首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
In this paper the effect of a delayed onset of glaciation in the Barents Sea on glacial isostatic adjustment is investigated. The model calculations solve the sea-level equation governing the total mass redistributions associated with the last glaciation cycle on a spherically symmetric, linear, Maxwell viscoelastic earth for two different scenarios for the growth phase of the Barents Sea ice sheet. In the first ice model a linear growing history is used for the Barents Sea ice sheet, which closely relates its development to the build-up of other major Late Pleistocene ice sheets. In the second ice model the accumulation of the Barents Sea ice sheet is restricted to the last 6 ka prior to the last glacial maximum.
The calculations predict relative sea levels, present-day radial velocities, and gravity anomalies for the area formerly covered by the Weichselian ice sheet. The results show that observed relative sea levels in the Barents Sea are appropriate for distinguishing between the different glaciation histories. In particular, present-day observables such as the free-air gravity anomaly over the Barents Sea, and the present-day radial velocities are sensitive to changes in the glaciation history on this scale.
A palaeobathymetry derived from relative sea-level predictions before the last glacial maximum based on the second ice model essentially agrees with a palaeobathymetry derived by Lambeck (1995). The additional emerged areas provide centres for the build-up of an ice sheet and thus support the theory of Hald, Danielsen & Lorentzen (1990) and Mangerud et al. (1992) that the Barents Sea was an essentially marine environment shortly before the last glacial maximum.  相似文献   

2.
3.
4.
In Paper I (Breuer & Wolf 1995), a preliminary interpretation of the postglacial land emergence observed at a restricted set of six locations in the Svalbard Archipelago was given. The study was based on a simple model of the Barents Sea ice sheet and suggested increases in lithosphere thickness and asthenosphere viscosity with increasing distance from the continental margin.
In the present paper, the newly developed high-resolution load model. BARENTS-2, and land-uplift observations from an extended set of 25 locations are used to study further the possibility of resolving lateral heterogeneity in the upper mantle below the northern Barents Sea. A comparison of the calculated and observed uplift values shows that the lithosphere thickness is not well resolved by the observations, although values above 110 km are most common for this parameter. In contrast to this, there are indications of a lateral variation of asthenosphere viscosity. Whereas values in the range 1018-1020Pas are inferred for locations close to the continental margin, 1020-1021 Pa s are suggested further away from the margin.
A study of the sensitivity of the values found for lithosphere thickness and asthenosphere viscosity to modifications of load model BARENTS-2 shows that such modifications can be largely accommodated by appropriate changes in lithosphere thickness, whereas the suggested lateral variation of asthenosphere viscosity is essentially unaffected. An estimate of the influence of the Fennoscandian. ice sheet leads to the conclusion that its neglect results in an underestimation of the thickness of the Barents Sea ice sheet by about 10 per cent.  相似文献   

5.
6.
7.
Okada (1992) provided expressions for the displacement and strain fields due to a finite rectangular source in an elastic, homogeneous and isotropic half-space. Starting with these results, we applied the correspondence principle of linear viscoelasticity to derive the quasi-static displacement, strain and stress fields in a viscoelastic, homogeneous and isotropic half-space. We assume that the medium deforms viscoelastically with respect to both the shear and the normal stresses but keeps a constant bulk modulus; in particular, the shear modulus relaxes as Maxwell fluid. We presented the viscoelastic effect on displacement, displacement gradient and stress fields, for a choice of parameter values. The viscoelastic effect due to the sudden dislocation reaches a limit value after about 10 times the Maxwell time. The expressions obtained here provide tools for the study of viscoelastic relaxation of lithosphere associated with seismic and volcanic phenomena.  相似文献   

8.
Estimates of postglacial rebound in central North America from Laurentide deglaciation to the present time are uncertain as a result of lack of data from the continental interior. A more precise knowledge of postglacial tilt history will assist studies of the evolution of the major lakes in Manitoba and will facilitate the engineering and environmental management of the present-day hydrological system. This paper explores the benefits of combining geomorphological data with high-precision, real-time geodetic data (GPS positioning and absolute gravity) and lake-gauge tilt data now being collected for postglacial rebound studies in Manitoba and adjacent regions in the US. Presently-available data sets representing these data types are (1) tilting of the 9.5 kyr B.P. Campbell strand line south and west of Lake Winnipeg, (2) the rate of decrease in absolute gravity values measured from 1987 to 1995 at Churchill, Manitoba, and (3) the present-day regional tilt rate derived from water-level gauges in southern Manitoba lakes. These data are compared to theoretical predictions based on the published ICE-3G loading history and on a model of Earth rheology characterized by a 1066B density and elastic structure, an upper-mantle viscosity of 10 21Pa s, a lower-mantle viscosity of 2 × 10 21Pa s, and a lithosphere thickness of 120 km (Tushingham & Peltier, 1991). All three data types show disagreement in Manitoba with ICE-3G and the standard Earth model. ICE-4G does better but could not be investigated in any detail. The constraints on model parameters provided by the different data types were investigated by varying, one at a time, three key parameters, (1) the thickness of the lithosphere in excess of 120 km, (2) the lower mantle viscosity, and (3) the thickness of Laurentide ice over the Prairies, to obtain better fits to the data. The present data do not appear to constrain lithosphere thickness in excess of 120 km very well. While both the Campbell strand line data and the Churchill absolute gravity data are consistent with an increase in lower-mantle viscosity, the present-day, lake-gauge data are not. All three data types are consistent with a thinning of the Laurentide ice-sheet over the Prairies relative to the ICE-3G model. Simultaneous adjustment of model parameters with the advantage of anticipated new data in Manitoba and adjacent regions in the US will lead to better understanding of the trade-offs between Earth rheology and ice sheet history and hence to an improved Laurentide postglacial rebound model.  相似文献   

9.
10.
11.
LiYun Dai  Tao Che 《寒旱区科学》2011,3(4):0325-0331
Ground snow observation data from 1999 to 2008 were used to analyze the temporal and spatial distribution of snow density in China. The monthly maximum density shifted from north to south during the period from October to the following January, and then moved back from south to north during the period from January to April. The maximum snow density occurred at the border between Hunan and Jiangxi provinces in January, where snow cover duration was short and varied remarkably. Snow density in Northeast China and the Xinjiang Uygur Autonomous Region were also high and showed less variation when the snow cover duration was long. Ground observation data from nine weather stations were selected to study changes of snow density in Northeast and Northwest China. A phase of stable snow density occurred from the middle ten days of November to the following February; non-stationary density phases were observed from October to the first ten days of November and from March to April. To further investigate the effects of climatic factors on snow density, correlations between snow density and precipitation, air temperature, snow depth and wind velocity for Northeast and Northwest China were analyzed. Correlation analysis showed that snow depth was the primary influence on snow density.  相似文献   

12.
Road density (i.e., km/km2) is a useful broad index of the road network in a landscape and has been linked to several ecological effects of roads. However, previous studies have shown that road density, estimated by grid computing, has weak correlation with landscape fragmentation. In this article, we propose a new measure of road density, namely, kernel density estimation function (KDE) and quantify the relation between road density and landscape fragmentation. The results show that road density estimated by KDE (km/km2) elucidates the spatial pattern of the road network in the region. Areas with higher road density are dominated by a larger proportion of built-up landscape and less possession of forest and vice versa. Road networks segregated the landscape into smaller pieces and a greater number of patches. Furthermore, Spearman rank correlation model indicates that road density (km/km2) is positively related to landscape fragmentation. Our results suggest that road density, estimated by KDE, may be a better correlate with effects of the road on landscape fragmentation. Through KDE, the regional spatial pattern of road density and the prediction of the impact of the road on landscape fragmentation could be effectively acquired.  相似文献   

13.
 以木兰围场国有林场管理局实施间伐后6种保留密度下(540、650、1 084、1 104、1 408和1 860 株 / hm2)油松人工林为研究对象,研究各土层的土壤有机碳和N、P、K等养分元素含量及其相关关系。研究结果显示:(1) 土壤有机碳含量和碳密度垂直递减特征明显,均随土壤深度的增加而显著减小,当林分密度由540 株 / hm2增加到1 860 株 / hm2时,土壤有机碳含量及碳密度变化规律不尽一致,其分布区间分别为10.56~21.21 g / kg,与5.48~11.70 kg / m2;(2) 林分密度对土壤有机碳及碳密度有显著的影响,1 408 株 / hm2油松林下土壤有机碳含量及碳密度分别与650 株 / hm2和1 860 株 / hm2油松林下土壤有机碳含量及碳密度呈显著性差异,而其它林分密度间无显著差异。当林分密度为1 104 株 / hm2时,各土层土壤全N和P、K的有效量及全量均保持在一个相对较高的水平,在0~60 cm深度土壤全N、全P、全K、有效P和速效K含量均值均达到最高,分别为1.38 g/kg、0.34 g/kg、32.75 g/kg、33.10 mg/kg和118.85 mg/kg;(3) 不同林分密度、不同土层土壤有机碳含量、碳密度与土壤全N及P、K的全量和有效量的相关显著性有差异,对整个土壤剖面而言,土壤有机碳含量及碳密度与土壤全N、全P、速效K均呈显著或极显著正相关;(4) 在本研究林分密度范围内,从林地土壤固碳的角度,建议将油松人工林的林分密度控制在1 104 株 / hm2。  相似文献   

14.
2000-2010年中国不同地区人口密度变化及其影响因素   总被引:5,自引:0,他引:5  
王露  封志明  杨艳昭  游珍 《地理学报》2014,69(12):1790-1798
人口空间分布及其集疏变化是区域发展规划的重要科学基础之一。2000-2010年中国人口变化格局及其驱动因素有待进一步梳理。鉴于此,以分县为基本研究单元,利用2000年与2010年两次人口普查数据,首先根据人口密度变化将中国不同地区划分为快速增加、缓慢增加、缓慢降低和快速降低四个类型,并分析其空间格局与地域特征。在此基础上,选取11个自然与社会经济因素,利用偏最小二乘法 (PLS),对全国及四类地区的人口密度变化影响因素及其地域差异进行了定量分析。研究结果表明:① 相较于2000年,2010年全国超过60%的分县单元人口密度增加,平均增速为21人/km2,主要分布在城镇密集地区;不到40%的分县单元人口密度减少,平均降低13人/km2,主要分布在人口密集省份、老城区和边境地区;② 自然因素与社会经济因素对人口密度变化均有影响,但社会经济因素影响更大。高经济发展水平、医疗条件和通讯能力是人口密度增加的主要“拉力”,而地区内稠密的人口是人口密度降低的主要“推力”。上述结论基本理清了中国近10年来人口增减变化空间分布格局及其地域影响因素,可为未来人口发展和区域规划提供有益的借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号