首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nonlinear interaction of axisymmetric circulation and nonaxisymmetric disturbances in hurricanes is numerically studied with a quasigeostrophic barotropic model of a higher resolution. It is pointed out that the interaction may be divided into two categories. In the first category, nonaxisymmetric disturbances decay, the coordinate locus of maximum.relative vortic-ity (?)max is seemingly unordered, and the central pressure of hurricane rises; while in the second one, nonaxisymmetric disturbances develop, the locus of (?)max shows an ordered limit cycle pattern, and the central pressure falls remarkably. A succinct criterion is given to judge which category the interaction belongs to, i.e. the vortex beta Rossby number at the initial time Rβ< 1 belongs to the decaying category and Rβ> 1 to the developing one. Finally, practical applications of theoretical results of the rotational adaptation process presented by Zeng and numerical results in this paper to the hurricane intensity prediction in China  相似文献   

2.
Propagation of shock related Moreton and EUV waves in the solar atmosphere is simulated by the nonlinear geometrical acoustics method. This method is based on the ray approximation and takes account of nonlinear wave features: dependence of the wave velocity on its amplitude, nonlinear dissipation of wave energy in the shock front, and the increase in its duration with time. The paper describes ways of applying this method to solve the propagation problem of a blast magnetohydrodynamic shock wave. Results of analytical modeling of EUV and Moreton waves in the spherically symmetric and isothermal solar corona are also presented. The calculations demonstrate deceleration of these waves and an increase in their duration. The calculation results of the kinematics of the EUV wave observed on the Sun on January 17, 2010 are presented as an example.  相似文献   

3.
The studies are based on the experimental mass sounding of the interplanetary plasma near the Sun at radial distances of R = 4−70 R S, performed at Pushchino RAO, Russian Academy of Sciences, and on the calculated magnetic fields in the solar corona based on the magnetic field strength and structure measured on the Sun’s surface at J. Wilcox Solar Observatory, United States. The experimental data make it possible to localize the position of the boundary closest to the Sun of the transition transonic region of the solar wind in the near-solar space (R ≈ 10−20 R S) and to perform an interrelated study of the solar wind structure and its sources, namely, the magnetic field components in the solar corona based on these data. An analysis of the evolution of the flow types in 2000–2007 makes it possible to formulate the physically justified criterion responsible for the time boundaries of different epochs in the solar activity cycle.  相似文献   

4.
When solar cosmic rays (SCRs) can be observed with ground-based equipment (ground-level enhancements, GLEs), events are often characterized by a rapid increase in the relativistic proton intensity during the initial phase, which makes it possible to estimate the time of particle escape from the solar corona. This phase attracts attention of researchers owing to its closeness in time to the instant of particle acceleration. It is known that the observed SCR characteristics bear traces of many physical processes, including different acceleration mechanisms the relative role of which is still unclear. Flare processes and acceleration by a shock, related to coronal mass ejection (CME), are the main pretenders to the role of SCR accelerator. Several powerful solar proton events during cycle 23 are considered in the work, and the release time of the first particles from the corona and the dynamics of CMEs have been estimated. The time series of the X-ray and radio bursts, close in time to particle escape, are analyzed. The conclusion have been drawn that the first relativistic particles were most probably accelerated during flare processes.  相似文献   

5.
A short introduction is given to some wave-heating mechanismsapplicable to the solar corona. Their relevance to the capabilitiesof the SoHO mission is briefly discussed.  相似文献   

6.
To quantify the level of low-frequency wave activity of the magnetosphere and IMF, a set of the ULF wave power indices has been introduced. We demonstrate that the ULF activity global level can be very useful in space weather related problems. The application of the interplanetary index to an analysis of auroral activity driving has shown that a turbulent IMF drives auroral activity more strongly than the laminar solar wind does. The enhancements of relativistic electrons at the geosynchronous orbit are known not to be directly related to the intensity of magnetic storms. We found that the electron dynamics correlated well with long-lasting intervals of elevated ground ULF wave index. This fact confirms the importance of magnetospheric ULF turbulence in energizing electrons up to relativistic energies. The time-integrated ULF index demonstrates a significantly higher correlation with electron fluxes, which implies the occurrence of a cumulative effect in the electron energization.  相似文献   

7.
The resonant interaction between three acoustic gravity waves is considered. We improve on the results of previous authors and write the new coupling coefficients in a symmetric form. Particular attention is paid to the low-frequency limit.  相似文献   

8.
Results of photospheric magnetic field extrapolation in a potential approximation and of the technique for separating the open part of magnetic flux have revealed that changes in the relationship between the open part of the south polarity magnetic flux obtained in the chromosphere and corona from July to November 2006 correlate with variations in the Akasofu parameter calculated from data on the solar wind parameters and interplanetary magnetic field at Lagrange point L1, and with the K p index.  相似文献   

9.
The configuration of the solar corona magnetic field has been studied. Data on the position of the K-corona emission polarization plane during the solar eclipses of September 21, 1941; February 25, 1952; and August 1, 2008, were used as an indicator of the magnetic field line orientation. Based on an analysis of these data, a conclusion has been made that the studied configuration has a large-scale organization in the form of a cellular structure with an alternating field reversal. The estimated cell size was 61° ± 6° (or 36° ± 2°) in longitude with a latitudinal extension of 40°?C50° in the range of visible distances 1.3?C2.0 R Sun . A comparison of the detected cellular structure of the coronal magnetic field with synoptic {ie908-1} maps indicated that the structure latitudinal boundaries vary insignificantly within 1.1?C2.0 R Sun . The possible causes of the formation of the magnetic field large-scale cellular configuration in the corona and the conditions for the transformation of this configuration into a two-sector structure are discussed.  相似文献   

10.
From 1945 to 2009, fellows of IZMIRAN participated in 24 expeditions devoted to observations of solar eclipses. The following characteristics of the solar corona were mainly studied: the emission structure, intensity, and polarization; the line and continuous spectra; etc. This paper reviews the most important results, which promoted the development of the present-day concepts of the solar corona structure and physical properties.  相似文献   

11.
Abstract

The Cauchy-Schwarz inequality is employed to find geometry-independent limits on the magnetic helicity dissipation rate in a resistive plasma. These limits only depend upon the total energy of the plasma, the energy dissipation rate, and a mean diffusion coefficient. For plasmas isolated from external energy sources, limits can also be set on the minimum time necessary to dissipate a net amount of helicity ΔH. As evaluated in the context of a solar coronal loop, these limits strongly suggest that helicity decay occurs on a diffusion timescale which is far too great to be relevant to most coronal processes. Furthermore, rapid reconnection is likely to approximately conserve magnetic helicity. The dilliculties involved in determining the free energy residing in a magnetic structure (given the constraint of magnetic helicity conservation) are discussed.  相似文献   

12.
On October 14, 1995, a C1.6 long duration event (LDE) started in active region (AR) NOAA 7912 at approximately 5:00 UT and lasted for about 15 h. On October 18, 1995, the Solar Wind Experiment and the Magnetic Field Instrument (MFI) on board the Wind spacecraft registered a magnetic cloud (MC) at 1 AU, which was followed by a strong geomagnetic storm. We identify the solar source of this phenomenon as AR 7912. We use magnetograms obtained by the Imaging Vector Magnetograph at Mees Solar Observatory, as boundary conditions to the linear force-free model of the coronal field, and, we determine the model in which the field lines best fit the loops observed by the Soft X-ray Telescope on board Yohkoh. The computations are done before and after the ejection accompanying the LDE. We deduce the loss of magnetic helicity from AR 7912. We also estimate the magnetic helicity of the MC from in situ observations and force-free models. We find the same sign of magnetic helicity in the MC and in its solar source. Furthermore, the helicity values turn out to be quite similar considering the large errors that could be present. Our results are a first step towards a quantitative confirmation of the link between solar and interplanetary phenomena through the study of magnetic helicity.  相似文献   

13.
采用大型有限元软件对地基、闸门进行整体建模,讨论了在动力相互作用的分析中,简单截断人工边界的合理取值范围以及土体非线性的塑性性质对分析结果的影响;比较了在深层搅拌桩加固的复合地基中,按桩、土分别独立建模与按常规的平均法进行分析的差异。分析结果表明,不同的分析模型,人工边界的合理取值范围是不一样的;土体的滤波作用及其塑性的非线性性质对分析结果有重大的影响;对深层搅拌桩加固的复合地基,应该按实际把桩、土分别独立建模进行分析。分析结果对工程实际有一定的指导意义。  相似文献   

14.
A new telescope has been created to investigate the solar corona during eclipses. One lens simultaneously forms three corona images occurring as coronal radiation passes through three polarizers with transmission directions rotated 0°, 60°, and 120° relative to the selected direction; in addition, one image is formed without the polarizer. The telescope was used for solar corona observation during the eclipse of August 1, 2008. We obtained the distributions of polarization brightness, K corona brightness, degree of K corona polarization, and total degree of polarization as well as polarization directions depending on the latitude and radius in the sky plane. Radial distributions of the electron density depending on latitude were calculated. The coronal plasma temperature was determined for different corona structures under the assumption of hydrostatic equilibrium.  相似文献   

15.
Abstract

A meridional circulation of sunspots has been measured through the digital analysis of the Meudon spectroheliograms from 1978 to 1983. Old and young sunspots follow a zonal meridional circulation, in several bands of latitude, in which two adjacent bands have opposite motions. This meridional circulation pattern is time-dependent. Using the H α filaments as magnetic field tracers, a large-scale magnetic pattern has been found that was also obtained independently by direct measurement of the magnetic field (Hoeksema, 1988).

The coincidence of a large-scale magnetic pattern with a zonal meridional circulation suggests the existence of azimuthal rolls below the surface, and these azimuthal rolls can explain a number of properties of the solar cycle. New rolls occur with increasing proximity to the Equator, thereby indicating the direction of propagation of the dynamo wave. The occurrence of rolls is very favorable to the emergence of the magnetic regions. The rolls also influence the magnetic complexity of the active regions. They modulate the surface rotation through the Coriolis force, which accelerates or decelerates the fluid particles. They therefore offer a plausible explanation of the torsional oscillation pattern.

There are a number of problems raised by such an unexpected circulation pattern: for example, the coexistence of axisymmeric rolls with hypothetical giant cells, the location of the dynamo source below or within the convective zone, and the coupling of the radiative interior and the convective layers. To resolve these important issues, continuous observational studies are needed of the manifestation of solar activity, as well as of radius and luminosity variations. So, we have aimed our paper at an audience of theoreticians in the hope that they take up the challenges we describe.  相似文献   

16.
Many dynamic phenomena in the solar corona are driven by the complex and ever-changing magnetic field. It is helpful, in trying to model these phenomena, to understand the structure of the magnetic field, i.e. the magnetic topology. We study here the topological structure of the coronal magnetic field arising from four discrete photospheric flux patches, for which we find that seven distinct, topologically stable states are possible; the changes between these are caused by six types of bifurcation. Two bifurcation diagrams are produced, showing how the changes occur as the relative positions and strengths of the flux patches are varied. A method for extending the analysis to higher numbers of sources is discussed.  相似文献   

17.
The east-west asymmetry has been analyzed using the 1946–2000 corona observation data for the green line at the Kislovodsk station. A positive east-west asymmetry has been revealed throughout the entire observation period except for three years, 1994–1996. Time variations of the east-west asymmetry for certain periods coincide with those for flares. Seasonal variations of the east-west asymmetry revealed earlier by other authors are not confirmed. If seasonal variations of the east-west asymmetry in the corona exist, their amplitudes are smaller than or comparable to the instrumental errors, errors caused by atmospheric variations during the observation period and to differences between the corona-intensity measuring systems used at different observatories.  相似文献   

18.
Coronal holes, bright coronal points, filaments, and prominences are among the initial factors responsible for variability of the space weather conditions. Radioheliographic data on low-contrast formations contain valuable information necessary for studying conditions of origination, peculiarities of evolution, and prediction of solar-terrestrial relations. It is important to identify these formations on the solar disk when physical properties of coronal holes are revealed. The algorithm based on the Wiener-Tikhonov filter modification with controlled parameters and a high-frequency contrast filter was developed in order to isolate low-contrast formations in the solar corona brightness distributions obtained at a wavelength of 5.2 cm from the Siberian solar radio telescope observations. In this case low-contrast sources are isolated in two main stages: (1) HF noise smoothing based on an evolutionary filter with controlled parameters and (2) contrasting of sources using an HF filter. The evolutionary filter regularization parameters and the dimensions of an HF contrast filter mask are selected depending on the signal-to-noise ratio and dimensions of the studied region based on the results of preliminary data processing. The corresponding software has been developed in order to identify low-contrast objects on the Sun’s radio images using this method. The algorithm is used to isolate filaments and coronal holes and the results of this usage are presented in this work.  相似文献   

19.
Using the Kharkov incoherent scatter radar, observations of wave disturbances in electron concentration N in the ionosphere at heights of 120–600 km are conducted. The measurements were carried out in the periods of the spring and fall equinoxes and winter and summer solstices. The height-time dependences of the absolute ΔN and relative ΔN/N amplitudes of wave disturbances, as well as their spectral composition, were analyzed. It is shown that wave disturbances in the ionosphere with periods of 10–180 min were present at almost any time of the day and in all seasons. Their absolute and relative amplitudes varied from 6 × 109 to 6 × 1010 m−3 and from 0.01 to 0.5, respectively. The maximum values of ΔN and ΔN/N were observed at a height of ∼200 km. The passage of the solar terminator changed substantially the wave disturbance parameters.  相似文献   

20.
In view of the actual question regarding the effect of a solar-wind pressure jump on disturbances in the Earth’s magnetosphere, events with high velocity and density gradients are of special interest. In this work, we consider the response of the current at the dayside magnetopause to these events and the corresponding strengthening of the geomagnetic field in the low-latitude magnetosphere. A transient process is studied that accompanies reconfiguration of the magnetosphere under the effect of disturbances of solar wind parameters. An analytical equation is received for estimation of an increase in the northern component of low-latitude magnetic field of the magnetosphere in a transient current system (transient ring current) versus initial values of the solar-wind velocity and density and their disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号