首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Arnold GE  Buzás Z 《Ground water》2005,43(5):669-678
In Europe, a long history of cooperation over transboundary rivers--most notably the Rhine and Danube rivers--exists. To help foster cooperation and communication vis-à-vis transboundary ground water, the United Nations Economic Commission for Europe (UNECE), as part of its ground water program, conducted a survey on transboundary aquifers in Europe. The survey produced 25 responses from 37 countries and identified 89 transboundary aquifers. Respondents reported on the degree of ground water use within their own boundaries, transboundary aspects (agreements, joint commissions, etc.) of ground water, and transboundary aquifers themselves. The inventory proved useful, but a number of problems were identified: different map scales and symbols, difficulty in identifying transboundary aquifers, inconsistent labeling of aquifers, and data discrepancies. The UNECE ground water program also drafted guidelines for monitoring and assessment of transboundary ground water. These guidelines are not legally binding but have been adopted by 25 countries, deal mainly with monitoring and assessment, and are being implemented through a number of pilot projects. Other organizations-the United Nations Scientific, Educational and Cultural Organization, the Food and Agriculture Organization, the International Association of Hydrogeologists, and the European Union--are all supporting the investigation of transboundary aquifers in an effort to facilitate data sharing and coordinated management of these valuable resources.  相似文献   

2.
Access to fresh water is one of the major issues of northern and sub-Saharan Africa. The majority of the fresh water used for drinking and irrigation is obtained from large ground water basins where there is minor contemporary recharge and the aquifers cross national borders. These aquifers include the Nubian Aquifer System shared by Chad, Egypt, Libya, and Sudan; the Iullemeden Aquifer System, extending over Niger, Nigeria, Mali, Benin, and Algeria; and the Northwest Sahara Aquifer System shared by Algeria, Libya, and Tunisia. These resources are subject to increased exploitation and may be severely stressed if not managed properly as witnessed already by declining water levels. In order to make appropriate decisions for the sustainable management of these shared water resources, planners and managers in different countries need an improved knowledge base of hydrological information. Three technical cooperation projects related to aquifer systems will be implemented by the International Atomic Energy Agency, in collaboration with the United Nations Educational, Scientific and Cultural Organization and United Nations Development Programme/Global Environmental Facility. These projects focus on isotope hydrology studies to better quantify ground water recharge and dynamics. The multiple isotope approach combining commonly used isotopes 18O and 2H together with more recently developed techniques (chlorofluorocarbons, 36Cl, noble gases) will be applied to improve the conceptual model to study stratification and ground water flows. Moreover, the isotopes will be an important indicator of changes in the aquifer due to water abstraction, and therefore they will assist in the effort to establish a sustainable ground water management.  相似文献   

3.
Yanmei He 《Ground water》2017,55(4):489-494
China shares more than 20 transboundary aquifers with its coaquifer states, but they have not exploited their transboundary groundwater resources, and these resources have not been governed by any international agreements. Given the close interaction between surface water and groundwater, and the growing demands for transboundary groundwater in China and its coaquifer states, there is increasing necessity for these countries to undertake international cooperation on this issue. This article overviews China's transboundary aquifers, reviews the duty to cooperate on China's transboundary groundwater as well as the emerging transboundary aquifer law. It concludes by providing some proposals on international cooperation in this context, based on the two theories of international water law—limited territorial sovereignty and common interests, taking into account the practicability of China's cooperation with its coaquifer states. The author suggests that China cooperates with its coaquifer states through such means as the exchange of data and information, joint monitoring, the conclusion of bilateral or multilateral aquifer agreements, the establishment of joint management mechanisms, and international technical cooperation.  相似文献   

4.
International borders, ground water flow, and hydroschizophrenia   总被引:1,自引:0,他引:1  
A substantial body of research has been conducted on transboundary water, transboundary water law, and the mitigation of transboundary water conflict. However, most of this work has focused primarily on surface water supplies. While it is well understood that aquifers cross international boundaries and that the base flow of international river systems is often derived in part from ground water, transboundary ground water and surface water systems are usually managed under different regimes, resulting in what has been described as "hydroschizophrenia." Adding to the problem, the hydrologic relationships between surface and ground water supplies are only known at a reconnaissance level in even the most studied international basins, and thus even basic questions regarding the territorial sovereignty of ground water resources often remain unaddressed or even unasked. Despite the tensions inherent in the international setting, riparian nations have shown tremendous creativity in approaching regional development, often through preventive diplomacy, and the creation of "baskets of benefits," which allow for positive-sum, integrative allocations of joint gains. In contrast to the notion of imminent water wars, the history of hydropolitical relations worldwide has been overwhelmingly cooperative. Limited ground water management in the international arena, coupled with the fact that few states or countries regulate the use of ground water, begs the question: will international borders serve as boundaries for increased "flows" of hydrologic information and communication to maintain strategic aquifers, or will increased competition for shared ground water resources lead to the potential loss of strategic aquifers and "no flows" for both ground water users?  相似文献   

5.
More than one-half of the world's population is dependent on ground water for everyday uses such as drinking, cooking, and hygiene. In fact, it is the most extracted natural resource in the world. As a result of growing populations and expanding economies, many aquifers today are being depleted while others are being contaminated. Notwithstanding the world's considerable reliance on this resource, ground water resources have long received only secondary attention as compared to surface water, especially among legislatures and policymakers. Today, while there are hundreds of treaties governing transboundary rivers and lakes, there is only one international agreement that directly addresses a transboundary aquifer. Given that many of the aquifers on which humanity so heavily relies cross international borders, there is a considerable gap in the sound management, allocation, and protection of such resources. In order to prevent future disputes over transboundary aquifers and to maximize the beneficial use of this resource, international law must be clarified as it applies to transboundary ground water resources. Moreover, it must be defined with a firm basis in sound scientific understanding. In this paper we offer six conceptual models is which ground water resources can have transboudary consequences. The models are intended to help in assessing the applicability and scientific soundness of existing and proposed rules governing transboundary ground water resources. In addition, we consider the development of international law as it applies to ground water resources and make recommendations based on the models and principles of hydrogeology. The objective is the development of clear, logical, and science-based norms of state conducts as they relate to aquifers that traverse political boundaries.  相似文献   

6.
Totally 36 aquifers have been identified along the Mexico‐U.S. border. Of these, only 16 have adequate data to provide a reasonable level of confidence to categorize them as transboundary. Limited and/or contrasting data over the other aquifers in the region reflects the void in transboundary groundwater management and assessment mechanisms throughout much of the Mexico‐U.S. border. This paper identifies management mechanisms, structures, and institutional prioritization related to transboundary aquifers shared between Mexico and the United States. It also evaluates the differences in the transboundary nature of these aquifers, and how their combined hydrological and geographical considerations interrelate with local and regional social, economic, political, and even scale dimensions to create complex management challenges.  相似文献   

7.
In the framework of an EEA Norway and EU grants project involving industrial and scientific partners, complex hydrogeological investigation and groundwater modeling of a regional transboundary aquifer between Hungary and Ukraine were carried out in 2010. To find a common groundwater management strategy, this challenging cooperation work was completed by an EU country and a non-EU country. This pilot project demonstrated how the EU Water Framework Directive and some other legal aspects can be applied for a regional scale transboundary aquifer between Hungary and Ukraine. The transboundary aquifers play significant role in Hungary because the country land is mainly located in a deep and closed basin called Carpathian. After finalizing the watershed management plans in 2009, it turned out that 40 from the total 185 groundwater bodies are classified as transboundary in Hungary. The authors were involved to participate in an earlier NATO Science for Peace Project, which investigated a transboundary aquifer between Hungary and Romania some years ago. The special experience gained that time was utilized in the current project.  相似文献   

8.
The increased attention given to international transboundary aquifers may be nowhere more pressing than on the western bank of the Jordan River. Hydropolitical analysis of six decades of Israeli and Palestinian pumping records reveals how ground water abstraction rates are as asymmetrical as are water allocations. The particular hydrogeology of the region, notably the variability in depth to ground water, variations in ground water quality, and the vulnerability of the aquifer, also affect the outcome. The records confirm previously drawn conclusions of the influence of the agricultural lobby in maintaining a supply-side water management paradigm. Comparison of water consumption rates divulges that water consumed by all sectors of the farming-based Palestinian economy is less than half of Israeli domestic consumption. The overwhelming majority of "reserve" flows from wet years are sold at subsidized rates to the Israeli agricultural sector, while very minor amounts are sold at normal rates to the Palestinian side for drinking water. An apparent coevolution of water resource variability and politics serves to explain increased Israeli pumping prior to negotiations in the early 1990s. The abstraction record from the Western Aquifer Basin discloses that the effective limit set by the terms of the 1995 Oslo II Agreement is regularly violated by the Israeli side, thereby putting the aquifer at risk. The picture that emerges is one of a transboundary water regime that is much more exploitative than cooperative and that risks spoiling the resource as it poisons international relations.  相似文献   

9.
10.
Management of sediment in river basins and waterways has been an important issue for water managers throughout history. The changing nature of sediment issues has meant that water managers today face many complex technical and environmental challenges in relation to sediment management. UNESCO's International Hydrological Programme(IHP) launched the International Sediment Initiative(ISI) in 2002.ISI aims to further advance sustainable sediment management on a global scale. This is achieved through the delivery of a decision support framework for sediment management that provides guidance on legislative and institutional solutions, applicable across a range of socio-economic and physiographic settings in the context of global change. ISI mobilizes international experience on sediment problems and their management through the compilation of a series of case studies representative of a broad range of physiographic and socio-economic conditions, which are made available as guidance for policy makers dealing with water and river basin management. Case studies prepared to date include the basins of the Nile, Mississippi, Rhine, Volga, Yellow, and Haihe and Liaohe rivers. Available in full from the ISI website,these detailed case studies are briefly introduced in this review articles.  相似文献   

11.
The United Nations proclaimed the 1990s as the International Decade for Natural Disaster Reduction (IDNDR). Based on the ‘Tokyo Declaration’—an action plan for the IDNDR formulated by a commission of highly recognized experts—a program was drafted in March 1991 by the International Scientific and Technical Committee for the IDNDR, whose members were appointed by the Secretary General of the United Nations. Based on this international draft program a framework for national scientific programs should be developed by National Committees. The Decade and its translation into actions are briefly reviewed.  相似文献   

12.
Freshwater resources in the arid Arabian Peninsula, especially transboundary aquifers shared by Saudi Arabia, Jordan, and Iraq, are of critical environmental and geopolitical significance. Monthly Gravity Recovery and Climate Experiment (GRACE) satellite‐derived gravity field solutions acquired over the expansive Saq transboundary aquifer system were analysed and spatiotemporally correlated with relevant land surface model outputs, remote sensing observations, and field data to quantify temporal variations in regional water resources and to identify the controlling factors affecting these resources. Our results show substantial GRACE‐derived terrestrial water storage (TWS) and groundwater storage (GWS) depletion rates of ?9.05 ± 0.25 mm/year (?4.84 ± 0.13 km3/year) and ?6.52 ± 0.29 mm/year (?3.49 ± 0.15 km3/year), respectively. The rapid decline is attributed to both climatic and anthropogenic factors; observed TWS depletion is partially related to a decline in regional rainfall, while GWS depletions are highly correlated with increasing groundwater extraction for irrigation and observed water level declines in regional supply wells.  相似文献   

13.
Deposition from at least three episodes of glaciation left a complex glacial-drift aquifer system in central Illinois. The deepest and largest of these aquifers, the Sankoty-Mahomet Aquifer, occupies the lower part of a buried bedrock valley and supplies water to communities throughout central Illinois. Thin, discontinuous aquifers are present within glacial drift overlying the Sankoty-Mahomet Aquifer. This study was commissioned by local governments to identify possible areas where a regional water supply could be obtained from the aquifer with minimal adverse impacts on existing users. Geologic information from more than 2,200 existing water well logs was supplemented with new data from 28 test borings, water level measurements in 430 wells, and 35 km of surface geophysical profiles. A three-dimensional (3-D) hydrostratigraphic model was developed using a contouring software package, a geographic information system (GIS), and the 3-D geologic modeling package, EarthVision. The hydrostratigraphy of the glacial-drift sequence was depicted as seven uneven and discontinuous layers, which could be viewed from an infinite number of horizontal and vertical slices and as solid models of any layer. Several iterations were required before the 3-D model presented a reasonable depiction of the aquifer system. Layers from the resultant hydrostratigraphic model were imported into MODFLOW, where they were modified into continuous layers. This approach of developing a 3-D hydrostratigraphic model can be applied to other areas where complex aquifer systems are to be modeled and is also useful in helping lay audiences visualize aquifer systems.  相似文献   

14.
Aquifers supporting irrigated agriculture are a resource of global importance. Many of these systems, however, are experiencing significant pumping-induced stress that threatens their continued viability as a water source for irrigation. Reductions in pumping are often the only option to extend the lifespans of these aquifers and the agricultural production they support. The impact of reductions depends on a quantity known as “net inflow” or “capture.” We use data from a network of wells in the western Kansas portions of the High Plains aquifer in the central United States to demonstrate the importance of net inflow, how it can be estimated in the field, how it might vary in response to pumping reductions, and why use of “net inflow” may be preferred over “capture” in certain contexts. Net inflow has remained approximately constant over much of western Kansas for at least the last 15 to 25 years, thereby allowing it to serve as a target for sustainability efforts. The percent pumping reduction required to reach net inflow (i.e., stabilize water levels for the near term [years to a few decades]) can vary greatly over this region, which has important implications for groundwater management. However, the reduction does appear practically achievable (less than 30%) in many areas. The field-determined net inflow can play an important role in calibration of regional groundwater models; failure to reproduce its magnitude and temporal variations should prompt further calibration. Although net inflow is a universally applicable concept, the reliability of field estimates is greatest in seasonally pumped aquifers.  相似文献   

15.
Irrigation, urbanization, and drought pose challenges for the sustainable use of ground water in the central Couloir sud rifain, a major agricultural region in north-central Morocco, which includes the cities of Fès and Meknès. The central Couloir is underlain by unconfined and confined carbonate aquifers that have suffered declines in hydraulic head and reductions in spring flow in recent decades. Previous studies have surveyed ground water flow and water quality in wells and springs but have not comprehensively addressed the chemistry of the regional aquifer system. Using graphical techniques and saturation index calculations, we infer that major ion chemistry is controlled (1) in the surficial aquifer by cation exchange, calcite dissolution, mixing with deep ground water, and possibly calcite precipitation and (2) in the confined aquifer and warm springs by calcite dissolution, dolomite dissolution, mixing with water that has dissolved gypsum and halite, and calcite precipitation. Analyses of 2H and 18O indicate that shallow ground water is affected by evaporation during recharge (either of infiltrating precipitation or return flow), whereas deep ground water is sustained by meteoric recharge with little evaporation. Mechanisms of recharge and hydrochemical evolution are broadly consistent with those delineated for similar regional aquifer systems elsewhere in Morocco and in southern Spain.  相似文献   

16.
Arsenic concentrations exceeding the U.S. EPA's 10 μg/L standard are common in glacial aquifers in the midwestern United States. Previous studies have indicated that arsenic occurs naturally in these aquifers in association with metal-(hydr)oxides and is released to groundwater under reducing conditions generated by microbial oxidation of organic matter. Despite this delineation of the arsenic source and mechanism of arsenic mobilization, identification of arsenic-impacted aquifers is hindered by the heterogeneous and discontinuous nature of glacial sediments. In much of the Midwest, the hydrostratigraphy of glacial deposits is not sufficiently characterized to predict where elevated arsenic concentrations are likely to occur. This case study from southeast Wisconsin presents a detailed characterization of local stratigraphy, hydrostratigraphy, and geochemistry of the Pleistocene glacial deposits and underlying Silurian dolomite. Analyses of a single core, water chemistry data, and well construction reports enabled identification of two aquifers separated by an organic-rich aquitard. The upper, unconfined aquifer provides potable water, whereas arsenic generally exceeds 10 μg/L in the deeper aquifer. Although coring and detailed hydrostratigraphic characterization are often considered impractical, our results demonstrate that a single core improved interpretation of the complex lithology and hydrostratigraphy. This detailed characterization of hydrostratigraphy facilitated development of well construction guidelines and lays the ground work for further studies of the complex interactions among aquifer sediments, hydrogeology, water chemistry, and microbiology that lead to elevated arsenic in groundwater.  相似文献   

17.
Determining aquifer type, unconfined, semi‐confined, or confined, by drilling or performing pumping tests has inherent problems (i.e., cost and complex field issues) while sometimes yielding inconclusive results. An improved method to cost‐effectively determine aquifer type would be beneficial for hydraulic mapping of complex aquifer systems like fractured rock aquifers. Earth tides are known to influence water levels in wells penetrating confined aquifers or unconfined thick, low‐porosity aquifers. Water‐level fluctuations in wells tapping confined and unconfined aquifers are also influenced by changes in barometric pressure. Harmonic analyses of water‐level fluctuations of a thick (~1000 m) carbonate aquifer located in south‐central Oklahoma (Arbuckle‐Simpson aquifer) were utilized in nine wells to identify aquifer type by evaluating the influence of earth tides and barometric‐pressure variations using signal identification. On the basis of the results, portions of the aquifer responded hydraulically as each type of aquifer even though there was no significant variation in lithostratigraphy. The aquifer type was depth dependent with confined conditions becoming more prevalent with depth. The results demonstrate that harmonic analysis is an accurate and low‐cost method to determine aquifer type.  相似文献   

18.
Frost CD  Toner RN 《Ground water》2004,42(3):418-432
87Sr/86Sr ratios of ground waters in the Bighorn and Laramie basins' carbonate and carbonate-cemented aquifer systems, Wyoming, United States, reflect the distinctive strontium isotope signatures of the minerals in their respective aquifers. Well water samples from the Madison Aquifer (Bighorn Basin) have strontium isotopic ratios that match their carbonate host rocks. Casper Aquifer ground waters (Laramie Basin) have strontium isotopic ratios that differ from the bulk host rock; however, stepwise leaching of Casper Sandstone indicates that most of the strontium in Casper Aquifer ground waters is acquired from preferential dissolution of carbonate cement. Strontium isotope data from both Bighorn and Laramie basins, along with dye tracing experiments in the Bighorn Basin and tritium data from the Laramie Basin, suggest that waters in carbonate or carbonate-cemented aquifers acquire their strontium isotope composition very quickly--on the order of decades. Strontium isotopes were also used successfully to verify previously identified mixed Redbeds-Casper ground waters in the Laramie Basin. The strontium isotopic compositions of ground waters near Precambrian outcrops also suggest previously unrecognized mixing between Casper and Precambrian aquifers. These results demonstrate the utility of strontium isotopic ratio data in identifying ground water sources and aquifer interactions.  相似文献   

19.
Abstract

Surface water resources, although abundant, are unevenly distributed in the tropical Dominican Republic. Despite large surface water regulation schemes, some of the semiarid regions remain deficient in water resources. A preliminary appraisal of the aquifer systems of the country, with emphasis on the three major regional aquifers, suggests how these deficiencies may be compensated.  相似文献   

20.
Changes in effective stress due to water pressure variations modify the intrinsic hydrodynamic properties of aquifers and aquitards. Overexploited groundwater systems, such as basins with heavy pumping, are subject to nonrecoverable modifications. This results in loss of permeability, porosity, and specific storage due to system consolidation. This paper presents (1) the analytical development of model functions relating effective stress to hydrodynamic parameters for aquifers and aquitards constituted of unconsolidated granular sediments, and (2) a modeling approach for the analysis of aquifer systems affected by effective stress variations, taking into account the aforementioned dependency. The stress‐dependent functions were fit to laboratory data, and used in the suggested modeling approach. Based on only few unknowns, this approach is computationally simple, efficiently captures the hydromechanical processes that are active in regional aquifer systems under stress, and readily provides an estimate of their consolidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号