首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In order to establish a general chronology of the volcanic evolution and to determine the temporal succession of the structural units, potassium-argon measurements were made on 15 samples selected as a function of their stratigraphical position on Piton de la Fournaise volcano.The rocks of Réunion Island are essentially oceanic and basaltic lavas of two shield volcanoes: the central, now extinct Piton des Neiges and the more recent, still active, Piton de la Fournaise. Piton de la Fournaise volcano is generally thought to have been developed unconformably on the southeastern flank of the Piton des Neiges volcano. Previous studies have shown four successive phases and three calderas in the construction of Piton de la Fournaise.The subaerial basaltic shield-building lavas of Piton de la Fournaise appear to be older than previously thought: at least 530,000 y. old instead of 360,000 years. In terms of their duration and erupted volumes, the four successive phases are not equivalent. The duration of the first two phases is 240,000 years (from 530,000 to 290,000 y. B.P.) and 155,000 years (from about 220,000 to 65,000 y. B.P.). The duration of the third phase is less than 60,000 years and the fourth phase may actually be an episode of the third. The two volcanoes, Piton des Neiges and Piton de la Fournaise, were active simultaneously for at least 500,000 years. The evolution of Réunion Island appears to be consistent with activity along a developing rift. The evolution of Piton de la Fournaise is mainly linked with the structural development of the shield and to large-scale slumpings due to instability of the slope.  相似文献   

2.
Pb, Hf, Nd and Sr isotopes of basaltic lavas from the two Réunion Island volcanoes are reported in order to examine the origin of the sources feeding these volcanoes and to detect possible changes through time. Samples, chosen to cover the whole lifetime of the two volcanoes (from 2 Ma to present), yield a chemically restricted (compared to OIB lavas) but complex distribution. Réunion plume isotopic characteristics have been defined on the basis of the composition of uncontaminated shield-building lavas from the Piton de la Fournaise volcano. The average ?Nd, ?Hf, 87Sr/86Sr and 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb isotope ratios calculated for this component are + 4.4, + 9.1, 0.70411, 18.97, 15.59 and 39.03, respectively. In Pb–Pb isotope space, each volcano defines a distinct linear trend but slight variations are also detected within the various volcanic sequences. The Piton des Neiges volcano yields a distinct and significantly more scattered isotopic distribution than Piton de la Fournaise for both Pb, Hf and Nd isotope tracers. A principal component analysis of the Pb isotope data from Piton de la Fournaise reveals a major contribution of the C and EM-1 components (with a clear Dupal flavor) as main components for the modern Réunion plume. The same components have been identified for Piton des Neiges but with a stronger participation of a depleted mantle component and a weaker EM-1 contribution. The compositional change of the lavas erupted by the Piton des Neiges and Piton de la Fournaise volcanoes is attributed to the impingement of two small-scale blobs of plume material at the base of the Réunion lithosphere. Compared to other hot-spots worldwide, in particular Hawaii and Kerguelen, magmas beneath Réunion are generated from a considerably more homogeneous, compositionally more primitive plume higher in 206Pb. Although shallow-level contamination processes have been locally detected they did not alter significantly the composition of the plume magmas. This is tentatively attributed to mantle dynamics producing small, high-velocity blobs that ascend rapidly through the lithosphere, and to the lack of a well-developed magma chamber at depth in the lithosphere.  相似文献   

3.
This structural study shows that the Piton de la Fournaise volcano was built over four periods separated by 3 calderas. Each stage, dated by K/Ar and CI4 data, and characterized by its own stratigraphy, intrusive system and collapses, is analysed in detail. The stratigraphical study shows lithological and petrological units within some of these stages. The lavas of Piton de la Fournaise are alkaline basalts ranging in composition from picrite to hawaiite. The feeder dikes systems are radial and converging to the volcanic paleocenters of each period. However, the majority of intrusions and surface cones are concentrated along rifts named « Reunion type » because of there wideness. The uplift of magma in these rift zones causes displacement and sumpling of the unsupported seaward flank of the volcano. Collapse structures with variable diameter, formed at different phases of the volcano history. Some are compared to calderas in relation to an intermediate magma chamber, others seem to be due to the bulge and strecht of the massif. The 3 calderas of great size (8–15 km) separating each stage are related to a lower and larger magmatic chamber. This geological study of Fournaise leads us to purpose an evolutive pattern of the volcano based on paleogeographical and paleostructural reconstitutions. The first Fournaise was built over a rift trending N 120 of the old neighbouring volcano of Piton des Neiges. The activity of this rift progressively decreased all through time with the development of a curved intrusive system where most eruptions took place. As in the Hawaiian rifts, the influence of gravitational stresses is invoked to explain the migration of the intrusive zones.  相似文献   

4.
Four volcano-structural stages have accompanied the building of Piton des Neiges: 1) Emergent growth stage of the island. The major eruptive system is a rift zone trending N 120°, associated with dextral strike-slip faults trending N 30° and en-echelon extensional fissures trending N 70°. Breccias and lava tubes produced by aerial and phreatomagmatic activity are injected with outward-dipping dike-swarms along ring fractures suggesting a mechanism analogous to cauldron subsidence. 2) Shield building stages of growth are related to fissures along the main rift zone and three minor rifts trending N 160°, N 45° and N 10°. The summit of the basaltic shield volcano is stretched and collapsed in a graben-like caldera depression along normal and antithetic faults. 3) Differentiated lavas are erupted during two stages separated by the opening of a new caldera corresponding to an explosive activity, a silicic cone-sheet system and a collapse structure. 4) Younger volcanic activity restricted to the inside caldera, has presumably emptied the underlying magma reservoir, building a central volcano collapsed along ring internal dip fractures. The relationships between magnetic anomalies and transform faults in the Mascarene basin and observed fissure and faults on Piton des Neiges suggest that volcanism would be structurally controlled. Active volcanism occurring possibly as a result of tension at the intersection of an northeast-southwest fracture zone with the paleorift axis (dated by the magnetic anomaly 27). Models illustrating the gradual evolution of Piton des Neiges would explain successive caldera collapses controlled by the size, the shape and the depth of the magma reservoir.  相似文献   

5.
Réunion consists of two shield volcanoes, Piton des Neiges (3069 m) and Piton de la Fournaise (2631 m). The former is extinct and deeply eroded, so that its internal structure is clearly displayed. The deepest accessible part of the pile is a strongly zeolitised agglomerate (Cirque Agglomerate) made up mainly of olivine-basalt fragments. This is covered by a thick sequence of oceanite and olivine-basalt flows (Oceanite Series), which in turn is overlain by feldsparphyric basalts and lavas of intermediate composition (Differentiated Series). An intricate plexus of intrusions, ranging in composition from picrite to quartz-syenite, is exposed in the core of the volcano. Piton de la Fournaise is still active, and is producing oceanites and olivine-basalts generally similar in character to the Oceanite Series lavas of Piton des Neiges. New chemical data on the « primitive » basalts of both volcanoes are presented, and a brief comparison is made with the Hawaiian tholeiites. It is concluded that the Réunion « primitive » basalts are best described as transitional between tholeiitic and alkaline.  相似文献   

6.
The Piton des Neiges volcano on Reunion Island represents a unique example of an oceanic volcano where the extreme development of amphitheatre-headed valley erosion has led to the formation of three large cirques. They are so large that the island's volcano-structural and petrological history can be traced from its emergence to the latest stages of its sub-aerial evolution (> 2.1 m.y. to 22,000 years ago).The various magmatic series of the Piton des Neiges are, moreover, abundantly invaded by hydrothermal mineralization. It is this post-magmatic feature, represented by the hydrothermal alteration of the series, which is examined here.Mineralogical studies (X-ray, microprobe, scanning electron microscope) reveal a large number of hydrothermal species. Of these, zeolites are the most common and five are described here for the first time in Reunion (gonnardite, levynite, erionite, garronite, herschelite).Six hydrothermal facies characteristic of weak metamorphism are defined: chabazitephillipsite, natrolite-thomsonite, analcime-thomsonite, laumontite-thomsonite, albiteprehnite and prehnite-pumpellyite. The paleo-temperatures covered by these facies range from 0 to 380°C.On the basis of these data and supporting field observations, three main hydrothermal phases were determined and fitted into the known chronostratigraphy. These three phases have succeeded one another over the last two million years in the Piton des Neiges massif. The extent and mineralogical facies of each phase can be related to the volcanotectonic structures. This sequence has been directly linked to the geological evolution of the massif. The progressive restriction with time of the hydrothermal manifestations to the present Piton des Neiges occurred alongside the focusing of volcanism centralized on this same relief. An attempt is made to reconstruct the island's hydrothermal history.  相似文献   

7.
This work presents the first exhaustive study of the entire surface of the Reunion Island volcanic system. The focus is on the submarine part, for which a compilation of all multibeam data collected during the last 20 years has been made. Different types of submarine features have been identified: a coastal shelf, debris avalanches and sedimentary deposits, erosion canyons, volcanic constructions near the coast, and seamounts offshore. Criteria have been defined to differentiate the types of surfaces and to establish their relative chronology where possible. Debris avalanche deposits are by far the most extensive and voluminous formations in the submarine domain. They have built four huge Submarine Bulges to the east, north, west, and south of the island. They form fans 20–30 km wide at the coastline and 100–150 km wide at their ends, 70–80 km offshore. They were built gradually by the superimposition and/or juxtaposition of products moved during landslide episodes, involving up to several hundred cubic kilometers of material. About 50 individual events deposits can be recognized at the surface. The landslides have recurrently dismantled Piton des Neiges, Les Alizés, and Piton de La Fournaise volcanoes since 2 Ma. About one third are interpreted as secondary landslides, affecting previously emplaced debris avalanche deposits. On land, landslide deposits are observed in the extensively eroded central area of Piton des Neiges and in its coastal areas. Analysis of the present-day topography and of geology allows us to identify presumed faults and scars of previous large landslides. The Submarine Bulges are dissected and bound by canyons up to 200 m deep and 40 km long, filled with coarse-grained sediments, and generally connected to streams onshore. A large zone of sedimentary accumulation exists to the north–east of the island. It covers a zone 20 km in width, extending up to 15 km offshore. Volcanic constructions are observed near the coast on both Piton des Neiges and Piton de la Fournaise volcanoes and are continuations of subaerial structures. Individual seamounts are present on the submarine flanks and the surrounding ocean floor. A few seem to be young volcanoes, but the majority are probably old, eroded seamounts. This study suggests a larger scale and frequency of mass-wasting events on Reunion Island compared to similar islands. The virtual absence of downward flexure of the lithosphere beneath the island probably contributes to this feature. The increased number of known flank–failure events has to be taken into consideration when assessing hazards from future landslides, in particular, the probability of landslide-generated tsunamis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Réunion is a volcanic edifice whose origin is related to a hot spot in the Indian Ocean. Only 3% of its volume is emergent. Many geological and geophysical studies were carried out on Réunion Island during the 1980's but few of them allow study of the internal structure of the edifice. Several gravity surveys have been carried out on the island since 1976 and we have compiled the available data set. The lack of data on the western side of the island led us to conduct a regional survey in 1993 to obtain a more homogeneous distribution of the stations. Computation of Bouguer anomalies for different correction densities accounts for the variable density of the rocks constituting the edifice and provides a distribution of gravity anomalies interpreted as dense bodies of intrusive rocks inside the edifice. Two very large intrusive complexes can be unambiguously recognised: one beneath Piton des Neiges and one beneath the Grand Brûlé area. Both have been penetrated by geothermal exploration drill holes and the first is also known from outcrop observations. 2.5D simple models were constructed to reveal the geometry and extent of the buried intrusives. They are deeply rooted, extending several kilometres below sea level, and extensive (20–25 km long and 10–13 km wide for the Piton des Neiges complex, 12–15 km long and some kilometres wide for the Grand Brûlé complex). The development of such complexes implies that the activity of the two volcanic centres was long lasting and remained stable while the volcanoes were growing. The Grand Brûlé complex has been interpreted as relics of an old volcano named Alizés Volcano. The interpretation of the gravity maps suggests the presence of a ridge of dense rocks to the North of the axis joining the centres of Piton des Neiges and Piton de la Fournaise volcanoes. By analogy with the other structures, 2.5D models show that this structure would culminate between 0 and 1 km below sea level and be 15 km wide. This complex induces a maximum anomaly in Takamaka Valley and we thus propose to name it Takamaka Volcano. No geological evidence of the nature of these dense rocks is available but the ridge coincides with structures revealed by magnetic and seismic data. Interpretation of the Bouguer anomaly maps suggests that the inner gravity structure of Piton de la Fournaise is not characterised by the presence of a voluminous dense body but probably by more restricted concentrations of dense rocks. Some structures can be recognised: along the present NE and SE rift zones and in the previous central part of Piton de la Fournaise to the West of the present summit. The recent eastward migration of the centre of activity of Piton de la Fournaise accounts for the lack of a large positive anomaly beneath the active craters.  相似文献   

9.
Piton de la Fournaise, on the island of La Réunion, and Kilauea volcano, on the island of Hawaii, are active, basaltic shield volcanoes growing on the flanks of much larger shield volcanoes in intraplate tectonic environments. Past studies have shown that the average rate of magma production and the chemistry of lavas are quite similar for both volcanoes. We propose a structural similarity — specifically, that periodic displacement of parts of the shields as huge landslide blocks is a common mode of growth. In each instance, the unstable blocks are within a rift-zone-bounded, unbuttressed flank of the shield. At Kilauea, well-documented landslide blocks form relatively surficial parts of a much larger rift-zone-bounded block; scarps of the Hilina fault system mark the headwalls of the active blocks. At Fournaise, Hilina-like slump blocks are also present along the unbuttressed east coast of the volcano. In addition, however, the existence of a set of faults nested around the present caldera and northeast and southeast rift zones suggests that past chapters in the history of Fournaise included the slumping of entire rift-zone-bounded blocks themselves. These nested faults become younger to the east southeast and apparently record one of the effects of a migration of the focus of volcanism in that direction. Repeated dilation along the present set of northeast and southeast rift zones, most recently exemplified by an eruption in 1977, suggests that the past history of rift-zone-bounded slumping will eventually be repeated. The record provided by the succession of slump blocks on Fournaise is apparently at a relatively detailed part of a migration of magmatic focus that has advanced at least 30 km to the east-southeast from neighboring Piton des Neiges, an extinct Pliocene to Pleistocene volcano.  相似文献   

10.
New detailed swath bathymetry and backscatter data corroborate the existence of four large bulges on the submarine flanks of Reunion Island. These fan-shaped promontories are 20–25 km wide at the coastline and 70–150 km across the seafloor 40–50 km offshore. Their surfaces are characterized by a speckle sonar pattern, indicating the presence of large blocks up to several hundred meters across. Each bulge results from the superposition of multiple landslide deposits whose older ones are dissected and delimited by erosive channels as much as 200 m deep and 20 km long. The submarine flanks of Reunion Island are thus mostly built by accumulation of debris avalanche fans. Morphologic and geologic evidence define large subaerial source areas for these mass-wasting events. In particular, inferred headwalls of most landslides having affected the Piton des Neiges massif generally coincide with the boundaries of its cirques (Mafate, Salazie, and Cilaos), whereas recurrent landslides have resulted in the formation of large concentric amphitheatre structures through the Piton de la Fournaise massif. Thus, about 15 slide events accompanied growth of the Reunion Island shield since 2 Ma.Editorial responsibility: J. Stix  相似文献   

11.
Piton des Neiges (PN) Volcano on Reunion Island offers a rare opportunity to study deposits related to degradation processes in a deeply eroded oceanic shield volcano. Both the inner parts and flanks reveal a large amount of resedimented volcaniclastic material, including extensive debris avalanche deposits. PN litho–structural units, first studied by Upton and Wadsworth [1965, Philos. Trans. R. Soc. Lond., A 271, pp. 105–130], are re-examined. This review highlights the importance of long volcanic repose periods and erosion processes during PN history. volcaniclastic deposits have been studied in the field in order to evaluate the spatial and temporal distribution of the three main types of PN degradation processes. The deposits of these processes have been classified into: (1) talus, (2) mudflow and debris flow, and (3) debris avalanche. Lithology, frequency and estimated volumes of each deposit type imply that the structural evolution of PN can be considered in terms of the competition between the volcanic productivity and the degradation and erosion processes. The occurrence of huge catastrophic avalanches produced by flank failure is convincingly linked to the basaltic activity of PN, which implies a very low risk at present. On the contrary, mudflows and debris flows pose an important risk due to the high population density focussed around the basin outlets. Moreover, if smaller debris avalanches can occur in the cirques of PN, another major risk must be evaluated.  相似文献   

12.
The Eastern Anatolia Region exhibits one of the world's best exposed and most complete transects across a volcanic province related to a continental collision zone. Within this region, the Erzurum–Kars Plateau is of special importance since it contains the full record of collision-related volcanism from Middle Miocene to Pliocene. This paper presents a detailed study of the volcanic stratigraphy of the plateau, together with new K–Ar ages and several hundred new major- and trace-element analyses in order to evaluate the magmatic evolution of the plateau and its links to collision-related tectonic processes. The data show that the volcanic units of the Erzurum–Kars Plateau cover a broad compositional range from basalts to rhyolites. Correlations between six logged, volcano-stratigraphic sections suggest that the volcanic activity may be divided into three consecutive Stages, and that activity begins slightly earlier in the west of the plateau than in the east. The Early Stage (mostly from 11 to 6 Ma) is characterised by bimodal volcanism, made up of mafic-intermediate lavas and acid pyroclastic rocks. Their petrography and high-Y fractionation trend suggest that they result from crystallization of anhydrous assemblages at relatively shallow crustal levels. Their stratigraphy and geochemistry suggest that the basic rocks erupted from small transient chambers while the acid rocks erupted from large, zoned magma chambers. The Middle Stage (mostly from 6–5 Ma) is characterised by unimodal volcanism made up predominantly of andesitic–dacitic lavas. Their petrography and low-Y fractionation trend indicate that they resulted from crystallization of hydrous (amphibole-bearing) assemblages in deeper magma chambers. The Late Stage (mostly 5–2.7 Ma) is again characterised by bimodal volcanism, made up mainly of plateau basalts and basaltic andesite lavas and felsic domes. Their petrography and high-Y fractionation trend indicate that they resulted from crystallization of anhydrous assemblages at relatively shallow crustal levels. AFC modelling shows that crustal assimilation was most important in the deeper magma chambers of the Middle Stage. The geochemical data indicate that the parental magma changed little throughout the evolution of the plateau. This parental magma exhibits a distinctive subduction signature represented by selective enrichment in LILE and LREE thought to have been inherited from a lithosphere modified by pre-collision subduction events. The relationships between magmatism and tectonics support models in which delamination of thickened subcontinental lithosphere cause uplift accompanied by melting of this enriched lithosphere. Magma ascent, and possibly magma generation, is then strongly controlled by strike-slip faulting and associated pull-apart extensional tectonics.  相似文献   

13.
Piton de La Fournaise is in a period of intense volcanic activity since 1998. To constrain the magma dynamics responsible for this activity, we combined GPS ground deformation monitoring interpreted through numerical modelling and geochemistry. Two cycles of continuous volcano inflation are evidenced for the May 2004–December 2005 period, with a rest from March to October 2005. These inflations are consistent with two cycles of compatible major element enrichment in the emitted lavas. Numerical models indicate that the pressurization of a single magma reservoir may be responsible for the observed pre-eruptive inflations of the volcano. The reservoir, located at 2300 m depth, has a radius of  500 m. At the beginning of each cycle, dykes propagate from the roof of the reservoir and yield eruptions of differentiated basalt near the summit. At the end of the cycle, dykes propagate from the eastern sidewall of the reservoir and yield distal eruptions of primitive magmas away from the summit. The volumes of magma emitted during the primitive eruptions seem too large to explain the surface deformations and therefore suggest some refill of the reservoir by deeper magmas. Our results may be used to predict the location and lava volume of future eruptions at Piton de La Fournaise volcano, depending on the timing of these eruptions within a cycle of volcanic activity.  相似文献   

14.
In April 2007, a caldera collapsed at the Dolomieu summit crater of Piton de La Fournaise (La Réunion Island, Indian Ocean) revealing new outcrops up to 340?m high along the crater walls. The lithostratigraphic interpretation of these new exposures allows us to investigate the most recent building history of a basaltic shield volcano. We present the history of the Piton de La Fournaise terminal cone, from the building of a juvenile cone during which periods of explosive activity dominated, to the most recent effusive period. The changes in eruptive dynamics are the cause of successive summit crater/pit–crater collapses. In April 2007, such an event occurred during rapid emptying of the shallow plumbing system feeding a large effusive lateral eruption. During the most recent effusive period, an eastward migration of the eruptive crater was observed and was linked to the successive destructions of the shallow magma reservoir during each collapse. The resulting changes in the local stress field favor the formation of a new reservoir and thus the migration of activity. Internal structures reveal that the building of the upper part of the terminal cone was predominantly by exogenous growth and that the hydrothermal system is confined at a depth >?350?m. These observations on Piton de La Fournaise provide new insights into construction of the summits of other basaltic shield volcanoes.  相似文献   

15.
 A study of the geoelectrical structure of the central part of Piton de la Fournaise volcano (Réunion, Indian Ocean) was made using direct current electrical (DC) and transient electromagnetic soundings (TEM). Piton de la Fournaise is a highly active oceanic basaltic shield and has been active for more than half a million years. Joint interpretation of the DC and TEM data allows us to obtain reliable 1D models of the resistivity distribution. The depth of investigation is of the order of 1.5 km but varies with the resistivity pattern encountered at each sounding. Two-dimensional resistivity cross sections were constructed by interpolation between the soundings of the 1D interpreted models. Conductors with resistivities less than 100 ohm-m are present at depth beneath all of the soundings and are located high in the volcanic edifice at elevations between 2000 and 1200 m. The deepest conductor has a resistivity less than 20 ohm-m for soundings located inside the Enclos and less than 60–100 ohm-m for soundings outside the Enclos. From the resistivity distributions, two zones are distinguished: (a) the central zone of the Enclos; and (b) the outer zone beyond the Enclos. Beneath the highly active summit area, the conductor rises to within a few hundred meters of the surface. This bulge coincides with a 2000-mV self-potential anomaly. Low-resistivity zones are inferred to show the presence of a hydrothermal system where alteration by steam and hot water has lowered the resistivity of the rocks. Farther from the summit, but inside the Enclos, the depth to the conductive layers increases to approximately 1 km and is inferred to be a deepening of the hydrothermally altered zone. Outside of the Enclos, the nature of the deep, conductive layers is not established. The observed resistivities suggest the presence of hydrated minerals, which could be found in landslide breccias, in hydrothermally altered zones, or in thick pyroclastic layers. Such formations often create perched water tables. The known occurrence of large eastward-moving landslides in the evolution of Piton de la Fournaise strongly suggests that large volumes of breccias should exist in the interior of the volcano; however, extensive breccia deposits are not observed at the bottom of the deep valleys that incise the volcano to elevations lower than those determined for the top of the conductors. The presence of the center of Piton de la Fournaise beneath the Plaine des Sables area during earlier volcanic stages (ca. 0.5 to 0.150 Ma) may have resulted in broad hydrothermal alteration of this zone. However, this interpretation cannot account for the low resistivities in peripheral zones. It is not presently possible to discriminate between these general interpretations. In addition, the nature of the deep conductors may be different in each zone. Whatever the geologic nature of these conductive layers, their presence indicates a major change of lithology at depth, unexpected for a shield volcano such as Piton de la Fournaise. Received: 3 November 1999 / Accepted: 15 September 1999  相似文献   

16.
A great sequence of hydrothermally altered and tectonically disturbed lavas and breccias is exposed in the erosional cirques of Piton des Neiges volcano, Réunion. These rocks are cut by intense swarms of minor intrusives and are overlain by a carapace of younger lavas which date back at least 2 m.y. The older lavas and breccias are believed to have been formed by submarine eruption of basalt magma during the pre-emergent growth stages of the volcano. It is suggested that their subsequent elevation to 2000 m. above sealevel is due to the thrusting of oceanic crust from the north-east, associated with movements along NE-SW fractures in the western Indian Ocean floor.  相似文献   

17.
Based upon a re-interpretation of previous data and a new field campaign, a structural evolution is proposed for the early history of Piton de la Fournaise volcano from 500,000 to 50,000 years. Conceptually, it is shown that the formation of a caldera in which lava flows are contained inside the caldera depression, gives time for erosion to excavate deep canyons on the external slopes of the volcano, for example, the Rivière des Remparts, the Rivière Langevin and the Rivière de l'Est canyons on Piton de la Fournaise volcano. These canyons are infilled when lavas, filling the caldera and overflowing its rim, are able again to flow on the external slopes of the volcano. In the past, this excavating/infilling process has occurred twice following the formation of the Rivière des Remparts and Morne Langevin calderas. The formation of the third caldera, the Plaine des Sables caldera, was followed by the excavation of the current canyons. In addition to this process, two large landslides have been documented in the field. The first, which happened about 300,000 years ago, is apparently the first episode of the break up of Piton de la Fournaise volcano, predating the formation of the four large calderas. The second landslide, which occurred 150,000 years ago and is considered to be less extensive, has carried away the entire southern flank of the Rivière des Remparts caldera.  相似文献   

18.
The 1960 Kapoho lavas of Kilauea’s east rift zone contain 1–10 cm xenoliths of olivine gabbro, olivine gabbro-norite, and gabbro norite. Textures are poikilitic (ol+sp+cpx in pl) and intergranular (cpx+pl±ol±opx). Poikilitic xenoliths, which we interpret as cumulates, have the most primitive mineral compositions, Fo82.5, cpx Mg# 86.5, and An80.5. Many granular xenoliths (ol and noritic gabbro) contain abundant vesicular glass that gives them intersertal, hyaloophitic, and overall ‘open’ textures to suggest that they represent ‘mush’ and ‘crust’ of a magma crystallization environment. Their phase compositions are more evolved (Fo80–70, cpx Mg# 82–75, and An73–63) than those of the poikilitic xenoliths. Associated glass is basaltic, but evolved (MgO 5 wt%; TiO2 3.7–5.8 wt%). The gabbroic xenolith mineral compositions fit existing fractional crystallization models that relate the origins of various Kilauea lavas to one another. FeO/MgO crystal–liquid partitioning is consistent with the poikilitic ol-gabbro assemblage forming as a crystallization product from Kilauea summit magma with ∼8 wt% MgO that was parental to evolved lavas on the east rift zone. For example, least squares calculations link summit magmas to early 1955 rift-zone lavas (∼5 wt% MgO) through ∼28–34% crystallization of the ol+sp+cpx+pl that comprise the poikilitic ol-gabbros. The other ol-gabbro assemblages and the olivine gabbro-norite assemblages crystallized from evolved liquids, such as represented by the early 1955 and late 1955 lavas (∼6.5 wt% MgO) of the east rift zone. The eruption of 1960 Kapoho magmas, then, scoured the rift-zone reservoir system to entrain portions of cumulate and solidification zones that had coated reservoir margins during crystallization of prior east rift-zone magmas. Received: January 7, 1993/Accepted: November 23, 1993  相似文献   

19.
Contrary to general belief, not all large igneous provinces (LIPs) are characterised by rocks of basaltic composition. Silicic-dominated LIPs, such as the Whitsunday Volcanic Province of NE Australia, are being increasingly recognised in the rock record. These silicic LIPs are consistent in being: (1) volumetrically dominated by ignimbrite; (2) active over prolonged periods (40–50 m.y.), based on available age data; and (3) spatially and temporally associated with plate break-up. This silicic-dominated LIP, related to the break-up of eastern continental Gondwana, is also significant for being the source of >1.4×106 km3 of coeval volcanogenic sediment preserved in adjacent sedimentary basins of eastern Australia.The Whitsunday Volcanic Province is volumetrically dominated by medium- to high-grade, dacitic to rhyolitic lithic ignimbrites. Individual ignimbrite units are commonly between 10 and 100 m thick, and the ignimbrite-dominated sequences exceed 1 km in thickness. Coarse lithic lag breccias containing clasts up to 6 m diameter are associated with the ignimbrites in proximal sections. Pyroclastic surge and fallout deposits, subordinate basaltic to rhyolitic lavas, phreatomagmatic deposits, and locally significant thicknesses of coarse-grained volcanogenic conglomerate and sandstone are interbedded with the ignimbrites. The volcanic sequences are intruded by gabbro/dolerite to rhyolite dykes (up to 50 m in width), sills and comagmatic granite. Dyke orientations are primarily from NW to NNE.The volcanic sequences are characterised by the interstratification of proximal/near-vent lithofacies such as rhyolite domes and lavas, and basaltic agglomerate, with medial to distal facies of ignimbrite. The burial of these near-vent lithofacies by ignimbrites, coupled with the paucity of mass wastage products such as debris-flow deposits indicates a low-relief depositional environment. Furthermore, the volcanic succession records a temporal change in: (1) eruptive styles; (2) the nature of source vents; and (3) erupted compositions. An early explosive dacitic pyroclastic phase was succeeded by a later mixed pyroclastic-effusive phase producing an essentially bimodal suite of lavas and rhyolitic ignimbrite. From the nature and distribution of volcanic lithofacies, the volcanic sequences are interpreted to record the evolution of a multiple vent, low-relief volcanic region, dominated by several large caldera centres.  相似文献   

20.
Two photogrammetric aerial surveys were carried out over the summit area of the basaltic shield volcano Piton de la Fournaise (Indian Ocean), one survey in 1981 and the second one in 1984. During this time, only two eruptions occurred; both the December 4, 1983, and the January 18, 1984, eruptions opened fissures on the southwestern part of the summit. Because of the slight and erratic ground deformation measured on the dry-tilt network, by continuous tilt stations, and within the geodetic network between 1981 and November 1983, and between February 1984 and June 1984, ground deformations revealed by the two photogrammetric surveys can be essentially associated with the two eruptions. Large displacement vectors were obtained, up to 40 cm. Horizontal displacement vectors indicate a northeastward ground deformation of the southwestern part of the cone where the effusive vents opened. A more diffuse uplift along the main fracture zones that cut the volcanic edifice was observed, while east of these fractures only slight—less than 10 cm—and opposite displacements were observed. This displacement field can be associated with the main geological structures of the dome of Piton de la Fournaise volcano. Some consequences of the observed displacement field may be outlined for the volcanic observational ground deformation networks. To estimate the displacement field revealed by the photogrammetric surveys, a simple model of dyke intrusion has been computed. This model is based on dislocations and takes into account the main fracture zones. Good agreement is observed between computed and observed data in the area of the effusive vents. Some disagreement remains in the northwestern part of the survey area, where horizontal deformations are small and erratic, and also in the northern part, where an uplift was observed that can be associated with the northern active fracture zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号