首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 9 毫秒
1.
The friction coefficient in the permeability parameter of a perforated wall has been estimated on the basis of a best fit between measured and predicted values of such hydrodynamic coefficients as reflection and transmission coefficients. In the present study, an empirical formula for the friction coefficient is proposed in terms of known variables, i.e., the porosity and thickness of the perforated wall and the water depth. This enables direct estimation of the friction coefficient without invoking a best fit procedure. To obtain the empirical formula, hydraulic experiments are carried out, the results of which are used along with other researchers' results. The proposed formula is used to predict the reflection and transmission coefficients of various types of structures including a perforated wall. The concurrence between the experimental data and calculated results is good, verifying the appropriateness of the proposed formula. It is also shown that the proposed formula can be used for irregular waves as well.  相似文献   

2.
A two-dimensional analytical solution is presented to study the reflection and transmission of linear water waves propagating past a submerged horizontal plate and through a vertical porous wall. The velocity potential in each fluid domain is formulated using three sets of orthogonal eigenfunctions and the unknown coefficients are determined from the matching conditions. Wave elevations and hydrodynamic forces acting on the porous wall are computed. Reflection and transmission coefficients are presented to examine the performance of the breakwater system. The present analytical solutions are found in fairly good agreement with the available laboratory data. The results indicate that the plate length, the porous-effect, the gap between plate and porous wall, and the submerged depth of the plate all show a significant influence on the reflected and transmitted wave fields. It is also interesting to note that the submerged plate plays an important role in reducing the transmitted wave height, especially for long incident waves.  相似文献   

3.
In the present study, wave interaction with a fixed, partially immersed breakwater of box type with a plate attached (impermeable-permeable) at the front part of the structure is investigated numerically and experimentally. The large scale laboratory experiments on the interaction of regular waves with the special breakwater were conducted in the wave flume of Laboratori d’Enginyeria Marνtima (LIM) at Universitat Politecnica de Catalunya (UPC) in Barcelona. Experimental results are compared with numerical results obtained with the use of the Cornell breaking Wave and Structures (COBRAS) wave model. The effects of an impermeable as well as a permeable plate attached to the bottom of the breakwater on its hydrodynamic characteristics (wave transmission, reflection, dissipation, velocity and turbulence kinetic energy) are investigated. Computed velocities and turbulence kinetic energy in the vicinity of the structure indicate the effects of the breakwater with the attached (impermeable/permeable) plate on the flow pattern and the turbulence structure. The attached impermeable plate at the front part of the breakwater enhances significantly the efficiency of the structure in attenuating the incident waves. The permeable plate reduces the efficiency of the structure since wave energy is transmitted through the porous body of the plate. Based on the hydrodynamic characteristics it is inferred that the breakwater with an impermeable plate attached to its bottom is more efficient. The comparison of horizontal and vertical forces acting on the breakwater for all cases examined reveals that plate porosity influences slightly vertical force and severely horizontal force acting on the structure, reducing maximum values in both cases.  相似文献   

4.
设有挡浪板结构的透空式防波堤适用于水深较大的海域,且具有较好的消浪效果。采用物理模型试验,探究具有双侧挡浪板结构的透空式防波堤透浪系数与反射系数的影响因素与规律,研究包括外侧与内侧挡浪板入水深度,水平板板宽,结构上部挡浪墙的高度与位置,水平板超高与波浪要素等因素。通过比较各家透浪系数的理论计算公式与实验结果,进行透浪系数的计算方法研究,给出修正Wiegel公式拟合双侧挡浪板透空式防波堤的透浪系数计算公式,供工程设计参考与进一步研究。  相似文献   

5.
E. Peña  J. Ferreras 《Ocean Engineering》2011,38(10):1150-1160
This paper presents the results and conclusions obtained from the physical model tests carried out with four different designs of floating breakwaters. Changes from a basic design have been introduced in order to evaluate the improvement in the efficiency as a coastal protection structure. Incident and transmitted waves have been measured, as well as the efforts in the mooring lines and module connectors. It has been found that the width of the pontoons is one of the key design parameters, while small modifications in the floating breakwater's cross section shape are less determinant in its hydrodynamic behaviour and in mechanical loads in the discussed ranges. 2D and 3D tests were conducted, observing the great influence that the wave obliquity has in the module connector forces.  相似文献   

6.
In the design of any floating or fixed marine structure, it is vital to test models in order to understand the fluid/structure interaction involved. A relatively inexpensive method, compared to physical model testing, of achieving this is to numerically model the structure and the wave conditions in a numerical wave tank. In this paper, a methodology for accurately replicating measured ocean waves in a numerical model at full scale is detailed. A Fourier analysis of the measured record allows the wave to be defined as a summation of linear waves and, therefore, Airy's linear wave theory may be used to input the wave elevation and associated water particle velocities. Furthermore, a structure is introduced into the model to display the ability of the model to accurately predict wave–structure interaction. A case study of three individual measured waves, which are recorded at the Atlantic marine energy test site, off the west coast of Ireland, is also presented. The accuracy of the model to replicate the measured waves and perform wave–structure interaction is found to be very high. Additionally, the absolute water particle velocity profile below the wave from the numerical model is compared to a filtered analytical approximation of the measured wave at a number of time-steps and is in very good agreement.  相似文献   

7.
The problem of wave propagation and wave damping in a channel with side porous mattresses of arbitrary shape protruding from the walls is studied. The solution was achieved by applying 3-D boundary element method and was employed to study wave field in the channel and to analyze the effect of the geometry of the mattresses and physical and hydraulic properties of porous material on wave damping. The results show that wave damping in the channel strongly depends on wave parameters, especially, on the wave number. Wave reflection and transmission decrease with increasing the wave number. The results also show that the wave field in the channel strongly depends on the geometry of the mattresses as well as on physical and hydraulic properties of porous material used to build these wave dampers. The geometry of the mattresses and physical and hydraulic properties of porous material have a moderate effect on wave reflection and a significant effect on wave transmission. The results show that wave transmission down the channel decreases with increasing the length and thickness of the mattresses. Moreover, wave transmission decreases with increasing the porosity and damping properties of porous media used to build the mattresses. The analysis shows that porous mattresses protruding from the channel walls are very efficient in damping water waves propagating down the channel and may be built in channels to reduce high waves and achieve desired wave conditions. Theoretical results are in reasonable agreement with experimental data.  相似文献   

8.
LI  Yanbao 《中国海洋工程》2002,16(2):211-218
In this paper, the theoretical analysis and experimental studies are employed to investigate the reflection characteris-tics of partial standing waves caused by wave overtopping and sloping top of structures. Based on the principle of conser-vation of wave energy flux, the third-order Stokes wave theory is used to formulate the reflection coefficient at wave overtopping; the calculation results are regressed into an applied expression. A series of experiments of wave reflection for a vertical-wall structure with chamfered and overhanging upper sections are carried out to investigate the influence of top slope on wave reflection. The regularity of variation of wave reflection in this case is analysed based on the experimental results.  相似文献   

9.
Wave absorbing structures have been widely applied in many countries. In the present paper, the wave heights in front of a vertical wave absorbing structure with rubble foundation as well as in the wave chamber of the structure are analysed using an approximative calculation method, and the dissipating effect of the structure is verified. On the basis of the results of regular waves, the relative wave heights of irregular waves in front of the wave absorbing structure as well as in the chamber have also been analysed.  相似文献   

10.
Near-bed oscillatory flows with acceleration skewness are characteristic of steep and breaking waves in shallow water. In order to isolate the effects of acceleration skewness on sheet flow sand transport, new experiments are carried out in the Aberdeen Oscillatory Flow Tunnel. The experiments have produced a dataset of net transport rates for full-scale oscillatory flows with varying degrees of acceleration skewness and three sand sizes. The new data confirm previous research that net transport in acceleration-skewed flow is non-zero, is always in the direction of the largest acceleration and increases with increasing acceleration skewness. Large transport rates for the fine sand conditions suggest that phase lag effects play an important role in augmenting positive net transport. A comparison of the new experimental data with a number of practical sand transport formulations that incorporate acceleration skewness shows that none of the formulations performs well in predicting the measured net transport rates for both the fine and the coarser sands. The new experimental data can be used to further develop practical sand transport formulations to better account for acceleration skewness.  相似文献   

11.
The purpose of this research work is to study the effect of specific surface s, the fluid–solid contact surface per volume unit, on the wave energy dissipation by porous structures consisting in dense arrays of emergent vertical cylinders. Experiments have been carried out in a 10 m long wave flume. Three cylinder diameters D are considered in order to study the effects of the specific surface while keeping the porosity constant. In a first series, the length of the porous zone is kept constant for the three cylinder diameters tested. The measurements, which include various wave steepness conditions, demonstrate the role of specific surface s on both wave attenuation and interference processes. The larger the specific surface is, the stronger the wave damping is. Damping is found to be almost proportional to 1/D when laminar, turbulent and inertial effects are of same order. Results are compared to numerical calculations based on either a constant rate of wave damping within the porous medium per unit wavelength or a quadratic damping developed using a force expression based on the work of [26]. This latter model, calibrated with drag and inertia coefficients, shows a good agreement with measurements. In a second series, both porous length and water depth are kept proportional to the cylinder diameter for the three diameters. Scale effects are then discussed and underline the importance of the flow regime within the porous medium.  相似文献   

12.
A technique is developed to separate the incident and reflected waves propagating on a known current in a laboratory wave–current flume by analyzing wave records measured at two or more locations using a least squares method. It can be applied to both regular and irregular waves. To examine its performance, numerical tests are made for waves propagating on quiescent or flowing water. In some cases, to represent the signal noise and measurement error, white noise is superimposed on the numerically generated wave signal. For all the cases, good agreement is observed between target and estimation.  相似文献   

13.
The decomposition of a monochromatic wave over a submerged plate is investigated experimentally in a wave flume. Bound and free higher harmonic modes propagating upstream and downstream the structure are discriminated by means of moving resistive probes. The first-order analysis shows a resonant behaviour linked to the ratio of the plate's width and the fundamental mode wavelength over the plate. The second-order analysis shows an energy transfer from the fundamental mode towards free harmonics propagating downstream the structure. This transfer is linked to the ratio of the width of the plate and the bound harmonic wavelength over the plate. We also performed experiments with a submerged step to compare the efficiency of both structures. The submerged plate is shown to be a more efficient breakwater than the step, at the first as well as the second-order.  相似文献   

14.
通过数模波浪和物模实验,比较分析了估算多向不规则入射波与反射波相互叠加的锁相波浪场方向分布和反射系数方向分布的改进的贝叶斯估计法MBDM和扩展的最大似然法MMLM的性能。数模试验检验了不同波浪条件、不同波浪测量系统和结构物的不同反射特性等情况下的估算结果,同时还比较了两种分析方法的计算速度和稳定性,结果显示,对于波浪的方向分布估计,MBDM优于MMLM,对于反射系数的方向分布估计以及计算速度和稳定性,MMLM优于MBDM。  相似文献   

15.
This paper follows from the work of Blenkinsopp and Chaplin (2007) and describes detailed measurements of the time-varying distribution of void fractions generated by breaking waves in freshwater, artificial seawater and natural seawater under laboratory conditions, along with flow visualisation of the entrainment process. The measurements were made with highly sensitive optical fibre phase detection probes and the results demonstrate that although an additional population of fine (d < 0.3 mm) bubbles existed in the seawater cases, the total volume and distribution of entrained air, and the spatial and temporal evolution of the bubble plumes were very similar in all three water types. The influence of water type may be relatively insignificant, but a numerical bubble tracking model shows that the effect of scale is an important consideration when modelling the post-entrainment evolution of breaker-entrained bubble plumes. Consequently the results suggest that while the use of freshwater in laboratory models of oceanic processes can be considered valid in most situations, the effect of scale may impact interpretation of the results.  相似文献   

16.
Owing to the interactions among the complex terrain, bottom materials, and the complicate hydrodynam-ics, typhoon waves show special characteristics as big waves appeared at the high water level (HWL) ...  相似文献   

17.
The radiation and diffraction of linear water waves by an infinitely long rectangular structure submerged in oblique seas of finite depth is investigated. The analytical expressions for the radiated and diffracted potentials are derived as infinite series by use of the method of separation of variables. The unknown coefficients in the series are determined by the eigenfunction expansion matching method. The expressions for wave forces, hydrodynamic coefficients and reflection and transmission coefficients are given and verified by the boundary element method. Using the present analytical solution, the hydrodynamic influences of the angle of incidence, the submergence, the width and the thickness of the structure on the wave forces, hydrodynamic coefficients, and reflection and transmission coefficients are discussed in detail.  相似文献   

18.
The objective of this study is to understand the process of fluid flow in pipe and porous media with different pore structures.High-resolution Magnetic Resonance Imaging(MRI)technique was used to visualize the pore structure and measure fluid flow.The porous media was formed by packed bed of glass beads.Flow measurement was carried out by a modified spin echo sequence.The results show that the velocity distribution in pipe is annular and the linear relation between MRI velocity and actual velocity is found in pipe flow measurement.The flow distribution in porous media is rather heterogeneous,and it is consistent with heterogeneous pore structure.The flow through pores with the high volume flow rate is determined largely by geometrical effects such as pore size and cross-sectional area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号