首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using data from eddy covariance measurements in a subtropical coniferous forest, a test and evaluation have been made for the model of Carbon Exchange in the Vegetation-Soil-Atmosphere (CEVSA) that simulates energy transfers and water, carbon and nitrogen cycles based on ecophysiological processes. In the present study, improvement was made in the model in calculating LAI, carbon allocation among plant organs, litter fall, decomposition and evapotranspiration. The simulated seasonal variations in carbon and water vapor flux were consistent with the measurements. The model explained 90% and 86% of the measured variations in evapotranspiration and soil water content. However, the modeled evapotranspiration and soil water content were lower than the measured systematically, because the model assumed that water was lost as runoff if it was beyond the soil saturation water content, but the soil at the flux site with abundant rainfall is often above water saturated. The improved model reproduced 79% and 88% of the measured variations in gross primary production (GPP) and ecosystem respiration (Re), but only 31% of the variations in measured net ecosystem exchange (NEP) despite the fact that the modeled annual NEP was close to the observation. The modeled NEP was generally lower in winter and higher in summer than the observations. The simulated responses of photosynthesis and respiration to water vapor deficit at high temperatures were different from measurements. The results suggested that the improved model underestimated ecosystem photosynthesis and respiration in extremely condition. The present study shows that CEVSA can simulate the seasonal pattern and magnitude of CO2 and water vapor fluxes, but further improvement in simulating photosynthesis and respiration at extreme temperatures and water deficit is required.  相似文献   

2.
Wang  Chunlin  Yu  Guirui  Zhou  Guoyi  Yan  Junhua  Zhang  Leiming  Wang  Xu  Tang  Xuli  Sun  Xiaomin 《中国科学:地球科学(英文版)》2006,49(2):127-138

The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0 μmol−1·m−2·s−1) flux data during windy conditions (u* > 0.2 m·s−1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem C02 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol−1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m−2·s−1. Indistinctive seasonal variation of α or Amax was consistent with weak seasonal dynamics of leaf area index (LAf) in such a lower subtropical evergreen mixed forest, (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m−2mon−1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated WEE was estimated as −43.2±29.6 gC·m−2·mon−1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as −563.0 and −441.2 gC·m−2·a−1 respectively, accounting for about 32% of GPP.

  相似文献   

3.
We present an uncertainty analysis of ecological process parameters and CO2 flux components (Reco, NEE and gross ecosystem exchange (GEE)) derived from 3 years’ continuous eddy covariance meas-urements of CO2 fluxes at subtropical evergreen coniferous plantation, Qianyanzhou of ChinaFlux. Daily-differencing approach was used to analyze the random error of CO2 fluxes measurements and bootstrapping method was used to quantify the uncertainties of three CO2 flux components. In addition, we evaluated different ...  相似文献   

4.
Liu  Yunfen  Yu  Guirui  Wen  Xuefa  Wang  Yinghong  Song  Xia  Li  Ju  Sun  Xiaomin  Yang  Fengting  Chen  Yongrui  Liu  Qijing 《中国科学:地球科学(英文版)》2006,49(2):99-109

As one component of ChinaFLUX, the measurement of CO2 flux using eddy covariance over subtropical planted coniferous ecosystem in Qianyanzhou was conducted for a long term. This paper discusses the seasonal dynamics of net ecosystem exchange (NEE), ecosystem respiration (RE) and gross ecosystem exchange (GEE) between the coniferous ecosystem and atmosphere along 2003 and 2004. The variations of NEE, RE and GEE show obvious seasonal variabilities and correlate to each other, i.e. lower in winter and drought season, but higher in summer; light, temperature and soil water content are the main factors determining NEE; air temperature and water vapor pressure deficit (VPD) influence NEE with stronger influence from VPD. Under the proper light condition, drought stress could decrease the temperature range for carbon capture in planted coniferous, air temperature and precipitation controlled RE; The NEE, RE, and GEE for planted coniferous in Qianyanzhou are −387.2 g C·m−2 a−1, 1223.3 g C·m−2 a−1, −1610.4 g C·m−2 a−1 in 2003 and −423.8 g C·m−2 a−1, 1442.0 g C·m−2 a−1, −1865.8 g C·m−2 a−1 in 2004, respectively, which suggest the intensive ability of plantation coniferous forest on carbon absorbing in Qianyanzhou.

  相似文献   

5.
The effects of environmental factors on carbon flux were analyzed, the spatial and temporal variation of carbon flux was studied at the two heights of 23 m and 39 m with the eddy covariance technique, and the carbon budget was evaluated for evergreen coniferous plantation in the red earth hilly area during the year 2003. The results showed that photosynthetically active radiation (PAR) and soil temperature are essential factors strongly affecting the net ecosystem exchange (NEE); in the daytime, the response of NEE to PAR shows a rectangular hyperbola trend, and in the nighttime, the significant correlation was observed between soil temperature and soil respiration which was filtered using friction velocity. This ecosystem appeared as a carbon sink along the whole year of 2003, and the carbon flux showed the obvious seasonal fluctuation and diurnal variability. The seasonal peak of NEE occurred in May and June with the daily sum about 0.61-0.67 mg · CO2 · m-2 · s-1. For the severe drought in the mid-summer, the daily sum was 0.40-0.44 mg · CO2 · m-2 · s-1 in July which was only 2/3 of that in the last two months. For the lasted drought of the year, the nadir of NEE happened in the winder with the daily sum about -0.29 to -0.35 mg · CO2 · m-2 · s-1. The sink intensity of the ecosystem was about -0.553 to -0.645 kg · Cm-2 per year in 2003.  相似文献   

6.
J. W. Finch 《水文研究》2001,15(14):2771-2778
Estimates of evaporation from large open water bodies are required for a variety of purposes in water resource management. The equilibrium temperature approach provides a means of taking into account the heat storage in the water body. The evaporation predicted by a model based on this method is tested against measured evaporation from a reservoir at Kempton Park, UK. The evaporation and water temperature predicted by the model are in good agreement with the measurements. The mean annual evaporation is predicted to almost the same accuracy as the measurements. Estimates of the monthly predicted evaporation have root mean square errors about three times those of the measurements. The error in the mean annual evaporation estimated without taking the heat storage into account is 16%. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0μmol-1·m-2·s-1) flux data during windy conditions (u* > 0.2 m·s-1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem CO2 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol-1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m-2·s-1. Indistinctive seasonal variation of o or Amax was consistent with weak seasonal dynamics of leaf area index (LAI) in such a lower subtropical evergreen mixed forest. (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m-2 mon-1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated NEE was estimated as -43.2±29.6 gC·m-2·mon-1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as -563.0 and -441.2 gC·m-2·a-1 respectively, accounting for about 32% of GPP.  相似文献   

8.

Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28′E and 42°24′N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of F NEE, F GPP and R E; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux.

LAI and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter.

The forest was a net sink of atmospheric CO2 and sequestered −449 g C·m−2 during the study period; −278 and −171 gC·m−2 for 2003 and 2004 respectively. F GPP and F RE over 2003 and 2004 were −1332, −1294 g C·m−2. and 1054, 1124 g C·m−2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2.

There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of F GPP, and 60.4, 62.1% of R E of the entire year.

  相似文献   

9.
We present an uncertainty analysis of ecological process parameters and CO2 flux components (R eco, NEE and gross ecosystem exchange (GEE)) derived from 3 years’ continuous eddy covariance measurements of CO2 fluxes at subtropical evergreen coniferous plantation, Qianyanzhou of ChinaFlux. Daily-differencing approach was used to analyze the random error of CO2 fluxes measurements and bootstrapping method was used to quantify the uncertainties of three CO2 flux components. In addition, we evaluated different models and optimization methods in influencing estimation of key parameters and CO2 flux components. The results show that: (1) Random flux error more closely follows a double-exponential (Laplace), rather than a normal (Gaussian) distribution. (2) Different optimization methods result in different estimates of model parameters. Uncertainties of parameters estimated by the maximum likelihood estimation (MLE) are lower than those derived from ordinary least square method (OLS). (3) The differences between simulated Reco, NEE and GEE derived from MLE and those derived from OLS are 12.18% (176 g C·m−2·a−1), 34.33% (79 g C·m−2·a−1) and 5.4% (92 g C·m−2·a−1). However, for a given parameter optimization method, a temperature-dependent model (T_model) and the models derived from a temperature and water-dependent model (TW_model) are 1.31% (17.8 g C·m−2·a−1), 2.1% (5.7 g C·m−2·a−1), and 0.26% (4.3 g C·m−2·a−1), respectively, which suggested that the optimization methods are more important than the ecological models in influencing uncertainty in estimated carbon fluxes. (4) The relative uncertainty of CO2 flux derived from OLS is higher than that from MLE, and the uncertainty is related to timescale, that is, the larger the timescale, the smaller the uncertainty. The relative uncertainties of Reco, NEE and GEE are 4%−8%, 7%−22% and 2%−4% respectively at annual timescale. Supported by the National Natural Science Foundation of China (Grant No. 30570347), Innovative Research International Partnership Project of the Chinese Academy of Sciences (Grant No. CXTD-Z2005-1) and National Basic Research Program of China (Grant No. 2002CB412502)  相似文献   

10.
The impacts of temperature, photosynthetic active radiation (PAR) and vapor pressure deficit (VPD) on CO2 flux above broad-leaved Korean pine mixed forest in the Changbai Mountains were studied based on eddy covariance and meteorological factors measurements.The results showed that, daytime CO2 flux was mainly controlled by PAR and they fit Michaelis-Menten equation. Meanwhile VPD also had an influence on the daytime flux. Drier air reduced the CO2 assimilation of the ecosystem, the drier the air, the more the reduction of the assimilation. And the forest was more sensitive to VPD in June than that in July and August. The respiration of the ecosystem was mainly controlled by soil temperature and they fit exponential equation. It was found that this relationship was also correlated with seasons; respiration from April to July was higher than that from August to November under the same temperature. Daily net carbon exchange of the ecosystem and the daily mean air temperature fit exponential equation. It was also found that seasonal trend of net carbon exchange was the result of comprehensive impacts of temperature and PAR and so on. These resulted in the biggest CO2 uptake in June and those in July and August were next. Annual carbon uptake of the forest ecosystem in 2003 was -184 gC. m-2.  相似文献   

11.
Water content and movement in soil profile and hydrogen isotope composition (δD) of soil water, rainwater, and groundwater were examined in a subalpine dark coniferous forest in the Wolong National Nature Reserve in Sichuan, China, following rainfall events in 2003–2004. Light rainfall increased water content in the litter and at soil depth of 0–80 cm, but the increased soil water was lost in several days. Heavy rainfall increased soil water content up to 85% at depths of 0–40 cm. Following the light rainfall in early spring, the δD of water from the litter, humus, illuvial, and material layers decreased first and then gradually reached the pre‐rainfall level. In summer, light rainfall reached the litter humus, and illuvial layer, but did not hit the material layer. Heavy rainfall affected δD of water in all layers. The δD of soil interflow slightly fluctuated with rainfall events. The δD of shallow groundwater did not differ significantly among all rainfall events. Light rainfall altered the shape of δD profile curve of water in the upper layer of soil, whereas heavy rainfall greatly affected the shape of δD profile curve of water in all soil layers. Following the heavy rainfall, preferential flow initially occurred through macropores, decayed plant roots, and rocks at different depths of soil profile. With continuing rainfall, the litter and surface soil were nearly saturated or fully saturated, and infiltration became homogeneous and plug‐like. Forest soil water, particularly in deeper soil profile, was slightly affected by rainfall and, thus, can be a source of water supply for regional needs, particularly during dry seasons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In our study, we analysed a period from 2003 to 2012 with micrometeorological data measured at a boundary-layer field site operated by the Lindenberg Meteorological Observatory – Richard-Aßmann-Observatory of the German Meteorological Service (DWD). Amongst others, these data consist of real evapotranspiration (ETr) rates measured by eddy covariance and soil water contents determined by time domain reflectometry. Measured ETr and soil water contents were compared with those simulated by a simple soil–vegetation–atmosphere transfer (SVAT) scheme consisting of the FAO56 Penman-Monteith equation and the soil water flux model Hydrus-1D. We applied this SVAT scheme using uncompensatory and compensatory root water uptake (RWU). Soil water contents and ETr rates calculated using uncompensatory RWU showed an acceptable fit to the measured ones. In comparison, the use of compensatory RWU resulted in lower model performance due to higher deviations between measured and simulated soil moisture values and ETr rates during dry summer periods.  相似文献   

13.
Based on analysis of mechanisms causing energy no-closure and nocturnal low fluxes issues for CO2 exchange studies by eddy covariance method, corrections were done with the raw data sets obtained from Changbai Mountains forest flux site, to evaluate the impacts of sonic anemometer tilt, frequency response limitations and advection on estimation of CO2 exchange, respectively. The results show that the planar fit coordinate transforming method is superior to the streamline coordinate transforming method in tilt correction. The latter could cause a systematical underestimation of eddy fluxes relating with the angle of sensor and terrain tilt. The underestimation of CO2 and energy fluxes for frequency response limitations average 3.0% and 2.0% during daytime, respectively, which increase by 9.0% and 5.5% during nighttime, respectively. The corrections of frequency response limitations are closely related to atmospheric stability. The advection loss of CO2 fluxes is dominated by nocturnal vertical advection, which is at least 18% when the horizontal advection is neglected. It is suggested that more work be done to understand the characteristics of horizontal advection and turbulent eddies under a complexcircumstance.  相似文献   

14.
The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0 μmol?1·m?2·s?1) flux data during windy conditions (u* > 0.2 m·s?1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem C02 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol?1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m?2·s?1. Indistinctive seasonal variation of α or Amax was consistent with weak seasonal dynamics of leaf area index (LAf) in such a lower subtropical evergreen mixed forest, (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m?2mon?1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated WEE was estimated as ?43.2±29.6 gC·m?2·mon?1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as ?563.0 and ?441.2 gC·m?2·a?1 respectively, accounting for about 32% of GPP.  相似文献   

15.
G. X. Wang  J. Y. Guo  X. Y. Sun 《水文研究》2012,26(20):3032-3040
Evaporation is one of the most important processes in the soil‐plant‐atmosphere‐continuum water cycle. The objectives of the present study were to (1) test the feasibility of different methods for quantifying evapotranspiration (ET) and its components and (2) investigate and quantify ET and its components in a subalpine watershed from April to October, 2009. Our research site was in the Gongga Mountains, located on the southeastern fringe of the Qinghai‐Tibet Plateau. The components of ET could be observed using the interception, sap‐flow and stable isotope techniques. The summation of these components, referred to as the summed components method, was thought to be the ET. Similar estimates of ET from April to October were obtained using the summed components (736 mm) and Eddy covariance (598 mm) methods. The mean of two ET estimates (667 mm) accounted for 50% of the total water input. ET was composed of 6% soil evaporation, 19% vegetation transpiration and 75% interception evaporation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
不同生态系统CO2通量和浓度特征分析研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文利用1993~1994年日本国家农业环境研究所与中国科学院沙漠研究所合作在内蒙古奈曼地区实测的7种不同生态系统(沙丘、轻度放牧草原、中度放牧草原、重度放牧草原、无放牧草原、玉米田和大豆田)的净辐射、土壤热通量、两个高度的CO2浓度、温度、湿度和风速等资料,采用空气动力学方法,计算了CO2通量及其与环境和人为干扰因子的关系,并分析了不同下垫面的光合作用特征. 结果表明:各种下垫面CO2通量的共同特点是:在白天,CO2通量和梯度的输送方向是从大气向植被,在中午(11~13时)输送达到负的最大值; 在夜间,CO2通量和梯度输送方向与白天相反,是从植被向大气,在早晨(3~5时)达到正的最大值. 植被覆盖率及生物量不同的下垫面光合作用强度有明显差异,天气状况对光合作用也有一定影响.  相似文献   

17.
The mechanism of the negative nighttime net CO2 flux in wintertime and reasonable treatment with it is of great importance in evaluating the carbon metabolism of boreal forest.Results, based on the data obtained with open-path eddy covariance system and CO2 profile measurement system from Nov. 2002 to Apr. 2003 and that obtained with five sonic anemometers in Nov. 1999, show that (1) the negative net ecosystem CO2 exchange flux (NEE) always appeared under conditions of strong wind; (2) the pressure fluctuation and horizontal advection flow are dominantly responsible for the negative NEE. Operable upper bound u* filtering method (UU* filtering) was introduced since the difficulties in real-time measuring of pressure fluctuation and horizontal advection fluxes under conditions of strong wind. Nighttime upper u* threshold for the broad-leaved Korean pine mixed forest of the Changbai Mountains is 0.4 ms-1 and can be applied to the daytime filtering; and (3) the UU* filtering corrected the nighttime ‘problem’ of negative NEE under strong wind and made the estimates more ecologically reasonable.  相似文献   

18.
Snow water equivalent (SWE) estimates at the end of the winter season have been compared for the 2002–2006 period in a 200 km2 mountainous area in Switzerland, using three different models. The first model, ALPINE3D, is a physically based process-oriented model, which solves the snowpack energy and mass balance equations. The other two models, SWE-SEM and HS-SWE, are statistical algorithms interpolating snow data on a grid. While SWE-SEM interpolates local estimates of SWE, HS-SWE converts interpolated snow depth maps into maps of SWE using a regionally-calibrated conversion model. We discuss similarities and differences among the models’ results, both in terms of total volume, and spatial distribution of SWE. The comparison shows a general good agreement of the results of the three models, with a mean difference in the total volumes between the two statistical models of ∼8%, and between the physical model and the statistical ones of ∼−3% to −10%.  相似文献   

19.
Understanding the role of forests on snowmelt processes enables better estimates of snow storages at a catchment scale and contributes to a higher accuracy of spring flood forecasting. A coniferous forest modifies the snowpack energy balance by reducing the total amount of solar shortwave radiation (SWR) and enhancing the role of longwave radiation (LWR) emitted by trees. This study focuses on changes in SWR and LWR at three sites with different canopy structure (Bohemian Forest, Czechia), including one site affected by the bark beetle (Ips typographus). Measurements of incoming and outgoing SWR and LWR were performed at all sites equipped with CNR4 Net Radiometers for three cold seasons. In addition to SWR and LWR, sensible and latent heat, and ground heat and energy supplied by liquid precipitation were calculated. The results showed that net SWR at the healthy forest site represented only 7% of the amount at the open site due to the shading effect of trees. In contrast, net LWR represented a positive component of the snowpack energy balance at the healthy forest site and thus contributed the most to snowmelt. However, the modelled snowmelt rates were significantly lower in the forest than in the open area since the higher LWR in the forest did not compensated for the lower SWR. The progressive decay of disturbed forest caused the decrease in mean net LWR from −3.1 W/m2 to −12.9 W/m2 and the increase in mean net SWR from 31.6 W/m2 to 96.2 W/m2 during the study period. These changes caused an increase in modelled snowmelt rates by 50% in the disturbed forest, compared to the healthy forest site, during the study period. Our findings have important implications for runoff from areas affected by land cover changes due to either human activity or climate change.  相似文献   

20.
Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28'E and 42°24'N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of FNEE, FGPP and Re; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux. Lal and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter. The forest was a net sink of atmospheric CO2 and sequestered -449 g C·m-2 during the study period; -278 and -171 gC·m-2 for 2003 and 2004 respectively. FGPP and FRE over 2003 and 2004 were -1332, -1294 g C·m-2. and 1054, 1124 g C·m-2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2. There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of FGPp, and 60.4, 62.1% of RE of the entire year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号