首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents the comparison between the results of small-scale model tests and prototype measurements of wave overtopping at a rubble-mound breakwater. The specific structure investigated is the west breakwater of the yacht harbour of Rome at Ostia (Italy) and is characterized by a gentle seaward slope (1/4) and by a long, shallow foreshore. The laboratory tests firstly aimed at carefully reproducing two measured storms in which overtopping occurred and was measured. The tests have been carried out in two independent laboratories, in a wave flume and in a wave basin, hence using a two-dimensional (2-D) and a three-dimensional (3-D) setup. In the 2-D laboratory tests no overtopping occurred during the storm reproductions; in the 3-D case discharges five to ten times smaller than those observed in prototype have been measured. This indicates the existence of model and scale effects. These effects have been discussed on the basis of the results of several parametric tests, which have been carried out in both laboratories, in addition to the storm reproductions, varying wave and water level characteristics. Final comparison of all the performed tests with 86 prototype measurements still suggests the existence of scale and model effects that induce strong underestimation of overtopping discharge at small scale. The scale reproduction of wave breaking on the foreshore, together with the 3-D features of the prototype conditions and the absence of wind stress in the laboratory measurements, have been individuated as the main sources of scale and model effects. The paper also provides a comparison between the data and a largely used formula for wave overtopping discharges in the presence of structures similar to the one at hand. The suitable value of a roughness factor that appears in that formula is investigated and good agreement is found with other recent researches on rubble-mound breakwaters.  相似文献   

2.
This paper describes a new station for full-scale measurement of wave overtopping at the Rome yacht harbour rubble mound breakwater in Ostia (Italy) and the results of the successful first measurement campaign carried out during the winter season 2003–2004. The equipment and the research activities were supported by the EU project CLASH, focusing on scale effects for wave overtopping at coastal structures. The site is characterized by a very small tidal range, a long shallow foreshore and depth-limited breaking waves which interact with a shallow sloping porous rock structure. Overtopping water is collected by a steel tank installed on the crown slab behind the parapet wall. The measurement of water level variation inside the tank by means of two pressure transducers allows the calculation of individual overtopping volumes. Incident waves, sea levels and wind are also measured. During seven independent storms, more than 400 individual overtopping events were recorded and about 86 h of valid data are available. This extensive dataset is presented, discussed and then used for comparison with two commonly used overtopping prediction formulae based on small-scale model tests showing their tendency to underestimate the prototype results. A strong correlation between the hourly mean overtopping discharge and corresponding maximum volume is also presented. The paper generally confirms the validity of the approach used in Troch et al. (2004) [Troch, P., Geeraets, J., Van de Walle, B., De Rouck, J., Van Damme, L., Allsop, W., Franco, L., 2004. Full-scale wave overtopping measurements on the Zeebrugge rubble mound breakwater. Coastal Engineering 51, 609–628] for field measurement of wave overtopping.  相似文献   

3.
4.
Within the CLASH project, wave overtopping at the vertical seawall at Samphire Hoe was measured by HR Wallingford (HRW), and compared laboratory tests in 2 & 3 dimensions carried out at the University of Edinburgh and HRW. At Samphire Hoe, overtopping volumes were captured in three volumetric tanks capable of measuring wave-by-wave and total overtopping volumes. The three tanks were placed progressively farther back from the seawall edge so that the spatial distribution of the overtopping discharges could be determined. The field measurement equipment was successfully deployed on three occasions, and measured overtopping discharges ranged from that barely considered to be hazardous to the public to over q = 3.0 l/s/m. The 2d testing at Edinburgh was modelled at a scale of 1:40, and the 3d model at HRW was modelled at 1:20. For both sets of laboratory tests, a range of conditions, representative of the storm wave conditions and water levels, was reproduced in addition to a set of parametric conditions. The storm conditions allowed a direct comparison between the field and laboratory measurements, and the parametric conditions were used to test the generic overtopping behaviour of the structure. For both sets of laboratory tests, mean overtopping discharges and the spatial distribution were measured separately. Analysis of the distribution data relates the proportion of the discharge that has landed as a function of (Lo); where x is the distance behind the crest, and Lo is the offshore wavelength. Analysis of the field, 2d & 3d laboratory data, and empirical prediction methods have not identified any scale effects for overtopping discharges at vertical and near-vertical seawalls.  相似文献   

5.
斜向和多向不规则波在斜坡堤上的平均越浪量的试验研究   总被引:4,自引:1,他引:3  
通过三维物理模型试验研究了在斜坡堤上斜向和多向不规则波在非破碎条件下的平均越浪量与波浪参数及堤参数的关系.着重考察了波浪以小角度(0°~30°)斜向入射时平均越浪量的变化情况,肯定了多向波的越浪量在这一范围内有所谓“小角度斜向增加”的现象,但否定了单向波也具有这一现象.在考察波浪的方向分布影响时发现波浪斜向入射时多向波的越浪量往往要比单向波的大.比较了已有的相关研究成果,给出了适用于混凝土护面和扭工字块体护面斜坡堤上斜向和多向不规则波的平均越浪量的估算公式.  相似文献   

6.
A systematic armour stability and the hydraulic performance, including wave reflection, wave transmission, experimental study in the twin-wave flumes of Leichtweiss-Institute (LWI) is performed on a geocore breakwater and a conventional rubble mound breakwater in order to comparatively determine the wave run-up and wave overtopping. The geocore breakwater consists of a core made of sand-filled geotextile containers (GSC) covered by an armour made of rock. The geocore is more than an order of magnitude less permeable than the quarry run core of a conventional breakwater. As expected, the core permeability substantially affects the armour stability on the seaside slope, the wave transmission and the wave overtopping performance. Surprisingly, however, wave reflection and hydraulic stability of the rear slope are less affected. Formulae for the armour stability and hydraulic performance of the geocore breakwater are proposed, including wave reflection, transmission, run-up and overtopping.  相似文献   

7.
Based on the open source code OpenFOAM,a three-dimensional model is presented for simulation of the interaction between waves and rubble mound breakwater with armor units.The armor units with their real geometries are depicted through computational grids.The volume-averaged RANS equation and the seepage equation containing nonlinear term are used to describe the percolation in the core and underlayer of the breakwater.Grids independence analysis are carried out,the horizontal and vertical grid size are recommended to take as one-fifteenth of the mean nominal diameter D50 of the armor units and one-fifteenth of the wave height respectively.Random wave overtopping of rubble mound breakwater with armor units is simulated through the proposed model.The results show good agreement between the simulated and measured overtopping discharge rates for different types of armor units.The developed numerical model can be used to evaluate the random wave overtopping in design of rubble mound breakwater with artificial armor blocs.  相似文献   

8.
Any kind of Wave Energy Converter (WEC) requires information on how optimize the device in terms of hydraulic performances and structural responses. This paper presents results on wave loading acting on an innovative caisson breakwater for electricity production. The Seawave Slot-Cone Generator (SSG) concept is based on the known principle of overtopping and storing the wave energy in several reservoirs placed one above the other. Using this method practically all waves, regardless of size and speed are captured for energy production. In the present SSG setup three reservoirs have been used. Comprehensive 2D and 3D hydraulic model tests were carried out at the Department of Civil Engineering, Aalborg University (Denmark) in the 3D deep water wave tank. The model scale used was 1:60 of the SSG prototype at the planned location of a pilot plant at the west coast of the Kvitsøy island (Stavanger, Norway).  相似文献   

9.
扭王字块体护面斜坡堤越浪量试验研究   总被引:2,自引:1,他引:1  
针对现行规范中缺少扭王字块体护面斜坡堤越浪量的计算方法,考虑波陡、相对水深、相对堤顶超高、相对坡肩宽度、相对胸墙高度和相对块体尺寸等影响因素,通过波浪水槽物模试验,运用多元回归方法,给出了扭王字块体斜坡堤越浪量中护面结构影响系数和平均越浪量的计算公式。与试验值和其它计算公式进行了验证对比,结果基本吻合,具有一致性的规律。研究成果丰富了规范内容,对斜坡堤工程设计具有重要参考意义。  相似文献   

10.
不同掩护程度弧形胸墙波压力及越浪量试验研究   总被引:1,自引:0,他引:1  
李玉龙 《海岸工程》2010,29(2):17-22
为了明确斜坡堤弧形胸墙越浪量及波压力的变化规律,采用波浪水槽试验测量了弧形胸墙的越浪量和波压力。试验从斜坡堤弧形胸墙前的掩护程度等因素入手对弧形胸墙的返浪效果及波压力进行初步研究,得出不同掩护程度弧形胸墙的越浪量及波压力,发现掩护程度越好,弧形胸墙所受波压力越小;半掩护情况下越浪量最小,为实际工程设计提供了依据。  相似文献   

11.
This paper describes the design of a perforated caisson breakwater and presents the results of model test. Tests with regular and irregular waves have demonstrated that the perforated caisson breakwater has the advantages of low reflection coefficient, good wave-absorbing performance, relatively small wave height in front of the breakwater, and small amount of overtopping. Analyses have been made of the coefficient of reflection, wave height in front of the breakwater, and wave overtopping. Relevant figures and tables are presented for reference.  相似文献   

12.
This paper and its companion Higuera et al. (2014--this issue) introduce the formulation of Volume-Averaged Reynolds-Averaged Navier–Stokes (VARANS) equations in OpenFOAM® to simulate two-phase flow through porous media. This new implementation, so-called IHFOAM, corrects the limitations of the original OpenFOAM® code. An innovative hybrid methodology (2D–3D) is presented to optimize the simulation time needed to assess the three-dimensional effects of wave interaction with coastal structures. The combined use of a 2D and a 3D model enables the practical application of the 3D VARANS code to simulate real cases, contributing to a significant speed-up. This is highly convenient and especially suitable for non-conventional structures, as it overcomes the limitations inherent to applying semi-empirical formulations out of their range or 2D simulations only. A detailed study of stability and overtopping for a 3D porous high-mound breakwater at prototype scale subjected to oblique irregular (random) waves is carried out. Pressure around the caissons, overtopping discharge rate and turbulent magnitudes are presented in three dimensions. The mean pressure laws present a high degree of accordance with the formulation provided by Goda–Takahashi. Furthermore, local effects due to three-dimensional processes play a significant role, especially close to the breakwater head.  相似文献   

13.
Many breakwaters are, due to functional requirements, designed for small wave overtopping discharges. From the EC-research projects OPTICREST and CLASH it is known that overtopping discharges determined from conventional Froude scale models of rubble mound breakwaters are smaller than measured in corresponding prototypes. The present study examines this scale effect by comparing overtopping discharges in small scale and large scale tests. The length scale ratio between the models was 5.7.  相似文献   

14.
带胸墙斜坡堤越波量的试验研究   总被引:1,自引:0,他引:1  
带胸墙斜坡式防波堤堤顶标高的合理确定,有赖于越波量的正确计算。本文基于水力学中流量系数的概念,建立越波量的计算公式。对影响流量系数的几个主要因素:波高、波陡、胸墙高、平台宽度、相对水深和护面结构等,进行了较系统的试验和讨论,提出了确定流量系数的经验公式。另外,还根据越波量的大小及越波波态,将堤分为:不越水堤、少量越水堤、越水堤及半潜堤四类,可作为合理确定堤顶标高时参考。  相似文献   

15.
Wave overtopping nearshore coastal structures, such as shore-parallel breakwaters, can significantly alter the current circulation and sediment transport patterns around the structures, which in turn affects the formation of tombolos and salients in the nearshore area. This paper describes the implementation of a wave overtopping module into an existing depth-averaged coastal morphological mode: COAST2D and model applications to investigate the effect of wave overtopping on the hydrodynamics and morphodynamics around a group of shore-parallel breakwaters. The hydrodynamic aspects of the model were validated against a series of laboratory conditions. The model was then applied to a study site at Sea Palling, Norfolk, UK, where 9 shore-parallel segmented breakwaters including 4 surface-piercing and 5 low-crested breakwaters are present, for the storm conditions in Nov 2006. The model results were compared with laboratory data and field measurements, showing a good agreement on both hydrodynamics and morphological changes. Further analysis of wave overtopping effect on the nearshore hydrodynamics and morphodynamics reveals that wave overtopping has significant impacts on the nearshore circulation, sediment transport and the resulting morphological changes within such a complex breakwater scheme under the storm and macro-tide conditions. The results indicate the importance of including the wave overtopping in modelling nearshore morphodynamics with the presence of coastal structures.  相似文献   

16.
A series of hydraulic model tests are carried out to investigate random wave run-up and overtopping on smooth, impermeable single slope and composite slope. Based on analysis of the influences of wave steepness, structure slope, incident wave angle, width of the berm and water depth on the berm and the wave run-up, empirical formulas for wave run-up on dike are proposed. Moreover, empirical formula on estimating the wave run-up on composite slope with multiple berms is presented for practical application of complex dike cross-section. The present study shows that the influence factors for wave overtopping are almost the same as those for wave run-up and the trend of the wave overtopping variation with main influence parameters is also similar to that for wave run-up. The trend of the wave overtopping discharge variations can be well described by two main factors, i.e. the wave run-up and the crest freeboard of the structure. A new prediction method for wave overtopping discharge is proposed for random waves. The proposed prediction formulas are applied to case study of over forty cases and the results show that the prediction methods are good enough for practical design purposes.  相似文献   

17.
《Coastal Engineering》2005,52(6):473-495
Seadikes often fail due to wave overtopping and a failure of the landward slope. Therefore, these aspects have to be taken into account for the design of seadikes. In present design, the calculation of the crest height of seadikes is essentially based on using a design water level and the corresponding wave run-up height. An average overtopping rate is generally considered for wave overtopping which can not account for the stresses and other effects due to extreme individual overtopping events. Landward slope design is more or less based on experience. It can be concluded from failure analysis that dike failures on the landward slope are rather initiated by individual overtopping events, in particular by the related overtopping flow velocities and layer thicknesses which are relevant for the prediction of erosion, infiltration and slip failure. Therefore, overtopping flow velocities and layer thicknesses are required in addition to average overtopping rates as hydraulic boundary conditions for the geotechnical stability analysis of seadikes.The objective of the present paper is the theoretical and experimental determination of overtopping flow velocities and layer thicknesses on the seaward slope, the dike crest and the landward slope of a seadike. Overtopping parameters are derived on the basis of small scale model tests which are required for the design of the landward slope and to avoid dike failures by wave overtopping in the future. For the prediction of the layer thicknesses and the velocities of the overtopping flow on the seaward slope, the dike crest and the landward slope, a set of theoretical formulas is derived and validated by hydraulic scale model tests.  相似文献   

18.
The numerical model COBRAS-UC [Losada, I.J., Lara, J.L., Guanche,R., Gonzalez-Ondina, J.M. (2008). Numerical analysis of wave overtopping of rubble mound breakwaters. Coastal Engineering, Vol 55 (1), 47–62.] is used to carry out a two-dimensional analysis of wave induced loads on coastal structures. The model calculates pressure, forces and moments for two different cross-sections corresponding to a low-mound and a conventional rubble-mound breakwater with a crown-wall under regular and irregular incident wave conditions. Predicted results are compared with experimental information provided in Losada et al. [Losada, I.J., Lara, J.L., Guanche,R., Gonzalez-Ondina, J.M. (2008). Numerical analysis of wave overtopping of rubble mound breakwaters. Coastal Engineering, Vol 55 (1), 47–62.] and Lara et al. [Lara, J.L., Losada, I.J., Guanche, R. (2008). “Wave interaction with low mound breakwaters using a RANS model”. Ocean engineering (35), pp 1388–1400; doi:10.1016/j.oceaneng.2008.05.006.] on a 1:20 scale. Good agreement is found, and the differences between both typologies are explained in detail. Additionally, numerical results are also compared with several semi-empirical formulae recommended for design at both the 1:20 model scale and two prototype cross-sections. Results suggest that COBRAS-UC is able to provide realistic stability information that can be used to complete the approach based on currently existing methods and tools.  相似文献   

19.
The present paper gives a brief overview of the CLASH project, making reference to other relevant papers in this issue and elsewhere. Emphasis is put on the two main objectives of the project and how these objectives were realised: development of a generic prediction method for wave overtopping and guidance on possible scale/model effects for wave overtopping.  相似文献   

20.
《Coastal Engineering》2005,52(8):709-725
Wave decay in a rubble mound breakwater has been analysed theoretically for various types of damping functions (linear, quadratic and polynomial). The applicability of these damping functions for wave decay in the landward part of the breakwater core has been investigated in large scale model tests. The properties of the rock materials that have been used in the model tests have been determined to provide a rational basis for the damping coefficients. The analysis is based on detailed measurements of wave conditions and pressure distributions inside the breakwater. The theoretical approaches have been validated and where necessary extended by empirical means. The wave decay inside the breakwater can be reasonably approximated by the commonly applied linear damping model (resulting in exponential wave height attenuation). An extended polynomial approach provides a slightly better fit to the experimental results and reflects more clearly the governing physical processes inside the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号