres. Using this information in a microphysical model described in a companion paper, we find that CO2 clouds are best described as “snow,” having a relatively small number of large particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号