首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kress  J.M.  Wilson  P.R. 《Solar physics》2000,194(1):1-17
The revised Mount Wilson synoptic magnetic data for the period September 1987 through March 1996 are used as the basis of numerical simulations of the evolution of both the northern and southern polar magnetic fields during the reversal and declining phases of cycle 22. The simulations are based on numerical solutions of the flux-transport equation which involve, as parameters, the maximum meridional flow speed, v 0, and the supergranule diffusivity, . By matching characteristics of the observed and simulated fields, such as the observed reversal times, the evolution of the net flux above 60 °, and the migration of the polar crown, empirical values of these parameters, i.e., v 0=11 m s–1,=600 km2 s–1, may be determined. Further, the observed decrease in the mean net flux above 60 ° during the late declining phase of cycle 22 can be simulated only by increasing the diffusivity to 900 km2 s–1. However, direct observations of the supergranule velocities yield values of the diffusivity of order 200 km2 s–1, and we show that the inclusion of a pattern of emerging bipoles in the simulations can increase the diffusion of these fields and that, together with a more realistic value of the diffusivity, it is possible to reproduce qualitatively the features of the observed polar field reversals.  相似文献   

2.
The Mechanism involved in the Reversals of the Sun's Polar Magnetic Fields   总被引:2,自引:0,他引:2  
Durrant  C.J.  Turner  J.P.R.  Wilson  P.R. 《Solar physics》2004,222(2):345-362
Models of the polarity reversals of the Sun's polar magnetic fields based on the surface transport of flux are discussed and are tested using observations of the polar fields during Cycle 23 obtained by the National Solar Observatory at Kitt Peak. We have extended earlier measurements of the net radial flux polewards of ±60° and confirm that, despite fluctuations of 20%, there is a steady decline in the old polarity polar flux which begins shortly after sunspot minimum (although not at the same time in each hemisphere), crosses the zero level near sunspot maximum, and increases, with reversed polarity during the remainder of the cycle. We have also measured the net transport of the radial field by both meridional flow and diffusion across several latitude zones at various phases of the Cycle. We can confirm that there was a net transport of leader flux across the solar equator during Cycle 23 and have used statistical tests to show that it began during the rising phase of this cycle rather than after sunspot maximum. This may explain the early decrease of the mean polar flux after sunspot minimum. We also found an outward flow of net flux across latitudes ±60° which is consistent with the onset of the decline of the old polarity flux. Thus the polar polarity reversals during Cycle 23 are not inconsistent with the surface flux-transport models but the large empirical values required for the magnetic diffusivity require further investigation.  相似文献   

3.
The Sun’s general magnetic field has shown polarity reversal three times during the last three solar cycles. We attempt to estimate the upcoming polarity reversal time of the solar magnetic dipole by using the coronal field model and synoptic data of the photospheric magnetic field. The scalar magnetic potential of the coronal magnetic field is expanded into a spherical harmonic series. The long-term variations of the dipole component ( $g^{0}_{1}$ ) calculated from the data of National Solar Observatory/Kitt Peak and Wilcox Solar Observatory are compared with each other. It is found that the two $g^{0}_{1}$ values show a similar tendency and an approximately linear increase between the Carrington rotation periods CR 2070 and CR 2118. The next polarity reversal is estimated by linear extrapolation to be between CR 2132.2 (December 2012) and CR2134.8 (March 2013).  相似文献   

4.
Snodgrass  H.B.  Kress  J.M.  Wilson  P.R. 《Solar physics》2000,191(1):1-19
The Mount Wilson synoptic magnetic data for the period September 1987 through March 1996 are completely revised and used to provide polar plots of the solar magnetic fields for both hemispheres. This period, from Carrington rotations 1793 to 1906, covers the reversals of the polar magnetic fields in cycle 22. Comparison of our plots with the presently available H filtergrams for this period shows that the polarity boundaries are consistent in these two data sets where they overlap. The Mount Wilson plots show that the polar field reversals involve a complex sequence of events. Although the details differ slightly, the basic patterns are similar in each hemisphere. First the old polarity becomes isolated at the pole, then shortly thereafter, the isolation is broken, and the polar field includes unipolar regions of both polarities. The old polarity then reclaims the polar region, but when the isolation of this field is established for a second time, it declines in both area and strength. We take the reversal to be complete when the old polarity field is no longer observed in the Mount Wilson plots. With this criterion we find that the polar field reversal is completed in the north by CR 1836, i.e., by December 1990, and in the south by CR 1853, i.e., March 1992.  相似文献   

5.
Observations of the polar magnetic fields were made during the period July 3–August 23, 1968, with the Mt. Wilson magnetograph. The scanning aperture was 5 × 5. The magnetic field was found to be ofS polarity near the heliographic north pole and ofN polarity near the south pole. At lower latitudes the polarity was the opposite. The polarity reversal occurred at a latitude of about +70° in the north and -55° in the south hemisphere. This coincides with the position of the polar prominence zones at that time. The observations indicate that the average field strength at the south pole was well above 5 G.Synoptic charts of the magnetic fields have been plotted in a polar coordinate system for two consecutive solar rotations.  相似文献   

6.
Data on the value and sign of the circumpolar magnetic field of the Sun at a maximum of its activity in cycle 24 have been analyzed. The data were obtained from observations at the Wilcox Solar Observatory and from synoptic maps of the magnetic field built in the SOLIS project (SOLIS stands for Synoptic Optical Long-term Investigations of the Sun) and with the Helioseismic and Magnetic Imager (HMI). We studied the dynamics of the total magnetic fields in the circumpolar latitudinal zones of different extension in the northern and southern hemispheres. The epochs of the sign reversal of the polar magnetic field were determined. It was found that, in cycle 24, the magnetic field polarity changed three times in the northern hemisphere and only once in the southern one. In the northern hemisphere, the reversal of the polar magnetic field finished approximately a year earlier than that in the southern one. The obtained results are compared to the data on the sign reversal of the polar magnetic field of the Sun reported for the previous solar cycles.  相似文献   

7.
Erofeev  D.V.  Erofeeva  A.V. 《Solar physics》2000,191(2):281-292
We investigate a latitude–time distribution of polar faculae observed at Ussuriysk Observatory in years 1966–1986. The distribution is compared with the longitude-averaged (zonal) magnetic field of the Sun calculated from the data obtained at Mount Wilson Observatory in the years 1966–1976, and at Kitt Peak National Observatory during the period from 1976 to 1985. We found that slow, poleward-directed migration of the polar faculae zones occurring during the course of the solar cycle is not a continuous process, but it contains several episodes of appearance and fast poleward drift of new zones of polar faculae. At the rising phase of the solar cycle, new zones of polar faculae appear at latitudes as low as 40°, but the ones observed during the declining phase of the solar cycle originate at higher latitudes of 50–55°. Such episodes of appearance and fast migration of the polar faculae zones are associated with the poleward-directed streams of magnetic field originated at low latitudes. Moreover, we found some evidence for existence of an additional component of the polar faculae activity that reveals an equatorward migration during the course of the solar cycle. We also investigated a relationship between the number of polar faculae, n, and absolute magnetic flux z of the zonal mode of the solar magnetic field. We found that within the polar zones of the Sun, substantial correlation between temporal variations of n and z takes place both on the time scale of the solar cycle and on a shorter time scale of 2–4 years. The relationship between the number of polar faculae and magnetic flux may be approximated by a linear dependence n=0.12z (where z is expressed in 1021 Mx), except for time interval 1977 through 1980 for which the factor of proportionality is found to have a systematically larger value of 0.20.  相似文献   

8.
Erofeev  D.V. 《Solar physics》2001,203(1):9-25
The distribution of polar faculae with respect to latitude is investigated, using data obtained at the Ussuriysk Observatory during the years 1963–1994. To correct the data for the effect of visibility, a visibility function of polar faculae is derived. Corrected surface density of polar faculae is calculated as a function of latitude and time. During most part of each solar cycle, polar faculae exhibit pronounced concentrations at high latitudes with maxima of the surface density located near the poles. Such concentrations of polar faculae (below referred to as `polar condensations') are formed after a lapse of 1–2 years from the polar magnetic field reversals, and then they persist for 7–9 years, until the high-latitude magnetic fields again start to reverse. During several years after the sunspot minima, the polar condensations co-exist with the new latitudinal belts of polar faculae which appear at middle latitudes and then migrate toward the poles. To describe the evolution of the polar condensations quantitatively, the polar faculae density n at latitudes above 60° has been approximated by means of the power law nn 0 cosm where is polar angle. The parameters n 0 and m both are found to vary during the course of the solar cycle, reaching maximum values near or shortly after the minimum of sunspot activity. At the minimum phase of the solar cycle, on average, the surface density of polar faculae varies as cos14. In addition to the 11-yr variation, the latitude–time distribution of polar faculae exhibits short-term variations occurring on the time scale of 2–3 years.  相似文献   

9.
He i 10830 Å synoptic maps, obtained at the Kitt Peak National Observatory during 1974–1979, show that the Sun's polar coronal holes have contracted significantly during 1977–1978. Prior to the accelerated increase of sunspot activity in mid-1977, the area of each polar cap was on the order of 8% of the Sun's total surface area (4R 2), whereas toward the end of 1978 these areas fell below 2% of 4R 2. Synoptic polar plots show that the vestigual holes had irregular shapes and were often well removed from the poles themselves. These results are consistent with the changes that one would expect when the polar magnetic fields are weakening just prior to sunspot maximum.  相似文献   

10.
Properties of a latitude zonal component of the large-scale solar magnetic field are analyzed on the basis of H charts for 1905–1982. Poleward migration of prominences is used to determine the time of reversal of the polar magnetic field for 1870–1905. It is shown that in each hemisphere the polar, middle latitude and equatorial zones of the predominant polarity of large-scale magnetic field can be detected by calculating the average latitude of prominence samples referred to one boundary of the large-scale magnetic field. The cases of a single and three-fold polar magnetic field reversal are investigated. It is shown that prominence samples referred to one boundary of the large-scale magnetic field do not have any regular equatorward drift. They manifest a poleward migration with a variable velocity up to 30 m s-1 depending on the phase of the cycle. The direction of migration is the same for both low-latitude and high-latitude zones. Two different time intervals of poleward migration are found. One lasts from the beginning of the cycle to the time of polar magnetic field reversal and the other lasts from the time of reversal to the time of minimum activity. The velocity of poleward migration of prominences during the first period is from 5 m s-1 to 30 m s-1 and the second period is devoid of regular latitude drift.  相似文献   

11.
Polar Coronal Holes During Cycles 22 and 23   总被引:3,自引:0,他引:3  
Harvey  Karen L.  Recely  Frank 《Solar physics》2002,211(1-2):31-52
The National Solar Observatory/Kitt Peak synoptic rotation maps of the magnetic field and of the equivalent width of the He i 1083 nm line are used to identify and measure polar coronal holes from September 1989 to the present. This period covers the entire lifetime of the northern and southern polar holes present during cycles 22 and 23 and includes the disappearance of the previous southern polar coronal hole in 1990 and and formation of the new northern polar hole in 2001. From this sample of polar hole observations, we found that polar coronal holes evolve from high-latitude (60° ) isolated holes. The isolated pre-polar holes form in the follower of the remnants of old active region fields just before the polar magnetic fields complete their reversal during the maximum phase of a cycle, and expand to cover the poles within 3 solar rotations after the reversal of the polar fields. During the initial 1.2–1.4 years, the polar holes are asymmetric about the pole and frequently have lobes extending into the active region latitudes. During this period, the area and magnetic flux of the polar holes increase rapidly. The surface areas, and in one case the net magnetic flux, reach an initial brief maximum within a few months. Following this initial phase, the areas (and in one case magnetic flux) decrease and then increase more slowly reaching their maxima during the cycle minimum. Over much of the lifetime of the measured polar holes, the area of the southern polar hole was smaller than the northern hole and had a significantly higher magnetic flux density. Both polar holes had essentially the same amount of magnetic flux at the time of cycle minimum. The decline in area and magnetic flux begins with the first new cycle regions with the holes disappearing about 1.1–1.8 years before the polar fields complete their reversal. The lifetime of the two polar coronal holes observed in their entirety during cycles 22 and 23 was 8.7 years for the northern polar hole and 8.3 years for the southern polar hole.  相似文献   

12.
The strength of the Sun's polar fields   总被引:3,自引:0,他引:3  
The magnetic field strength within the polar caps of the Sun is an important parameter for both the solar activity cycle and for our understanding of the interplanetary magnetic field. Measurements of the line-of-sight component of the magnetic field generally yield 0.1 to 0.2 mT near times of sunspot minimum. In this paper we report measurements of the polar fields made at the Stanford Solar Observatory using the Fe i line 525.02 nm. We find that the average flux density poleward of 55° latitude is about 0.6 mT peaking to more than 1 mT at the pole and decreasing to 0.2 mT at the polar cap boundary. The total open flux through either polar cap thus becomes about 3 × 1014 Wb. We also show that observed magnetic field strengths vary as the line-of-sight component of nearly radial fields.  相似文献   

13.
The Sun’s polar fields play a leading role in structuring the large-scale solar atmosphere and in determining the interplanetary magnetic field. They are also believed to supply the seed field for the subsequent solar activity cycle. However, present-day synoptic observations do not have sufficient spatial resolution or sensitivity to diagnose accurately the high-latitude magnetic vector field. The high spatial resolution and sensitivity of the full-Stokes observations from the Hinode Solar Optical Telescope Spectro-Polarimeter, observing the poles long-term, allows us to build up a detailed picture of the Cycle 24 polar field reversal, including the changing latitude distribution of the high-latitude flux, and to study the effect on global coronal field models. The Hinode observations provide detailed information on the dominant facular-scale magnetic structure of the polar fields, and their field inclination and flux distribution. Hybrid synoptic magnetograms are constructed from Hinode polar measurements and full-disk magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM), and coronal potential field models are calculated. Loss of effective spatial resolution at the highest latitudes presents complications. Possible improvements to synoptic polar data are discussed.  相似文献   

14.
Makarov  V.I.  Tlatov  A.G.  Sivaraman  K.R. 《Solar physics》2003,214(1):41-54
We have defined the duration of polar magnetic activity as the time interval between two successive polar reversals. The epochs of the polarity reversals of the magnetic field at the poles of the Sun have been determined (1) by the time of the final disappearance of the polar crown filaments and (2) by the time between the two neighbouring reversals of the magnetic dipole configuration (l=1) from the H synoptic charts covering the period 1870–2001. It is shown that the reversals for the magnetic dipole configuration (l=1) occur on an average 3.3±0.5 years after the sunspot minimum according to the H synoptic charts (Table I) and the Stanford magnetograms (Table III). If we set the time of the final disappearance of the polar crown filaments (determined from the latitude migration of filaments) as the criterion for deciding the epoch of the polarity reversal of the polar fields, then the reversal occurs on an average 5.8±0.6 years from sunspot minimum (last column of Table I). We consider this as the most reliable diagnostic for fixing the epoch of reversals, as the final disappearance of the polar crown filaments can be observed without ambiguity. We show that shorter the duration of the polar activity cycle (i.e., the shorter the duration between two neighbouring reversals), the more intense is the next sunspot cycle. We also notice that the duration of polar activity is always more in even solar cycles than in odd cycles whereas the maximum Wolf numbers W \max is always higher for odd solar cycles than for even cycles. Furthermore, we assume there is a secular change in the duration of the polar cycle. It has decreased by 1.2 times during the last 120 years.  相似文献   

15.
Spectro-polarimetric observations at 2231 nm were made of NOAA 10008 near the west solar limb on 29 June 2002 using the National Solar Observatory McMath–Pierce Telescope at Kitt Peak and the California State University Northridge – National Solar Observatory infrared camera. Scans of spectra in both Stokes I and Stokes V were collected; the intensity spectra were processed to remove strong telluric absorption lines, and the Stokes V umbral spectra were corrected for instrumental polarization. The sunspot temperature is computed using the continuum contrast and umbral temperatures down to about 3700 K are observed. A strong Tii line at 2231.0 nm is used to probe the magnetic and velocity fields in the spot umbra and penumbra. Measurements of the Tii equivalent width versus plasma temperature in the sunspot agree with model predictions. Zeeman splitting measurements of the Stokes I and Stokes V profiles show magnetic fields up to 3300 G in the umbra, and a dependence of the magnetic field on the plasma temperature similar to that which was seen using Fei 1565 nm observations of the same spot two days earlier. The umbral Doppler velocity measurements are averaged in 16 azimuthal bins, and no radial flows are revealed to a limit of ±200 m s–1. A Stokes V magnetogram shows a reversal of the line-of-sight magnetic component between the limb and disk center sides of the penumbra. Because the Tii line is weak in the penumbra, individual spectra are averaged in azimuthal bins over the entire penumbral radial extent. The averaged Stokes V spectra show a magnetic reversal as a function of sunspot azimuthal angle. The mean penumbral magnetic field as measured with the Stokes V Zeeman component splitting is 1400 G. Several weak spectral lines are observed in the sunspot and the variation of the equivalent width versus temperature for four lines is examined. If these lines are from molecules, it is possible that lines at 2230.67, 2230.77, and 2231.70 nm originate from OH, while the line at 2232.21 nm may originate from CN.  相似文献   

16.
The paper reports the results of the analysis of the data on polar faculae for three solar cycles (1960–1986) at the Kislovodsk Station of the Pulkovo Observatory and on polar bright points in Ca ii K line for two solar cycles (1940–1957) at the Kodaikanal Station of the Indian Institute of Astrophysics. We have noticed that the monthly numbers of polar faculae and polar bright points in Ca ii K line and monthly sunspot areas in each hemisphere of the following solar cycle have a correlation with each other. A new cycle of polar faculae and polar bright points in the Ca ii K line begins after the polar magnetic field reversal. We find that the smaller the period between the ending of the polar field reversal and the beginning of a new sunspot cycle is, the more intense is the cycle itself. The intensity of the forthcoming solar cycle (cycle 22) and the periods of strong fluctuations in activity expected in this cycle are also discussed.  相似文献   

17.
We give the results of photographic, photoelectric, and spectral observations of the flare star PP Ori. The 109 photographic observations used, which were obtained on the 40 Schmidt telescope of the Byurakan Observatory over a period of about 20 years, and four spectra obtained on the same telescope with a objective prism show no variation in brightness. Photoelectric observations in the UBVR bands using the 50cm and 60cm telescopes of the high-altitude Maidanak station of the Tashkent Astronomical Institute in 1987 and 1989 give grounds for suspecting a variation in brightness much larger than observational errors. Spectral observations of the star PP Ori made on the 2.6m telescope of the Byurakan Observatory show weak H emission. The results of all these observations show that PP Ori is an Orion variable of spectral class K7-M0 with absolute visual magnitude7 m 5–8 m 5.Translated fromAstrofizika, Vol. 38, No. 2, 1995.  相似文献   

18.
The radial component Br of magnetic field was calculated in the potential approximation and the synoptic maps of Br for several heights in the Solar atmosphere were constructed based on observations of the photospheric magnetic field made on the old magnetograph at the US Kitt Peak National Observatory and on the new SOLIS magnetograph at the US National Solar Observatory for cycle 23 (the years 1997–2009). Parameters of large-scale structures of magnetic field with positive and negative polarities were determined at seven heights in the Sun’s atmosphere—from the photosphere (H = Ro) to H = 2.5 Ro (Ro is the Solar radius). The processes of polar reversal for polar fields and changing of the sector structure of the field at middle latitudes were observed. Characteristic lifespans and rotations were ascertained. The general picture of variations of the large-scale solar magnetic field during cycle 23 was put forward. Two types of boundaries of large magnetic structures at various heights were identified.  相似文献   

19.
Twenty-five coudé spectrograms (22 with dispersion 12 Å mm–1 and three 7 Å mm–1) of 6 Cassiopeiae (A3 Ia) have been studied. The observations were made at the Haute Provence Observatory. The results of the analysis suggest a correlation between the variations of the equivalent widths, the microturbulence and the radial velocity. The radial velocity and turbulent velocity present a rapid variation with time, even in intervals as short as about an hour. The hydrogen lines are slightly asymmetric but the strongest Feii lines are clearly asymmetric. We found that the amount of asymmetry of the strongest Feii lines (I>6) correlates with the loggf value, with the estimated laboratory intensityI, and with the equivalent widthW .The observations have been made at the Astronomical Observatory of Haute Provence (CNRS). This work has been supported by TUBITAK (Scientific and Technical Research Council of Turkey), and partially by CNR (Consiglio Nazionale delle Ricerche) of Italy.  相似文献   

20.
Data from the Herschel Space Observatory is freely available to the public but no uniformly processed catalogue of the observations has been published so far. To date, the Herschel Science Archive does not contain the exact sky coverage (footprint) of individual observations and supports search for measurements based on bounding circles only. Drawing on previous experience in implementing footprint databases, we built the Herschel Footprint Database and Web Services for the Herschel Space Observatory to provide efficient search capabilities for typical astronomical queries. The database was designed with the following main goals in mind: (a) provide a unified data model for meta-data of all instruments and observational modes, (b) quickly find observations covering a selected object and its neighbourhood, (c) quickly find every observation in a larger area of the sky, (d) allow for finding solar system objects crossing observation fields. As a first step, we developed a unified data model of observations of all three Herschel instruments for all pointing and instrument modes. Then, using telescope pointing information and observational meta-data, we compiled a database of footprints. As opposed to methods using pixellation of the sphere, we represent sky coverage in an exact geometric form allowing for precise area calculations. For easier handling of Herschel observation footprints with rather complex shapes, two algorithms were implemented to reduce the outline. Furthermore, a new visualisation tool to plot footprints with various spherical projections was developed. Indexing of the footprints using Hierarchical Triangular Mesh makes it possible to quickly find observations based on sky coverage, time and meta-data. The database is accessible via a web site http://herschel.vo.elte.hu and also as a set of REST web service functions, which makes it readily usable from programming environments such as Python or IDL. The web service allows downloading footprint data in various formats including Virtual Observatory standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号