首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Studying subduction zone fluid at shallow seismogenic depths is important to understand the nature of fault rocks at the updip limit of the seismogenic zone because fluid–rock interactions affect heat and mass transfer, and fault strength. In this study, we conducted detailed analyses of distribution of shear veins, and estimation of pressure–temperature conditions for shear vein formation for the Yokonami mélange, Shikoku, Southwest Japan, which is tectonic mélange zone in an on‐land accretionary complex. We found a seismogenic fault at the upper boundary of the Yokonami mélange, indicating that the Yokonami mélange was active at seismogenic depth. The field‐transect distribution of shear veins was examined. The frequency, the total and mean thicknesses of the shear veins were about 3.7 per meter, about 10 mm per meter, and about 3 mm per shear vein, respectively. Quartz within the shear veins shows elongate‐blocky textures, suggesting precipitation from advective flow. The pressure and temperature conditions for shear vein formation were examined by fluid inclusion analysis, ranging 175–225°C and 143–215 MPa, respectively. The temperature is almost consistent with the paleotemperature determined from vitrinite reflectance, suggesting that the shear veins were formed at up to the maximum depth. The depth might be consistent with that where the seismogenic fault was formed. On the basis of the pressure and temperature conditions and the distribution of shear veins, we estimated the minimum volumetric ratio of fluid to host rocks, assuming that the shear veins had precipitated from advective flow. The estimated amount of fluid is about 106 m3 per cubic meter of host rocks. The results suggest that a large amount of fluid migrates through mélange zones at shallow seismogenic depths. This fluid possibly originates from the dehydration of clay minerals from underthrusted sediments and an altered subducting slab.  相似文献   

2.
Hidetoshi  Hara  Ken-Ichiro  Hisada 《Island Arc》2007,16(1):57-68
Abstract   Micro-thermometry of water-rich fluid inclusions from two syn-tectonic veins sets ( D1 and D2 veins) in the Otaki Group, part of the Cretaceous Shimanto accretionary complex of the Kanto Mountains, central Japan reveals the following tectono-metamorphic evolution. Combining the results of microthermometric analyses of fluid inclusions from D1 veins with an assumed geothermal gradient of 20–50°C/km indicates that the temperature and fluid pressure conditions during D1 were 270–300°C and 140–190 MPa, respectively. Peak metamorphic conditions during the development of D2 slaty cleavage involved temperatures in excess of 300°C and fluid pressures greater than 270 MPa, based on analyses of microthermometry of water-rich fluid inclusions from the D2 vein and illite crystallinity. The estimated fluid pressure increased by approximately 80 MPa from D1 accretionary processes to metamorphism and slaty cleavage development during D2 . Assuming that fluid pressure reached lithostatic pressure, the observed increase in fluid pressure can be accounted for by thrusting of the Jurassic Chichibu accretionary complex over the Cretaceous Shimanto accretionary complex. Following thrusting, both accretionary complexes were subjected to metamorphism during the latest Cretaceous.  相似文献   

3.
Hideki  Mukoyoshi  Tetsuro  Hirono  Hidetoshi  Hara  Kotaro  Sekine  Noriyoshi  Tsuchiya  Arito  Sakaguchi  Wonn  Soh 《Island Arc》2009,18(2):333-351
To understand the characteristics of deformation of an out-of-sequence thrust (OST) and the style of fluid flow along it, we investigated the Nobeoka Tectonic Line, which has been interpreted as a deep OST (7–9 km), in the Shimanto accretionary complex, Southwest Japan. The shear zone in the footwall differs significantly in the along-strike direction not only in thickness, which varied from 100 to 300 m, but also in lithology and mineral vein development. These variations might reflect primarily differences in lithology; that is, the sandstone-dominant shear zone with a large amount of mineral veins precipitated in microcracks is relatively thick, whereas the shale-dominant shear zone with a small amount of veins and with textures indicating highly pressurized pore fluid, is thinner. By comparison with characteristics of a shallow OST (3–5 km), we conclude that the shallow OST has experienced repeated brittle failure with rapid slip and focused fluid flow whereas the deep OST has experienced both brittle and ductile deformation, followed by fluid flow of various styles, depending on the lithology.  相似文献   

4.
Fission‐track (FT) and (U–Th–Sm)/He (He) analyses are used to constrain the denudation pattern and history of the Kiso Range, a Japanese fault‐block mountain range which has been uplifted since ca 0.8 Ma. We obtained nine zircon FT ages ranging 59.3–42.1 Ma, 18 apatite FT ages ranging 81.9–2.3 Ma, and 13 apatite He ages ranging 36.7–2.2 Ma. The apatite FT and He ages are divided into an older group comparable to the zircon FT age range and a younger group of <18 Ma. The younger ages are interpreted as a reflection of uplift of the Kiso Range because they were obtained only to the east of the Seinaiji‐touge Fault, and the event age estimated from apatite FT data is consistent with the timing of the onset of the Kiso Range uplift. On the basis of the distribution of the younger ages, we propose westward tilting uplift of the Kiso Range between the boundary fault of the Inadani Fault Zone and Seinaiji‐touge Fault, which implies a model of bedrock uplift that is intermediate between two existing models: a pop‐up model in which the Kiso Range is squeezed upward between the two faults and a tilted uplift model which assumes that the Kiso Range is uplifted and tilted to the west by the Inadani Fault Zone. The original land surface before the onset of uplift/denudation of the Kiso Range is estimated to have been uplifted to an elevation of 2700–4900 m. We estimated denudation rates at 1.3–4.0 mm/y and maximum bedrock uplift rates at 3.4–6.1 mm/y since ca 0.8 Ma. The Seinaiji‐touge fault is interpreted as a back thrust of the west‐dipping Inadani Fault Zone. The older group of apatite FT and He ages is interpreted to reflect long‐term peneplanation with a probable denudation rate of <0.1 mm/y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号