首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The extended Saryarka and Shyngyz-North Tien Shan volcanic belts that underwent secondary deformation are traced in the Caledonides of Kazakhstan and the North Tien Shan. These belts are composed of igneous rocks pertaining to Early Paleozoic island-arc systems of various types and the conjugated basins with oceanic crust. The Saryarka volcanic belt has a complex fold-nappe structure formed in the middle Arenigian-middle Llanvirnian as a result of the tectonic juxtaposition of Early-Middle Cambrian and Late Cambrian-Early Ordovician complexes of ensimatic island arcs and basins with oceanic crust. The Shyngyz-North Tien Shan volcanic belt is characterized by a rather simple fold structure and consists of Middle-Late Ordovician volcanic and plutonic associations of ensialic island arcs developing on heterogeneous basement, which is composed of complexes belonging to the Saryarka belt and Precambrian sialic massifs. The structure and isotopic composition of the Paleozoic igneous complexes provide evidence for the heterogeneous structure of the continental crust in various segments of the Kazakh Caledonides. The upper crust of the Shyngyz segment consists of Early Paleozoic island-arc complexes and basins with oceanic crust related to the Saryarka and Shyngyz-North Tien Shan volcanic belts in combination with Middle and Late Paleozoic continental igneous rocks. The deep crustal units of this segment are dominated by mafic rocks of Early Paleozoic suprasubduction complexes. The upper continental crust of the Stepnyak segment is composed of Middle-Late Ordovician island-arc complexes of the Shyngyz-North Tien Shan volcanic belt and Early Ordovician rift-related volcanics. The middle crustal units are composed of Riphean, Paleoproterozoic, and probably Archean sialic rocks, whereas the lower crustal units are composed of Neoproterozoic mafic rocks.  相似文献   

2.
Samygin  S. G. 《Geotectonics》2019,53(2):231-238
Geotectonics - The formation of an island-arc back-arc slope is considered based on the of the Upper Cambrian‒Middle Ordovician arc in the Chingiz Range in eastern Kazakhstan. The study...  相似文献   

3.
Doklady Earth Sciences - Within the Kokchetav massif (Northern Kazakhstan), Mesoproterozoic granites and acid volcanics are widespread: these are the youngest Precambrian igneous rocks forming...  相似文献   

4.
Heterogeneous magnesium isotopic composition of the upper continental crust   总被引:3,自引:0,他引:3  
High-precision Mg isotopic data are reported for ∼100 well-characterized samples (granites, loess, shales and upper crustal composites) that were previously used to estimate the upper continental crust composition. Magnesium isotopic compositions display limited variation in eight I-type granites from southeastern Australia (δ26Mg = −0.25 to −0.15) and in 15 granitoid composites from eastern China (δ26Mg = −0.35 to −0.16) and do not correlate with SiO2 contents, indicating the absence of significant Mg isotope fractionation during differentiation of granitic magma. Similarly, the two S-type granites, which represent the two end-members of the S-type granite spectrum from southeastern Australia, have Mg isotopic composition (δ26Mg = −0.23 and −0.14) within the range of their potential source rocks (δ26Mg = −0.20 and +0.15) and I-type granites, suggesting that Mg isotope fractionation during crustal anatexis is also insignificant. By contrast, δ26Mg varies significantly in 19 A-type granites from northeastern China (−0.28 to +0.34) and may reflect source heterogeneity.Compared to I-type and S-type granites, sedimentary rocks have highly heterogeneous and, in most cases, heavier Mg isotopic compositions, with δ26Mg ranging from −0.32 to +0.05 in nine loess from New Zealand and the USA, from −0.27 to +0.49 in 20 post-Archean Australian shales (PAAS), and from −0.52 to +0.92 in 20 sedimentary composites from eastern China. With increasing chemical weathering, as measured by the chemical index of alternation (CIA), δ26Mg values show a larger dispersion in shales than loess. Furthermore, δ26Mg correlates negatively with δ7Li in loess. These characteristics suggest that chemical weathering significantly fractionates Mg isotopes and plays an important role in producing the highly variable Mg isotopic composition of sedimentary rocks.Based on the estimated proportions of major rock units within the upper continental crust and their average MgO contents, a weighted average δ26Mg value of −0.22 is derived for the average upper continental crust. Our studies indicate that Mg isotopic composition of the upper crust is, on average, mantle-like but highly heterogeneous, with δ26Mg ranging from −0.52 to +0.92. Such large isotopic variation mainly results from chemical weathering, during which light Mg isotopes are lost to the hydrosphere, leaving weathered products (e.g., sedimentary rocks) with heavy Mg isotopes.  相似文献   

5.
The Li isotopic composition of the upper continental crust is estimated from the analyses of well-characterized shales, loess, granites and upper crustal composites (51 samples in total) from North America, China, Europe, Australia and New Zealand. Correlations between Li, δ7Li, and chemical weathering (as measured by the Chemical Index of Alteration (CIA)), and δ7Li and the clay content of shales (as measured by Al2O3/SiO2), reflect uptake of heavy Li from the hydrosphere by clays. S-type granites from the Lachlan fold belt (-1.1 to -1.4‰) have δ7Li indistinguishable from their associated sedimentary rocks (-0.7 to 1.2‰), and show no variation in δ7Li throughout the differentiation sequence, suggesting that isotopic fractionation during crustal anatexis and subsequent differentiation is less than analytical uncertainty (±1‰, 2σ). The isotopically light compositions for both I- and S-type granites from the Lachlan fold belt (-2.5 to + 2.7 ‰) and loess from around the world (-3.1 to + 4.5‰) reflect the influence of weathering in their source regions. Collectively, these lithologies possess a limited range of Li isotopic compositions (δ7Li of −5‰ to + 5‰), with an average (δ7Li of 0 ± 2‰ at 1σ) that is representative of the average upper continental crust. Thus, the Li isotopic composition of the upper continental crust is lighter than the average upper mantle (δ7Li of + 4 ± 2‰), reflecting the influence of weathering on the upper crustal composition. The concentration of Li in the upper continental crust is estimated to be 35 ± 11 ppm (2σ), based on the average loess composition and correlations between insoluble elements (Ti, Nb, Ta, Ga and Al2O3, Th and HREE) and Li in shales. This value is somewhat higher than previous estimates (∼20 ppm), but is probably indistinguishable when uncertainties in the latter are accounted for.  相似文献   

6.
The Rb-Sr and Sm-Nd isotope data emphasize the importance of mantle crust interaction, wall-rock assimilation and fractional crystallization for the generation of the Lugano volcanic rocks. It is suggested that the parental magma generation occurs in hot upwelling asthenosphere in the wedge above a subducting slab. In the lower crust the rising mantle derived melts became strongly modified by crust assimilation and formed andesitic melts. These andesitic melts, rising from this lower crustal region, became additionally modified by fractional crystallization and further assimilation of lower and upper crustal components to form the dacites, rhyolites, granophyres and Mt. OrfanoBaveno granites. The best fit lines to the Rb-Sr and Sm-Nd isotope whole rock data points correspond to ages of 346+/– 2 m.y. and 341+/–40 m.y., respectively. These lines are considered to be pseudo-isochrons and the result of simultaneously running fractional crystallization and wallrock assimilation. The best age estimate of the investigated volcanites is given by a Rb-Sr mineral isochron of 262+/–I m.y.. It dates a single volcanic event of the Permo-Carboniferous magmatism. Since it is suggested, that the calc-alkaline rock sequence has been generated in an Andean type subduction environment, synchronous with the final phase of convergence of Gondwana and Laurasia, the Rb-Sr mineral isochron indicates, that parts of the Proto-Tethys closed later than 262 m.y. ago. The crustal source material of the Irvea and Strona-Ceneri paragneisses, Lugano volcanites and Mt. Orfano-Baveno intrusive rocks may not necessarily be derived from a shield area in Northern Europe or Africa but may come from a Proterozoic European continental lithosphere.  相似文献   

7.
大陆地壳如何形成是国际学术界长期关注并正在持续攻关的一个重大基础科学问题。活动陆缘弧的岩浆成因和密度分选过程是理解大陆地壳形成机制和演化过程的关键。北美白垩纪Cordilleran大陆边缘弧的形成可能经历了与底侵幔源岩浆有关的下地壳部分熔融和岩浆混合,或幔源初始玄武质岩浆的两阶段成分分异过程,以花岗质成分为主的北美内华达地区垂向地壳成分剖面结构可能与榴辉岩相残留体或堆晶岩的拆沉作用密切相关。目前并不清楚亚洲大陆南部以约200 Ma和约90 Ma两个时间断面为代表的中生代冈底斯弧,为何出现大量角闪石岩并具有玄武安山质的平均成分。探究中生代冈底斯弧的岩浆成因、地壳垂向成分结构和地壳形成机制可能有助于或多或少地解决这一问题。  相似文献   

8.
Linking the deformation history of mylonitized continental rocks to the progress of devolatilization reactions that trigger reaction softening is critical for the understanding of crustal scale processes. We have analysed the field geometries and microstructures of deformed rocks within the southern Hercynian belt in Calabria, as well as modelled the pressure–temperature–deformation (P–T–d) trajectory of a main ductile shear zone that tectonically coupled the deeper crustal Mammola Paragneiss Unit with the upper crustal Stilo–Pazzano Phyllite Unit. P–T modelling of the mylonitic Mammola Paragneiss Unit was performed through calculation of phase equilibrium diagrams with the software thermocalc in the MnNCKFMASHTO model system. The prograde P–T–d trajectory is based on the zoning profiles of garnet porphyroblasts and their mineral inclusions, primarily barroisite and epidote. P–T modelling shows that peak metamorphic conditions of ~0.9 GPa and 585°C were reached during a Dn-1 under-thrusting event. The following exhumation during the Dn mylonitic event, and contact metamorphism during Dn+1 and Dn+2 folding events, have also been modelled because they are essential to restore the previous tectono-metamorphic history. The exhumation trajectory was modelled down to 0.3 GPa with temperatures of 440–460°C, under fluid-deficient conditions, as well as the final late Carboniferous contact metamorphism up to Tmax of 680–720°C. The prograde path shows clear evidence for thermal buffering during garnet growth at the expense of chlorite, with a heating-dominated stage after chlorite breakdown. Subsequently, a rheological change associated with epidote breakdown (i.e. reaction softening) occurred, highlighted by a net steepening of the P/T trajectory towards the pressure peak. On the basis of the barroisite inclusions within garnet porphyroblasts as well as the ‘hairpin’ shape of the reconstructed P–T–d path (before contact metamorphism), we infer that the unusual low T/P gradient for the Hercynian crust exposed in the Mammola Paragneiss Unit records its involvement in the Palaeotethys–Gondwana subduction beneath Laurussia during Dn-1 under-thrusting. We present a new palaeotectonic interpretation along the southern Hercynian belt in Calabria during the Upper Mississippian–Lower Pennsylvanian, that is consistent with previous geochronology studies.  相似文献   

9.
Density constraints on the formation of the continental Moho and crust   总被引:1,自引:0,他引:1  
The densities of mantle magmas such as MORB-like tholeiites, picrites, and komatiites at 10 kilobars are greater than densities for diorites, quartz diorites, granodiorites, and granites which dominate the continental crust. Because of these density relations primary magmas from the mantle will tend to underplate the base of the continental crust. Magmas ranging in composition from tholeiites which are more evolved than MORB to andesite can have densities which are less than rocks of the continental crust at 10 kilobars, particularly if they have high water contents. The continental crust can thus be a density filter through which only evolved magmas containing H2O may pass. This explains why primary magmas from the mantle such as the picrites are so rare. Both the over-accretion (i.e., Moho penetration) and the under-accretion (i.e., Moho underplating) of magmas can readily explain complexities in the lithological characteristics of the continental Moho and lower crust. Underplating of the continental crust by dense magmas may perturb the geotherm to values which are characteristic of those in granulite to greenschist facies metamorphic sequences in orogenic belts. An Archean continental crust floating on top of a magma flood or ocean of tholeiite to komatiite could have undergone a major cleansing process; dense blocks of peridotite, greenstone, and high density sediments such as iron formation could have been returned to the mantle, granites sweated to high crustal levels, and a high grade felsic basement residue established.  相似文献   

10.
Diamondiferous rocks from the Kokchetav Massif, Kazakhstan, represent deeply subducted continental crust. In order to constrain the age of ultra high pressure (UHP) metamorphism and subsequent retrogression during exhumation, zircons from diamondiferous gneisses and metacarbonates have been investigated by a combined petrological and isotopic study. Four different zircon domains were distinguished on the basis of transmitted light microscopy, cathodoluminescence, trace element contents and mineral inclusions. Mineral inclusions and trace element characteristics of the zircon domains permit us to relate zircon growth to metamorphic conditions. Domain 1 consists of rounded cores and lacks evidence of UHP metamorphism. Domain 2 contains diamond, coesite, omphacite and titanian phengite inclusions providing evidence that it formed at UHP metamorphic conditions (P>43 kbar; T~950 °C). Domain 3 is characterised by low-pressure mineral inclusions such as garnet, biotite and plagioclase, which are common minerals in the granulite-facies overprint of the gneisses (P~10 kbar; T~800 °C). This multi-stage zircon growth during cooling and exhumation of the diamondiferous rocks can be best explained by zircon growth from Zr-saturated partial melts present in the gneisses. Domain 4 forms idiomorphic overgrowths and the rare earth element pattern indicates that it formed without coexisting garnet, most probably at amphibolite-facies conditions (P~5 kbar; T~600 °C). The metamorphic zircon domains were dated by SHRIMP ion microprobe and yielded ages of 527LJ, 528NJ and 526LJ Ma for domains 2, 3 and 4 respectively. These indistinguishable ages provide evidence for a fast exhumation beyond the resolution of SHRIMP dating. The mean age of all zircons formed between UHP metamorphic conditions and granulite-facies metamorphism is 528Dž Ma, indicating that decompression took place in less than 6 Ma. Hence, the deeply subducted continental crust was exhumed from mantle depth to the base of the crust at rates higher than 1.8 cm/year. We propose a two-stage exhumation model to explain the obtained P-T-t path. Fast exhumation on top of the subducted slab from depth >140 to ~35 km was driven by buoyancy and facilitated by the presence of partial melts. A period of near isobaric cooling was followed by a second decompression event probably related to extension in a late stage of continental collision.  相似文献   

11.
Doklady Earth Sciences - Lenses of eclogites (the Tulepsai complex) that formed at the peak of metamorphism at P = 15 kbar and T = 700–750°C and experienced decompression at 12 kbar...  相似文献   

12.
Mechanisms of continental crust formation in the Central Asian Foldbelt   总被引:1,自引:0,他引:1  
Geological and isotopic study of rocks occurring in the Early and Late Baikalian, Caledonian, Hercynian, and Indosinian fold regions of Central Asia is carried out. The juvenile crust formation occurred in these fold regions have determined the systematic differences in isotopic compositions of the crust. In the course of the subsequent (postaccretion) evolution, the crust of these domains underwent multiple reworking. These processes were accompanied by variations in the Nd isotopic compositions of the crust, which, in turn, are recorded in the isotopic compositions of granites and felsic volcanics as products of crust melting. Three types of crust differing in Nd isotopic composition and structure and, as a consequence, in formation mechanisms, are distinguished. The isotopically homogeneous crust is a source of igneous rocks with constant model Nd isotopic age (TNd(DM2st)) irrespective of the age of the crustal igneous rocks. These are the isotopic provinces, the crust of which remained isolated from addition of alien materials during postaccretion evolution. The axial zone of the Hercynides in the Central Asian Foldbelt is an example. The isotopically heterogeneous layered crust consists of fragments differing in isotopic composition. The products of its melting are characterized by widely scattered ɛNd(T) and (TNd(DM2st). The appearance of alien sources of melt is considered in terms of underplating. This mechanism develops either due to subduction of the juvenile oceanic lithosphere beneath the mature continental lithosphere at convergent boundaries or as a result of plume-lithosphere interaction. The first mechanism operated during the formation of granitoids pertaining to the Tuva-Mongolia microcontinent. The second mechanism was responsible for the formation of batholiths in the zonal Hangay, Barguzin, and Mongolia-Transbaikalia magmatic fields. The isotopically heterogeneous mixed crust is composed of fragments differing in isotopic composition, which are tectonically mixed, resulting in the formation of an isotopically uniform reservoir in the domain of magma generation. As a result, the products of melting acquire isotopic parameters substantially distinct from the juvenile rocks of the corresponding structural zone. The formation of such a crust is related to the tectonic delamination, which provides for juxtaposition and a high degree of tectonic mingling of heterogeneous fragments at deep levels. The Caledonides of the Central Asian Foldbelt are characterized by such a mechanism of crust formation.  相似文献   

13.
麻粒岩的形成及其对大陆地壳演化的贡献   总被引:17,自引:17,他引:17  
麻粒岩是地球中最重要的岩石类型之一,它的形成主要受地热条件的控制。麻粒岩的形成可以与大陆碰撞、大陆拉张以及大陆弧模式相联系。麻粒岩在某种程度上,还是下地壳的同义词。通过麻粒岩地体地及火山岩中麻粒岩捕虏体的研究,使人们对地球深部的物质组成和结构有了直接的了解。麻粒岩在陆壳的形成和演化中具有举足轻重的地位。陆核说、陆壳垂直增生或横向增生说,都以麻粒岩作为重要的岩石学依据。  相似文献   

14.
A petrogenetic model is developed to explain the evolution and geochemical character of granitic rocks in early Archean (pre 3.6 Gyr) continental crust taking into account the following important geological constraints, viz.:
  1. High geothermal gradients (probably in excess of 90 ° C/km) and resulting widespread granulite facies metamorphism even at relatively shallow depths
  2. The fractionation of certain major and trace elements under granulite facies conditions
  3. The composition and geochemical behaviour of fluids which emanate from or pass through terrains undergoing granulite facies metamorphism viz. carbonic fluids containing significant amounts of SO2 and halogens.
In this model tonalitic and trondhjemitic intrusives are regarded as being derived dominantly by partial melting of mafic granulite. The ubiquitous potassic granites, which typical post-date sodic plutonic activity are interpreted to be anatectic melts generated under granulite or amphibolite facies conditions from the previously formed ‘plagiogranites’. The presence of a postulated granulite facies source area for Archean tonalitic rocks, and the geochemical character of fluids which accompany metamorphism under such conditions explains the HREE geochemistry of these suites and casts doubt on the validity of applying currently used trace element fractional melting or crystallization models to these terrains. Similarly it suggests that petrogenetic interpretations based on Sr and Pb isotopic systems must be reevaluated because of the extreme mobility of both parent and daughter elements under granulite facies conditions.  相似文献   

15.
We have determined U-Pb ages, trace element abundances and Hf isotopic compositions of approximately 1000 detrital zircon grains from the Mississippi, Congo, Yangtze and Amazon Rivers. The U-Pb isotopic data reveal the lack of >3.3 Ga zircons in the river sands, and distinct peaks at 2.7-2.5, 2.2-1.9, 1.7-1.6, 1.2-1.0, 0.9-0.4, and <0.3 Ga in the accumulated age distribution. These peaks correspond well with the timing of supercontinent assembly. The Hf isotopic data indicate that many zircons, even those having Archean U-Pb ages, crystallized from magmas involving an older crustal component, suggesting that granitoid magmatism has been the primary agent of differentiation of the continental crust since the Archean era. We calculated Hf isotopic model ages for the zircons to estimate the mean mantle-extraction ages of their source materials. The oldest zircon Hf model ages of about 3.7 Ga for the river sands suggest that some crust generation had taken place by 3.7 Ga, and that it was subsequently reworked into <3.3 Ga granitoid continental crust. The accumulated model age distribution shows peaks at 3.3-3.0, 2.9-2.4, and 2.0-0.9 Ga.The striking attribute of our new data set is the non-uniformitarian secular change in Hf isotopes of granitoid crusts; Hf isotopic compositions of granitoid crusts deviate from the mantle evolution line from about 3.3 to 2.0 Ga, the deviation declines between 2.0 and 1.3 Ga and again increases afterwards. Consideration of mantle-crust mixing models for granitoid genesis suggests that the noted isotopic trends are best explained if the rate of crust generation globally increased in two stages at around (or before) 3.3 and 1.3 Ga, whereas crustal differentiation was important in the evolution of the continental crust at 2.3-2.2 Ga and after 0.6 Ga. Reconciling the isotopic secular change in granitoid crust with that in sedimentary rocks suggests that sedimentary recycling has essentially taken place in continental settings rather than active margin settings and that the sedimentary mass significantly grew through addition of first-cycle sediments from young igneous basements, until after ∼1.3 Ga when sedimentary recycling became the dominant feature of sedimentary evolution. These findings, coupled with the lack of zircons older than 3.3 Ga in river sands, imply the emergence of large-scale continents at about 3.3 Ga with further rapid growth at around 1.3 Ga. This resulted in the major growth of the sedimentary mass between 3.3 and 1.3 Ga and the predominance of its cannibalistic recycling later.  相似文献   

16.
17.
A comparative analysis of morphology and geochemistry was made for gold from the primary ores and weathering crust of the Suzdal' gold deposit, Eastern Kazakhstan. The deposit is localized in Carboniferous carbonaceous-terrigenous strata and is of gold-sulfide type. Study of gold from primary ores showed that it occurs mainly in two species: free and so-called invisible. Free gold is crystallomorphic segregations and irregular-shaped grains up to tens of microns in size; it occurs in intergrowths with sulfides, quartz, carbonate, and mica-chlorite aggregate. Most of gold particles have a fineness of 930–980‰, with some grains showing wide variations in composition. Invisible gold (probably chemically combined) is present in fine-acicular arsenopyrite and, less frequently, pyrite.Being transported to the weathering crust, all this gold served as a source for “neogenic” gold of diverse morphologic forms. We recognized crystalline (isometric, prismatic, acicular, and tabular) particles and drusoid gold aggregates in the form of exotic intergrowths of crystallomorphic and sinter-shelly grains. The grains tend to coarsen from bottom to top of the weathering crust. Several generations of gold of different granulometric classes are observed. We have revealed seed and layer growth and dissolution structures in crystals of early generations overgrown with fine grains. All these gold varieties are associated with hypergene minerals. Most of this gold is of high fineness (on the average, 995‰). The hypergene gold particles are chemically homogeneous high-grade, without rims.The results of studies suggest that the high-grade hypergene gold formed in the weathering crust as a result of the dissolution of invisible gold of sulfides and its local redistribution and deposition in oxidizing media. This is also evidenced from the tendency of gold to coarsen from bottom to top of the weathering crust. A distinctive feature of secondary gold is well-expressed crystals and their great diversity.  相似文献   

18.
19.
20.
Part II of this paper reports geochemical and Nd isotope characteristics of the volcanogenic and siliceous-terrigenous complexes of the Lake zone of the Central Asian Caledonides and associating granitoids of various ages. Geological, geochronological, geochemical, and isotopic data were synthesized with application to the problems of the sources and main mechanisms of continental crust formation and evolution for the Caledonides of the Central Asian orogenic belt. It was found that the juvenile sialic crust of the Lake zone was formed during the Vendian-Cambrian (approximately 570–490 Ma) in an environment of intraoceanic island arcs and oceanic islands from depleted mantle sources with the entrainment of sedimentary crustal materials into subduction zones and owing to the accretion processes of the amalgamation of paleoceanic and island arc complexes and Precambrian microcontinents, which terminated by ∼490 Ma. The source of primary melts for the low-Ti basalts, andesites, and dacites of the Lake zone ophiolites and island arc complexes was mainly the depleted mantle wedge above a subduction zone. In addition, an enriched plume source contributed to the genesis of the high-Ti basalts and gabbroids of oceanic plateaus. The source of terrigenous rocks associating with the volcanics was composed of materials similar in composition to the country rocks at a minor and varying role of ancient crustal materials introduced into the ocean basin owing to the erosion of Precambrian microcontinents. The sedimentary rocks of the accretionary prism were derived by the erosion of mainly juvenile island arc sources with a minor contribution of rocks of the mature continental crust. The island arc and accretion stages of the development of the Lake zone (∼540–590 Ma) were accompanied by the development of high- and low-alumina sodic granitoids through the melting at various depths of depleted mantle reservoirs (metabasites of a subducted oceanic slab and a mantle wedge) and at the base of the island arc at the subordinate role of ancient crustal rocks. The melts of the postaccretion granitoids of the Central Asian Caledonides were derived mainly from the rocks of the juvenile Caledonian crust at an increasing input of an ancient crustal component owing to the tectonic mixing of the rocks of ophiolitic and island arc complexes and microcontinents. The obtained results indicate that the Vendian-Early Paleozoic stage of the evolution of the Central Asian orogenic belt was characterized by the extensive growth of juvenile continental crust and allow us to distinguish a corresponding stage of juvenile crust formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号