首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 724 毫秒
1.
This study presents the first fluid inclusion data from quartz of albite–carbonate–quartz altered rocks and metasomatic quartzite hosting gold mineralization in the Pechenga structure of the Pechenga–Imandra–Varzuga greenstone belt. A temperature of 275–370°C, pressure of 1.2–4.5 kbar, and the fluid composition of gold-bearing fluid are estimated by microthermometry, Raman spectroscopy, and LA-ICP-MS of individual fluid inclusions, as well as by bulk chemical analyses of fluid inclusions. In particular, the Au and Ag concentrations have been determined in fluid inclusions. It is shown that albite–carbonate–quartz altered rocks and metasomatic quartzite interacted with fluids of similar chemical composition but under different physicochemical conditions. It is concluded that the gold-bearing fluid in the Pechenga structure is similar to that of orogenic gold deposits.  相似文献   

2.
福建马坑铁(钼)矿床矽卡岩矿物学特征及分带研究   总被引:3,自引:0,他引:3  
张志  张承帅 《岩石学报》2014,30(5):1339-1354
马坑大型铁(钼)矿赋存于莒舟-大洋花岗岩体外接触带黄龙组(C2h)灰岩和林地组(C1l)碎屑岩层间构造破碎带中,铁矿与矽卡岩密切共生,但矿床成因尚存在争议。本文就马坑铁矿矽卡岩进行了矿物学特征研究。电子探针分析结果表明:该矿矽卡岩矿物组合主要为辉石、石榴子石和钙蔷薇辉石,退化蚀变岩矿物组合为角闪石、绿帘石、绿泥石、石英等。单斜辉石以透辉石和钙铁辉石为主,仅存在少量锰钙辉石;似辉石为钙蔷薇辉石和蔷薇辉石;石榴子石端元成分以钙铁榴石为主,钙铝榴石少量;角闪石属于钙角闪石,矿物学特征表明它们形成于相对较氧化的条件下。马坑铁矿的矽卡岩是由热流体沿灰岩与碎屑岩之间层间构造破碎带交代形成的,铁矿石大部分产于矽卡岩内,磁铁矿多稍晚于矽卡岩,不仅广泛交代矽卡岩,而且还直接交代灰岩、砂岩等围岩,呈交代结构;主矿体下盘常出现厚层石英岩,碎屑岩也出现了明显的交代,矽卡岩分带现象普遍,与典型矽卡岩矿床特征一致。结合矿床地质特征,马坑铁矿矿床类型应为层控矽卡岩型矿床。  相似文献   

3.
Quartz veins are developed in a wide range of metasediment types in the upper amphibolite facies rocks of Connemara, and attest to considerable migration of silica. Contrary to common assumptions, there is clear evidence that these veins do not primarily result from movement of fluid to regions of lower P–T down the regional geothermal gradient. Under amphibolite facies conditions, a dilute chloride fluid moving down temperature has the potential to alter 60g of plagioclase to muscovite for each gram of vein quartz precipitated, while cooling over the temperature interval from 650 to 500° C. The absence of significant metasomatic effects in the vein walls effectively precludes a simple origin from such through-flowing, externally derived fluids. The oxygen isotopic composition of matrix quartz shows considerable differences between different rock types (quartzite, pelite and marble), with a range of δ18OSMOW from c.+ 11.5% (quartzite) to + 18.5% (marble). In each rock type, vein quartz compositions closely match those of the matrix quartz. These results demonstrate the importance of local segregation processes in the formation of veins, and suggest that fluid convection cells were not developed during metamorphism on a scale larger than the individual sedimentary formations, if at all. Both oxygen isotope data and the absence of metasomatism indicate that veins form primarily by segregation of quartz from the host lithologies, with only a relatively minor component of through flow of externally derived fluid. Veins are clearly not the major pathways of metamorphic dewatering. It is proposed that abundant veins in the predominantly pelitic Ballynakill Formation formed during peak metamorphic D3 folding because the formation was embrittled by high fluid pressures but was capped by impermeable marble. Hence the pelitic formation fractured repeatedly and the pore fluid drained through the fractures to form veins, while irreversible loss through the rest of the succession was a much less important process. In the central mountains of Connemara, rather pure, unreactive quartzites are cut by widely spaced, laterally extensive quartz veins that are axial planar to D3 folds. These veins may mark pathways whereby metamorphic fluid made its way through the massive impermeable quartzite from lower parts of the nappe pile, but here too, oxygen isotope data indicate considerable segregation of locally derived quartz, reflecting the importance of pumping of fluid between wail rocks and fractures relative to the component of through flow.  相似文献   

4.
REE patterns of hydrothermally altered rocks, fluid inclusions, and stable oxygen isotopes of quartz were studied at the Natalka gold deposit. Metasomatic rocks formed under decompression reveal gradual depletion in LREE and HREE relative to siltstone of the protolith. The HREE patterns of metasomatic rocks formed under decompression are uniform; an insignificant removal of LREE can be noted. The progressive extraction of REE with increasing alteration of rocks could have been due to the effect of magmatogenic or meteoric fluid. Because a Ce anomaly is absent, the participation of oxidized meteoric water was limited. The inverse correlation between the total REE content and the Eu anomaly value in altered rocks indicates a substantial role of magmatogenic fluid. The REE patterns of altered rocks formed under compression show that the role of metamorphic fluid was not great. All metasomatic rocks are enriched in LREE, so that the enrichment of fluid in LREE as well may be suggested. Three fluid compositions were captured as fluid inclusions: (1) H2O-CO2-NaCl-MgCl2 with a salinity of 1.0–4.9 wt % NaCl equiv, (2) CO2-CH4, and (3) H2O-NaCl-MgCl2 with a salinity of 7.0–5.6 wt % NaCl equiv. Compositions (1) and (2) coexisted in the mineral-forming system at 250–350°C and 1.1–2.4 kbar as products of phase separation under conditions of decreasing P and T. The interaction of this fluid with host rocks resulted in the formation of extensive halos of beresitized rocks with sulfide disseminations. The precipitation of arsenopyrite and pyrite led to the substantial depletion of mineral-forming fluid in H2S and destabilization of the Au(HS)2? complex. The fluid with the third composition arose due to the boiling of the H2O-CO2-CH4-NaCl-MgCl2 liquid and was responsible for metasomatic alteration of host rocks. The late mineral assemblages were deposited from this fluid at the initial stage of ore formation. The high methane concentrations in the ore-forming fluid were likely caused by interaction of hydrothermal ore-bearing solutions with carbonaceous host rocks. The δ18O values of quartz from quartz-scheelite-pyrite-arsenopyrite and sulfide-sulfosalt mineral assemblages vary from +11.6 to +14.1‰ and +11.2 to +13.5‰, respectively. The parental fluids of the early and late mineral assemblages probably were derived from a magmatic source and were characterized by $ \delta ^{18} O_{H_2 O} REE patterns of hydrothermally altered rocks, fluid inclusions, and stable oxygen isotopes of quartz were studied at the Natalka gold deposit. Metasomatic rocks formed under decompression reveal gradual depletion in LREE and HREE relative to siltstone of the protolith. The HREE patterns of metasomatic rocks formed under decompression are uniform; an insignificant removal of LREE can be noted. The progressive extraction of REE with increasing alteration of rocks could have been due to the effect of magmatogenic or meteoric fluid. Because a Ce anomaly is absent, the participation of oxidized meteoric water was limited. The inverse correlation between the total REE content and the Eu anomaly value in altered rocks indicates a substantial role of magmatogenic fluid. The REE patterns of altered rocks formed under compression show that the role of metamorphic fluid was not great. All metasomatic rocks are enriched in LREE, so that the enrichment of fluid in LREE as well may be suggested. Three fluid compositions were captured as fluid inclusions: (1) H2O-CO2-NaCl-MgCl2 with a salinity of 1.0–4.9 wt % NaCl equiv, (2) CO2-CH4, and (3) H2O-NaCl-MgCl2 with a salinity of 7.0–5.6 wt % NaCl equiv. Compositions (1) and (2) coexisted in the mineral-forming system at 250–350°C and 1.1–2.4 kbar as products of phase separation under conditions of decreasing P and T. The interaction of this fluid with host rocks resulted in the formation of extensive halos of beresitized rocks with sulfide disseminations. The precipitation of arsenopyrite and pyrite led to the substantial depletion of mineral-forming fluid in H2S and destabilization of the Au(HS)2− complex. The fluid with the third composition arose due to the boiling of the H2O-CO2-CH4-NaCl-MgCl2 liquid and was responsible for metasomatic alteration of host rocks. The late mineral assemblages were deposited from this fluid at the initial stage of ore formation. The high methane concentrations in the ore-forming fluid were likely caused by interaction of hydrothermal ore-bearing solutions with carbonaceous host rocks. The δ18O values of quartz from quartz-scheelite-pyrite-arsenopyrite and sulfide-sulfosalt mineral assemblages vary from +11.6 to +14.1‰ and +11.2 to +13.5‰, respectively. The parental fluids of the early and late mineral assemblages probably were derived from a magmatic source and were characterized by = +6.3 to +8.8‰ at 350°C and +3.6 to +5.9‰ at 280°C, respectively. The narrow interval of oxygen isotopic compositions shows that this source was homogeneous. The data obtained allow us to suggest that the deposit formation was related to magmatic activity, including the direct supply of ore components from a magma chamber and mobilization of these components in the processes of dehydration and decarbonation during contact and regional metamorphism. Original Russian Text ? N.A. Goryachev, O.V. Vikent’eva, N.S. Bortnikov, V.Yu. Prokof’ev, V.A. Alpatov, V.V. Golub, 2008, published in Geologiya Rudnykh Mestorozhdenii, 2008, Vol. 50, No. 5, pp. 414–444.  相似文献   

5.
The geological position, composition of mineral assemblages, and typomorphism of major minerals from garnet-bearing rocks at the Berezitovoe gold-base-metal deposit in the Upper Amur Region have been studied in detail. These are ore-bearing metasomatic rocks and metamorphosed porphyritic dikes. The garnet-bearing metasomatic rocks reveal zoning, which is caused by various degrees of metasomatic transformation of the Paleozoic porphyritic granodiorite that hosts the ore zone. The metasomatic replacement of granodiorite was accompanied by loss of Na, Ca, Ba, Sr and gain of K, Mn, and Rb. Garnet-bearing metamorphosed intermediate dikes occur within the metasomatic zone. The PT conditions of metamorphism and metasomatism are similar and estimated at 3.9 kbar and 500°C from various mineral equilibria. The results of physicochemical simulation of garnet-bearing mineral assemblages carried out by minimizing the Gibbs free energy and the geological data show that garnet-bearing mineral assemblages arose at the Berezitovoe deposit as a result of local high-temperature thermal metamorphism of previously formed low-temperature metasomatic rocks close in composition to classic beresite. In this connection, we propose considering garnet-bearing metasomatic rocks as high-temperature metamorphosed beresites.  相似文献   

6.
Precaldera, caldera, and postcaldera cycles are recognized in the geological evolution of the Pleistocene-Holocene Elbrus volcanic center (EVC). During the caldera cycle, the magmatic activity was not intense, whereas hydrothermal metasomatic alteration of rocks was vigorous and extensive. The Kyukyurtli and Irik ore-magmatic systems have been revealed in the EVC, with the former being regarded as the more promising one. The ore mineralization in rocks of the caldera cycle comprises occurrences of magnetite, ilmenite, pyrite and pyrrhotite (including Ni-Co varieties), arsenopyrite, chalcopyrite, millerite, galena, and finely dispersed particles of native copper. Pyrite and pyrrhotite from volcanics of the caldera cycle and dacite of the Kyukyurtli extrusion are similar in composition and differ from these minerals of the postcaldera cycle, where pyrite and pyrrhotite are often enriched in Cu, Co, and Ni and millerite is noted as well. The composition of ore minerals indicates that the hydrothermal metasomatic alteration related to the evolution of the Kyukyurtli hydrothermal system was superimposed on rocks of the caldera cycle, whereas the late mineralization in rocks of the postcaldera cycle developed autonomously. The homogenization temperature of fluid inclusions in quartz and carbonate from crosscutting veinlets in the apical portion of the Kyukyurtli extrusion is 140–170°C and in quartz from geyserite, 120–150°C. The temperature of formation of the chalcopyrite-pyrite-pyrrhotite assemblage calculated using mineral geothermometers is 156 and 275°C in dacite from the middle and lower portions of the Malka lava flow and 190°C in dacite of the Kyukyurtli extrusion. The hydrothermal solutions that participated in metasomatic alteration of rocks pertaining to the Kyukyurtli ore-magmatic system (KOMS) and formed both secondary quartzite and geyserite were enriched in fluorine, as evidenced from the occurrence of F-bearing minerals-zharchikhite, ralstonite, α-ralstonite, and fluorite-identified in these metasomatic rocks for the first time. By analogy with porphyry Cu-Mo deposits in Chile and the United States, the ore mineralization of the KOMS may be classified by composition and textural and structural attributes as a supraore level of porphyry copper genetic type. The volcanic rocks of the KOMS and the EVC as a whole are enriched in Ag, Mo, Zn, As, Sb, Se, and Ba. Judging from the scale of argillic alteration and taking into account the data on porphyry Cu-Mo ore-magmatic systems of the Greater Caucasus, veined Pb-Zn ore mineralization may be expected in the propylitic zone at a depth down to 1000 m from the present-day erosion level of the KOMS. Stringer-disseminated Au-Ag, Cu, and Cu-Mo ore mineralization of the upper part of the porphyry ore-magmatic system related to subvolcanic dacitic intrusions may be localized somewhat deeper.  相似文献   

7.
We studied the mineralogic and geochemical features of metasomatic rocks and ores from the Pogromnoe gold deposit, which is unconventional for Transbaikalia. The deposit, which formed in the Early Cretaceous, at the rifting stage of the regional evolution, is localized in the dynamoclastic strata of the Mongol-Okhotsk suture, along which the Siberian continent joined the Mongolia-China continent in the Early-Middle Jurassic. Gold mineralization occurs as two morphologic types of ores: stockwork quartz-carbonate-arsenopyrite-pyrite ores in altered volcanics (orebody no. 1) and veinlet-vein quartz ones (with disseminated sulfides) in altered carbonaceous shales (orebody no. 10). The host rocks of the deposit are the highly altered volcanosedimentary rocks of the Butorovskii Formation (Shadoron Group, J2–3), which transformed into metasomatic (by composition) and dynamoclastic (by texture and structure) rocks. It has been found that the formation of the metasomatic rocks and mineralization proceeded in several stages. Propylites formed at the preore stage (J3); tectonic schists and albitophyres, at the late preore stage; and sericitolites and albite-carbonate-sericite-quartz metasomatic rocks (quartzites), at the synore stage. The 40Ar/39Ar age of the stockwork system of ore-bearing fractures and metasomatic rocks which formed at the late preore stage is estimated as 139.5 ± 1.8 Ma. The gold-bearing rocks at the deposit are the late preore and synore metasomatic rocks formed after volcanics with sulfide mineralization (gold concentrators are pyrite II and III and arsenopyrite I and II) and after altered carbonaceous shales (gold concentrators are vein quartz and arsenopyrite II). Gold grade is completely consistent with silicification, saturation with quartz-sulfide and sulfide microveinlets, and fine sulfide dissemination. By genesis, the Pogromnoe deposit belongs to objects which formed in shear zones with the contribution of gold-bearing mantle fluids. The authors presume that the sources of mineralization are the ore-producing granitoids of the Amudzhikan-Sretensk intrusive assemblage within the Aprelkovo ore-magmatic system (OMS) (Os’kina and Urguchan plutons). This is confirmed by Pb isotope compositions (207Pb/204Pb and 206Pb/204Pb) for the pyrite and arsenopyrite of the Pogromnoe gold-bearing ores, which testify to the widespread occurrence of “mantle” Pb isotope signatures. The 40Ar/39Ar age of the ore-producing granitoids of the Aprelkovo OMS is 131.0 ± 1.2 Ma. Gold in the orebodies occurs in native form and is fine and very fine. By gold grade, the Pogromnoe deposit deserves very close attention as a new commercial type of gold mineralization in Transbaikalia.  相似文献   

8.
The paper reports data on rock and mineral compositions from the Svyatonosskaya Formation, which is a continuation of the Ol’khon Series in the northern part of the Svyatoi Nos Peninsula, eastern shore of Lake Baikal. The pyroxene-amphibole-plagioclase schists (metagabbro) are replaced there by the garnet-biotite-quartz assemblage, which was formed, according to the data of various geothermometers and calculations by the THERMOCALC computer program, under conditions corresponding to the transition from the granulite (848–811°C) to high grades of the amphibolite (715–670°C) facies under high pressures (8.7 ±1.6 kbar). In petrogenetic grids, these conditions fall onto the line of the onset of eclogitization. In nature these rocks are a continuation of the Chernorudskaya-Barakchinskaya zone of elevated pressures in the Ol’khon area. The metasomatic rocks were formed simultaneously with strike-slip faulting, when coupled zones of relatively high-(eclogite-like) and low-pressure (quartzite-marble melange) developed at the inflow of SiO2 and K2O and the removal of MgO and CaO. Analogous compositional changes in gneisses and schists in tectonic extension zones in Ol’khon Island and neighboring areas occurred during the development of migmatites. The migmatization of the gneisses was likely coupled with the garnetization of mafic schists in high-pressure zones and the formation of eclogite-like rocks replacing marbles. The accompanying graphitization of this block suggests that the metasomatic fluid had a hydrocarbon-hydrogen composition.  相似文献   

9.
Geological and geochemical data indicate that the formation of the granulite-like rocks in the contact aureole of the Yurchik gabbronorite intrusion of the Ganal Range, Kamchatka, was caused by the contact metamorphism, metasomatism, and local melting of the initial volcanosedimentary rocks of the Vakhtalka Sequence of the Ganal Group. The temperature in the inner part of the aureole reached 700–800°C and caused the transformation of the basic volcanic rocks of the sequence into two pyroxene-plagioclase, clinopyroxene-amphibole-plagioclase, and amphibole-plagioclase hornfelses, while sedimentary rocks were converted into garnet-biotite ± cordierite hornfelses. The hornfelsed basic volcanic rocks were locally subjected to metasomatic alteration and magmatic replacement with formation of biotite-orthopyroxene-plagioclase metasomatic bodies containing biotite-orthopyroxene-plagioclase ± garnet veinlets and aggregates. During these processes, sedimentary interlayers were converted into garnet enderbites at 700–800°C and 3.2–4.8 kbar. The comparison of the chemical composition of basic volcanic rocks of the Vakhtalka Sequence and their transformation products indicates that the metasomatic alteration and magmatic replacement correspond to siliceous-alkaline metasomatism (granitization) and cause subsequent and uneven influx of SiO2, Al2O3, Na2O, K2O, Rb, Ba, Zr, Nb, and Cl and removal of Fe, Mg, Mn, Ca, Cr, Co, Ti, Y, and S. REE data on basic metavolcanic rocks, hornfelses, and metasomatites suggest that the processes of hornfelsation, metasomatism, and magmatic replacement of the initial volcanic rocks were accompanied by significant increase in LREE and slight decrease in HREE. The Sr and Nd isotope study of the rocks in the aureole showed that the initial basic volcanic rocks of the Vakhtalka Sequence are isotopically close to both mature island arc tholeiites and mid-ocean ridge basalts. The metasomatic alteration and magmatic replacement of volcanic rocks in the aureole lead to the decrease of 143Nd/144Nd and increase of 87Sr/86Sr approximately parallel to mantle array. Pb isotopic ratios in the studied rocks become more radiogenic from initial metavolcanic rocks to metasomatites. It is suggested that the processes of metamorphism, metasomatism, and magmatic replacement were caused by highly mineralized mantle fluids, which percolated along magmatic channels serving as pathways for gabbroid magma.  相似文献   

10.
Manifestations of the main types of metasomatites (beresite, propylite, listwaenite, aceite, and gumbeite) were identified in the shear zones of the Fenno-Karelian craton on the basis of the previously proposed systematics of metasomatic facies. These metasomatites were formed in shear stress environments, which determined their morphological features, in particular, finely banded texture. Comparatively low-temperature conditions of infiltration process and salting out effect (reduction of CO2 solubility with increasing salt content) lead to the heterogenization of fluid into two phases: aqueous salt solution and almost pure CO2. This results in more aggressive and mobile behavior of the fluid, and, correspondingly, more intense differentiation of the matter and contrast in metasomatic banding. Relations between metasomatic parageneses indicate an evolution trend of the processes from propylite, beresite and listwaenite to alkaline varieties and their repeated manifestation in the same shear zones. The results of Rb-Sr isochron dating of ore metasomatites from eight deposits and occurrences of the Fenno-Karelian craton (more than 100 samples of rocks and minerals) confirm previous assumptions. In general obtained data show that the shear zones controlling the distribution of the studied occurrences operated as fluid pathways during a long time period, up to 200 Ma, after the Svecofennian orogeny completion and did not show any correlation with Paleoproterozoic and Neoarchean magmatism. Rb-Sr isotope data on the metasomatites indicate three peaks of the post-Svecofennian metallogenic activity: 1700–1780, 1600–1650, and 1400–1500 Ma. Since the studied ore deposits were formed within tectonic structures, which evolved on the Archean crust and have a long prehistory, and fluid flows were subjected to intensive contamination by ancient crustal material, a relatively high initial Sr isotope ratios of formed ore-metasomatic systems were developed. High variablity of this value in the studied rocks ((87Sr/86Sr)0 from 0.706 to 0.750) is related to the heterogeneity of crustal protolith and to the relative storage and manifestation of the juvenile component of the fluid, which was responsible for the metasomatic transformation of the Archean and Paleoproterozoic rocks and ore-deposit formation.  相似文献   

11.
The composition of accessory REE minerals (allanite, chevkinite, fergusonite, and REE carbonates) in alkaline metasomatic rocks of the Main Sayan Fault (quartz-albite-microcline-riebeckite-aegirine, quartzalbite-microcline-magnetite, and clinopyroxene-albite) was studied using back-scattered scanning electron microscopy. Chevkinite occurs only in quartz-albite-microline metasomatic rock. The paragenesis of allanite and titanite is stable in clinopyroxene-albite metasomatic rocks. Allanite and fergusonite are typical of all zones of the metasomatic column. Chevkinite and allanite are often altered due to interaction with hydrothermal fluid and lose some amount of LREE. Secondary bastnaesite, synchysite, and ancylite are formed after allanite, while secondary monazite is developed after chevkinite. Presumably, the low-temperature alteration of allanite and chevkinite under effect of F?, CO 3 2? , and P 4 3? -bearing fluids had not any significant manifestation in the total REE content in metasomatic rocks.  相似文献   

12.
The behavior of tantalum in carbonatites and related rocks of alkaline complexes was analyzed. In particular, we considered factors favorable for its accumulation in carbonatites, both in absolute amount and relative to its companion element niobium.The contents of both elements show moderate variations in earlier alkaline silicate rocks and more significant variations in carbonatites; this difference is especially pronounced for tantalum.Their simultaneous accumulation in carbonatites is controlled mainly by the affiliation to certain temperature facies, when tantalate-niobate phases with high Ta2O5 contents (up to 26 wt %) are formed. The accumulation of these elements with the formation of almost purely niobian pyrochlores and Ta-U pyrochlores (hatchettolites) occurs efficiently only during the formation of metasomatic zoning with the separation of purely Nb and Nb-Ta mineralization between the zones of the metasomatic column. This process is characteristic mainly of relatively deep-seated massifs, where the metasomatic processes of carbonatite formation are dominant, at least for the given temperature facies.  相似文献   

13.
山西吕梁山地区界河口岩群(后文简称界河口群)主要由一套变质砂泥质岩石组成,含有一定量的条带状大理岩、斜长角闪岩等。利用LA-ICP-MS对位于关帝山西榆皮、娄烦县杜交曲及云中山三角镇地区的含石榴黑云二长花岗片麻岩(12LL05-1)、片状黑云母石英岩(12LL09-2)和含石榴钾长石英岩(12LL15-1)进行锆石U-Pb年龄测定,获得的二长花岗片麻岩(12LL05-1)岩浆结晶年龄为1941±28Ma、片状黑云母石英岩(12LL09-2)碎屑锆石最小的峰值年龄为2519.5±6.7Ma及含石榴钾长石英岩(12LL15-1)碎屑锆石2个峰值年龄2143±15Ma和2599±11Ma。根据岩石组合和同位素测定结果推测,关帝山西榆皮地区的界河口群与界河口—汉高山一带的界河口群可以对比,沉积时代在1.94Ga之前;娄烦县杜交曲一带的界河口群可与五台岩群相对比,属新太古代;云中山三交镇一带的界河口群可与野鸡山群或岚河群相对比。沿岚县—方山—吕梁一线存在一条大型韧性剪切带,倾向NNW-NWW,表现为右行剪切的运动学性质,将吕梁山区近EW向构造带改造为NNE向。  相似文献   

14.
S. Viswanathan 《Lithos》1974,7(1):29-34
Oxygen isotope studies of granitic rocks from the 2.7 b.y.-old composite Giants Range batholith show that: (1) δ(O18)quartz values of 9 to 10 permil characterize relatively uncontaminated Lower Precambrian, magmatic granodiorites and granites; (2) granitic rocks thought to have formed by static granitization have δ(O18)quartz values that are 1 to 2 permil higher than magmatic granitic rocks; (3) satellite leucogranite bodies have values nearly identical to those of the main intrusive phases even where they transect O18-rich metasedimentary wall rocks; (4) oxygen isotopic interaction between the granitic melts and their O18-rich wall rocks was minimal; and (5) O18/O18 ratios of quartz grains in a metasomatic granite are largely inherited from the precursor rock, but during the progression — sedimentary parent → partially granitized parent → metasomatic granite → there is gradual decrease in δ(O18)quartz by 1 to 2 permil.  相似文献   

15.
16.
Corundum (ruby-sapphire) is known to have formed in situ within Archean metamorphic rocks at several localities in the North Atlantic Craton of Greenland. Here we present two case studies for such occurrences: (1) Maniitsoq region (Kangerdluarssuk), where kyanite paragneiss hosts ruby corundum, and (2) Nuuk region (Storø), where sillimanite gneiss hosts ruby corundum. At both occurrences, ultramafic rocks (amphibole-peridotite) are in direct contact with the ruby-bearing zones, which have been transformed to mica schist by metasomatic reactions. The bulk-rock geochemistry of the ruby-bearing rocks is consistent with significant depletion of SiO2 in combination with addition of Al2O3, MgO, K2O, Th and Sr relative to an assumed aluminous precursor metapelite. Phase equilibria modelling supports ruby genesis from the breakdown of sillimanite and kyanite at elevated temperatures due to the removal of SiO2. The juxtaposition of relatively silica- and aluminum-rich metasedimentary rocks with low silica ultramafic rocks established a chemical potential gradient that leached/mobilized SiO2 allowing corundum to stabilize in the former rocks. Furthermore, addition of Al2O3 via a metasomatic reaction is required, because Al/Ti is fractionated between the aluminous precursor metapelites and the resulting corundum-bearing mica schist. We propose that Al was mobilized either by complexation with hydroxide at alkaline conditions, or that Al was transported as K-Al-Si-O polymers at deep crustal levels. The three main exploration vectors for corundum within Archean greenstone belts are: (1) amphibolite- to granulite-facies metamorphic conditions, (2) the juxtaposition of ultramafic rocks and aluminous metapelite, and (3) mica-rich reactions zones at their interface.  相似文献   

17.
Vostok-2—East Russia’s largest skarn deposit of high-grade sulfide-scheelite ore with substantial base-metal and gold mineralization—was formed during the Mesozoic orogenic epoch of evolution of the Far East marginal continental system as an element of the gold-tin-tungsten metallogenic belt. The deposit is related to the multistage monzodiorite-granodiorite-granite complex pertaining to the ilmenite series and spatially associated with a minor granodiorite porphyry (?) stock, which bears petrological features transi- tional to those of intrusive rocks occurring at Au-W and Au deposits. The hydrothermal metasomatic alteration of host rocks evolved from pyroxene skarn via retrograde postskarn and propylitic (hydrosilicate) metasomatic rocks to the late, low-temperature quartz-sericite metasomatic rocks often with albite, chlorite, carbonate, and apatite. The mineral assemblages of skarn and postskarn metasomatic rocks correspond to those at the reduced-type tungsten skarn deposits. Zoning of the postskarn metasomatic rocks is controlled by granodiorite stock. The hydrothermal metasomatic alteration was accompanied by development of mineralization from scheelite via sulfide-scheelite with pyrrhotite and chalcopyrite to the gold-base-metal-scheelite assemblage with arsenopyrite, Bi-Sb-Te-Pb-Zn sulfides and sulfosalts. Several scheelite generations are recognized. Scheelite of the late generations is enriched in Eu, as is typical of gold deposits. The associated gold mineralization comprises both native gold varying in fineness and Au-bearing arsenopyrite. The significant gold mineralization emphasizes genetic links of this deposit with intrusion-related Au-W and Au deposits of the reduced type.  相似文献   

18.
Drill cores of metasomatic rocks and ores from the Lermontovo skarn scheelite-sulfide deposit (Lermontovo ore field, Primorsky krai) have been studied. Feldspar-apatite-scheelite-sulfide metasomatic rocks containing more than 10% WO3 have been identified and characterized. The relationships of these altered rocks to skarn, greisen, and sulfide ore are shown and the implications of these rocks for the formation of ore are determined. In addition, some genetic problems of the deposit are discussed.  相似文献   

19.
The paper reports data on the distribution of REE in metasomatic rocks, including those with corundum, that were formed during the exhumation of the rocks of the Belomorian Belt at 1.9–1.75 Ga. This process is thought to have occurred concurrently with the horizontal extension and tectonic denudation of the upper crust, which, in turn, induced the massive release of fluids. The latter formed two major groups of silicic metasomatic rocks. The deepest-sitting corundum-bearing and other mafic metasomatic rocks are enriched in REE, alkalis, and alumina compared to the host rocks. The coeval acid metasomatic rocks such as orthotectites are, conversely, depleted in REE (with positive Eu anomalies), mafic elements, and HFSE but are also enriched in alumina. These complimentary rocks are thought to have been produced early during the exhumation of deep rocks under the effect of reduced fluids whose genesis was related to decompression. The silicic metasomatic rocks of the second group (with muscovite) have elevated REE concentrations (with negative Eu anomalies) and were formed by already oxidized fluids at shallower depths. The fact that the corundum-bearing metasomatic rocks are enriched in REE (in spite of the ultrabasic composition of these rocks) suggests that they were generated in an extensional environment with the participation of deep fluids, which enriched the rocks in Al, Na, K, Ba, Sr, Zr, and LREE.  相似文献   

20.
Here we discuss the post-metamorphic metasomatism of high-grade orthogneisses by studying granite-looking, pink-coloured microcline-bearing rocks exposed around Ambagaspitiya, Sri Lanka. These rocks are medium- to coarse-grained, and are more or less homogeneous, and isotropic. Textural, and petrographic analyses clearly show that these special rocks are neither deformed nor metamorphosed, and that they are not any kind of intrusive rocks. The present study shows that these rocks have formed through K-metasomatism of once intensely deformed, and metamorphosed granodiorite, tonalite, monzodiorite, and quartz monzodiorite. The modal compositions of most of these metasomatic rocks of Ambagaspitiya are very similar to those of syenite, quartz syenite, monzonite, quartz monzonite, and quartz monzodiorite.All the original metamorphic rocks — namely granitic gneiss, metagranite, metagranodiorite, metatonalite, metamonzodiorite, metaquartz monzodiorite, metadiorite, basic dikes, and metapelites — had undergone at least five ductile deformations, D1 to D5, and had been metamorphosed under upper amphibolite to granulite facies conditions prior to the metasomatism. Almost all the parent metamorphic rocks had acquired a well-developed gneissic foliation (S2), and had suffered at least two intense folding events (F3, and F5) before the metasomatism occurred. All the metamorphic, and deformational fabrics of affected metamorphic rocks have been completely or partially obliterated by the metasomatism. This indicates that the metasomatic process post-dates all ductile deformations (D1 — D5), and the regional metamorphism. Of the parent metamorphic rocks, metagranodiorite, metatonalite, metamonzodiorite, and metaquartz monzodiorite have undergone intense metasomatism. It is shown that the metasomatism has nucleated along late-stage, post-D5 shear zones, which may form an interconnected network. Potassium-bearing metasomatic fluids, derived from a deep-seated K-rich source, may have migrated along these shear zones. The fluids which entered the shear zones have pervaded the orthogneisses through foliation planes, and along grain boundaries, and microcracks in minerals, transforming the host gneisses to metasomatic rocks. The main metasomatic transformation has taken place through the replacement of metamorphic plagioclase, and plagioclase-quartz by microcline, and through formation of myrmekite. Further studies are necessary to unravel the nature, composition, and the source of these late-stage K-rich fluids in the lower crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号