共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies of the residual masses resulting from ablation of small meteoroid grains have been concerned with the ablation of particles which enter the atmosphere independently. There is widespread evidence that fragmentation is a common occurrence for meteors ranging from bright fireballs to the smallest meteors recorded with optical techniques. According to a widely accepted model, meteoroids can be considered to be a collection of tiny grains, with these grains being detached from the meteoroid during atmospheric flight. This investigation numerically solves the differential equations governing ablation of grains detached at different heights. Initial velocities from 12 to 70km s −1, and initial masses from 10 −5 to 10 −13kg, are considered. The ablation equations allow for thermal heating prior to the onset of intensive evaporation, and thermal reradiation throughout. The atmospheric density profile used is one based on the U.S. Standard Atmosphere (1962, U.S. Government Printing Office, Washington). Calculations were completed for grains detached at 120, 100, 95, 90, 85, 80 and 75km height. For the purposes of the ablation model it is assumed that grains are ejected with an initial temperature of 1300 K, and that intensive grain evaporation begins at 2100 K. These values are consistent with grains emitted according to the model of Hawkes and Jones (1975a, Mon. Not. R. astr. Soc. 173, 339; Mon. Not. R. astr. Soc. 185, 727). For comparison purposes, calculations were also completed for grains entering the atmosphere independently (initial height 140km and beginning temperature 280 K assumed). It is found that particles ejected at heights of 100km and above behave essentially as independent particles incident from infinity. Hence the results of earlier studies (e.g. Nicol et al., 1985, Planet. Space Sci.33, 315) can be applied. For ejection at lower heights the resultant residual mass is somewhat less than that corresponding to grains of the same initial mass and velocity. The difference is greatest for high velocity, low mass meteors. For initial masses near 10−5kg, residual mass is almost independent of ejection height, at least down to an ejection height of 75km. The significant finding of Nicol et al. (1985, Planet. Space Sci.33, 315) that residual mass is almost independent of initial mass for a fairly wide range of initial masses is only loosely followed when in-flight ejection of particles at heights below about 95 km is considered. Typical calculations are presented to show that in-flight fragmentation of dustballs can be an important source of macroscopic ablation product micrometeorites. The astronomical and atmospheric implications of this finding are briefly discussed. 相似文献
2.
The existing methods for determining the extra-atmospheric mass of meteor bodies from observations of their movement in the atmosphere allow a certain arbitrariness. Active attempts to overcome the discrepancy between the results of calculations based on different approaches often lead to physically incorrect conclusions. A way out is to laboriously accumulate the estimates and computation results and to consistently remove ambiguities. To correctly interpret the observed brightness of a meteor, one should use contemporary methods and the results of physical studies of the emitting gas. In the present work, the extra-atmospheric masses of small meteoroids of the Prairie and Canada bolide camera networks were calculated from the observed braking. It turned out that, in many cases, the conditions of movement of meteor bodies in the atmosphere corresponded to a free molecular airflow about a body. The so-called dynamic mass of the bodies was estimated from the real densities of the meteoroid material, which corresponded to monolithic water ice and stone, and for the proper values of the product of the drag coefficient and shape factor. When producing the trial function for the body trajectories in the “velocity-altitude” variables, we did not allow for fragmentation explicitly, since it is less probable for small meteoroids than for large ones. As before, our estimates differ substantially from the photometric masses published in the corresponding tables. 相似文献
3.
Abstract– We have assembled data on 13 cases of meteorite falls with accurate tracking data on atmospheric passage. In all cases, we estimate the bulk strength of the object corresponding to its earliest observed or inferred fragmentation in the high atmosphere, and can compare these values with measured strengths of meteorites in the taxonomic class for that fall. In all 13 cases, the strength corresponding to earliest observed or inferred fragmentation is much less than the compressive or tensile strength reported for that class of stony meteorites. Bulk strengths upon atmospheric entry of these bodies are shown to be very low, 0.1 to approximately 1 MPa on first breakup, and maximal strength on breakup as 1–10 MPa corresponding to weak and “crumbly” objects, whereas measured average tensile strength of the similar meteorite classes is about 30 MPa. We find a more random relation between bulk sample strength and sample mass than is suggested by a commonly used empirical power law. We estimate bulk strengths on entry being characteristically of the order of 10 ?1–10 ?2 times the tensile strengths of recovered samples. We conclude that pre‐entry, meter‐scale interplanetary meteoroids are typically highly fractured or in some cases rubbly in texture, presumably as a result of their parent bodies’ collisional history, and can break up under stresses of a few megapascals. The weakness of some carbonaceous objects may result from very porous primordial accretional structures, more than fractures. These conclusions have implications for future asteroid missions, sample extraction, and asteroid hazard mitigation. 相似文献
4.
We modeled equilibrium vaporization of chondritic and achondritic materials using the MAGMA code. We calculated both instantaneous
and integrated element abundances of Na, Mg, Ca, Al, Fe, Si, Ti, and K in chondritic and achondritic meteors. Our results
are qualitatively consistent with observations of meteor spectra. 相似文献
6.
Comparison is made between the run of number density of meteoroids from penetration detectors aboard Helios A (masses below 10 ?8 g) and Pioneer 10 (masses near and above 3 × 10 ?9 g), the source function of the zodiacal light deduced from photometric observations aboard Helios A and Pioneer 10, counts versus brightness of objects passing by Pioneer 10 from the Sisyphus experiment and the distribution of meteoroids deduced from radar and optical meteors at the Earth. The Sisyphus experiment on Pioneer 10 observed reflecting glints on meteoroids rather than the meteoroids themselves and the counting statistics refer not to the effective radii of the meteoroids but to the effective radii of curvature of the reflecting glints on the meteoroids. The penetration detectors appear to find some increase in number density toward the Sun and a flat distribution outward to 5.2 AU. The overall behavior of the zodiacal light is that the relative distribution over direction is unchanged while the source scattering function diminishes as the inverse 1.4 power of distance from the Sun. The fit to the brightness of the zodiacal light obtained from these statistics can be combined with the mass distribution results from the optical meteors to deduce a mean geometric albedo of meteoroids of 0.006 at 1 AU from the Sun. Combination of the space distribution from radar meteors with the scattering source function of the zodiacal light yields geometric albedos for meteoroids running from 0.07 at 0.1 AU, from the Sun through 0.006 at 1 AU down to about 0.0001 at 3.3 AU which may run flat thence outward. This result is imposed by the indicated modest increase in density of meteoroids very near the Sun, a minimum between the Sun and the Earth near 0.4 AU and rising density outward to somewhere beyond 3.3 AU which is very different from the inverse 1.4 power of the distance shown for scatterers (product of number density and albedo) by the zodiacal light. A check on the distribution at very large sizes is possible if a search is made for fireballs in Jupiter's atmosphere by the Mariner Jupiter Saturn 1977 television cameras during the two encounters with Jupiter in 1979. An easy detection of such activity would put the maximum in the meteoroid distribution out near Jupiter and lend further confirmation to the indicated drop in albedo. 相似文献
7.
We investigate the structure of a slow reaction front on the surface of a dwarf, with a wake of escaping matter above it. We give simple expressions for all the important properties of such a front.It is found that a hydrogen or helium burning front is possible on a dwarf heavier than about one solar mass. For heavier fuels such a process seems impossible. 相似文献
8.
An analysis of the Perseid meteoroid mass distribution is given. It is shown that particle mass distributions are qualitatively the same along the entire orbit of the stream. The extra minima in the cross sections of the stream at the ascending and descending branches of the curve of the parameter S indicate a jetlike nature of the stream. The variations of the nodal longitudes of maximum stream activity versus the minimum observed mass of meteoroids are found along the entire orbit of the stream. The positions of maximum activity for particles with minimum detectable masses larger than 1 and 10 ?3 g are shifted by 1.4 degrees in solar longitude, with larger longitudes for smaller particles. 相似文献
9.
Long-term visual observations of the Lyrid meteoroid shower have been analyzed to determine the mass distribution of Lyrid
meteoroids. The value of the parameter S has been confirmed to be less than 1.8, which is normally assumed for meteoroid streams. The inclination of the descending
and ascending branches of the S curve, depending on the longitude of the Sun, does not seem to exceed 3°. Observations carried out from 1987 until 2007 reveal
that the minimum value of S corresponding to the longitude of the Sun 32.19 ± 0.04° is equal to 1.54 ± 0.02 (2000.0). The analysis of the S parameter derived from visual observations did not discover any particularities in the mass distribution of the meteoroids
in the stream connected with the assumed 12-year enhancement period in the activity of the Lyrids. 相似文献
10.
Statistical analysis of the quantity of dust in the cometary atmosphere in relation to the direction of motion of the comet about the Sun suggests an excess of dust for the retrograde comets. This excess is analyzed in the light of Harwit's theory of the cloud of “boulders” and of Öpik's impact theory. A comparison is also made between these excesses and other cometary phenomena such as splittings and outbursts. 相似文献
11.
Hyperbolic meteor orbits from the catalog of 64,650 meteors observed by the multistation video meteor network located in Japan (SonotaCo 2009) have been investigated with the aim of determining the relation between the frequency of hyperbolic and interstellar meteors. The proportion of hyperbolic meteors in the data decreased significantly (from 11.58% to 3.28%) after a selection of quality orbits, which shows its dependence on the quality of observations. Initially, the hyperbolic orbits were searched for meteors unbound due to planetary perturbation. It was determined that 22 meteors from the 7489 hyperbolic orbits in the catalog (and 2 from the selection of the orbits with the highest quality) had had a close encounter with a planet, none of which, however, produced essential changes in their orbits. Similarly, the fraction of hyperbolic orbits in the data, which could be hyperbolic by reason of a meteor's interstellar origin, was determined to be at most 3.9 × 10 ?2. From the statistical point of view, the vast majority of hyperbolic meteors in the database have definitely been caused by inaccuracy in the velocity determination. This fact does not necessarily assume great measurement errors, since, especially near the parabolic limit, a small error in the value of the heliocentric velocity of a meteor can create an artificial hyperbolic orbit that does not really exist. The results show that the remaining 96% of meteoroids with apparent hyperbolic orbits belong to the solar system meteoroid population. This is also supported by their high abundance (about 50%) among the meteor showers. 相似文献
12.
Ablation of micrometeoroids during atmospheric entry yields volatile gases such as water, carbon dioxide, and sulfur dioxide, capable of altering atmospheric chemistry and hence the climate and habitability of the planetary surface. While laboratory experiments have revealed the yields of these gases during laboratory simulations of ablation, the reactions responsible for the generation of these gases have remained unclear, with a typical assumption being that species simply undergo thermal decomposition without engaging in more complex chemistry. Here, pyrolysis–Fourier transform infrared spectroscopy reveals that mixtures of meteorite‐relevant materials undergo secondary reactions during simulated ablation, with organic matter capable of taking part in carbothermic reduction of iron oxides and sulfates, resulting in yields of volatile gases that differ from those predicted by simple thermal decomposition. Sulfates are most susceptible to carbothermic reduction, producing greater yields of sulfur dioxide and carbon dioxide at lower temperatures than would be expected from simple thermal decomposition, even when mixed with meteoritically relevant abundances of low‐reactivity Type IV kerogen. Iron oxides were less susceptible, with elevated yields of water, carbon dioxide, and carbon monoxide only occurring when mixed with high abundances of more reactive Type III kerogen. We use these insights to reinterpret previous ablation simulation experiments and to predict the reactions capable of occurring during ablation of carbonaceous micrometeoroids in atmospheres of different compositions. 相似文献
13.
The Tracking and Imaging RAdar (TIRA) at the Research Establishment for Applied Science (FGAN) was used in the L-band (1.33 GHz) to observe the Leonid shower in 1999. The radar beam was pointed directly into the radiant in the constellation Leo to receive “head echoes” from meteoroids when they ablate in the atmosphere at altitudes around 100 km. Two hundred and eighty-seven meteors were observed during 21 h in the early hours of November 17 and 18, 1999. The individual velocities, radiants and rough heliocentric orbits are calculated. Criteria are derived from optically observed Leonids which are then applied to decide whether an echo was created by a Leonid or a background meteoroid. However, in most cases the accuracy in the observational data is not good enough to allow for a clear distinction. Only for 100 meteors the velocity errors were less than 10 km/s. Out of those, 71 could be excluded on a 3 σ level to be a Leonid (95 are excluded on a 1 σ level). This confirms the theory that the Leonids have dominantly sizes of optical meteoroids with no significant extension in the lower mass range. Therefore, the risk of meteoroid impacts on spacecraft does not increase considerably during a Leonid storm. Background measurements 9 days after the Leonids maximum were taken in 2001 which corroborated the overall results obtained in 1999. 相似文献
14.
Problems of hypervelocity interaction of large bodies with the Earth's atmosphere has attracted more attention during last few years. Several new concepts of dynamical explosive fragmentation of strong interplanetary bodies at extremely low heights under dynamic pressures of hundreds of Mdyn/cm 2 were published. Comparison of these theoretical models with precise observations has not yet been done, because data on atmospheric penetration of large bodies are not available.Single body theory with sudden gross-fragmentation was successfully applied to photographic observations of fireballs. The largest bodies observed have sizes up to several meters. The highest dynamic pressure acting on these observed bodies reached slightly over 100 Mdyn/cm 2. All these photographed fireballs follow theoretical concepts of motion of either the single-body or the single-body with gross-fragmentation under dynamic pressures in the range from 1 to 12 Mdyn/cm 2. When this theory has been applied to photographic observations, typical standard deviation of the distance flown in the trajectory has been found in a range of 10 to 30 m for one observed distance corresponding also to the geometrical precision of the observations. This model can explain all good observations of atmospheric trajectories of meteoroids up to initial sizes of several meters with high precision. Also the three photographed and one videorecorded meteorite falls fit to this concept completely.The most important phenomenon of atmospheric motion of meteoroids up to several meters in size is the ablation with final stage of hot vapor from ablated material. Spectral records of meteoroids up to several meters in size, down to a height of 16 km and for various velocities show overwhelming radiation of rather low excited metalic atoms (several eV; temperatures 3000 to 5000 K) in the pass-band of visible light. Radiation from high excited atoms of either atmospheric or ablational origin forms only an insignificant part of visible radiation.Contrary to this regime, theories of very large bodies contain ablation mostly in the form of explosive fragmentation. Ablation at higher heights is negligible. This absence of classical ablation and fragmentation at low dynamic pressures for large bodies (contrary to observations of smaller bodies) brings the body to lower heights without too much change of size and makes thus the dynamic pressure much higher than in reality. In any case the change of body dynamics and radiation going from sizes of several meters (observed regime) to sizes of several tens of meters (hypothetical regime) may be crucial for our understanding of dynamics and radiation of large body penetration through the low atmosphere to the Earth's surface. Observations of atmospheric trajectory of these bodies with sufficiently high precision are extremely needed. 相似文献
15.
The orbital evolution of model meteoroids ejected from the comet Encke has been investigated. The particles abandon the mother body with velocities 20 and 40 ms -1 perihelion within the interval of the past 10,000 years. Their 10,000 years old osculating orbits were numerically integrated forward, using a dynamical model of the solar system consisting of all planets. Forces from solar electromagnetic and corpuscular radiation effecting the particles are considered, too. Orbital dispersions of the model meteoroids are presented. The importance of nongravitational forces for a long-term orbital evolution of meteoroid streams is shown. 相似文献
16.
The ejection velocities of meteoroids belonging to the Leonid and Perseid meteoroid streams are deduced from the observed differences between the longitude of the ascending node of the outburst meteoroids and that of the parent comet. The difference is very sensitive to the true anomaly of the ejection point, as well as the ejection velocity, and probable values for both are discussed. 相似文献
17.
Abstract— Numerous models have been proposed to explain the formation of chondrules, but none can be reconciled with the highly diverse properties of these objects. Here the formation of chondrules by the surface melting and ablation of small planetesimals in nebula shock waves is investigated using a numerical model. It is shown that bodies between ~1 mm and 500 m in diameter would have produced molten droplets by ablation during gas drag in nebula shocks stronger than ~2.0 Mach. The properties of chondrules produced by ablation are estimated by comparison with meteorite fusion crusts and through consideration of the environment within the bow shock envelope of ablating planetesimals. It is suggested that most ablation chondrules will have broadly chondritic compositions with depletions in siderophile and chalcophile elements and relatively high volatile contents and textures that are mainly porphyritic. The formation of chondrules by ablation of planetesimals in shock waves was probably most important at a late stage in nebula history and occurred at the same time as chondrules formed by the melting of dust particles. The high abundance of dust particles relative to larger bodies at all stages of accretion implies that only a proportion of chondrules may have been formed by ablation and that genetic groups of chondrules with very different origins may coexist in meteorites. 相似文献
18.
The entry and subsequent breakup of the ~17–20 m diameter Chelyabinsk meteoroid deposited approximately 500 kT of TNT equivalent energy to the atmosphere, causing extensive damage that underscored the hazard from small asteroid impacts. The breakup of the meteoroid was characterized by intense fragmentation that dispersed most of the original mass. In models of the entry process, the apparent mechanical strength of the meteoroid during fragmentation, ~1–5 MPa, is two orders of magnitude lower than the mechanical strength of the surviving meteorites, ~330 MPa. We implement a two-material computer code that allows us to fully simulate the exchange of energy and momentum between the entering meteoroid and the interacting atmospheric air. Our simulations reveal a previously unrecognized process in which the penetration of high-pressure air into the body of the meteoroid greatly enhances the deformation and facilitates the breakup of meteoroids similar to the size of Chelyabinsk. We discuss the mechanism of air penetration that accounts for the bulk fragmentation of an entering meteoroid under conditions similar to those at Chelyabinsk, to explain the surprisingly low values of the apparent strength of the meteoroid during breakup. 相似文献
19.
Planetary atmospheres influence cratering rates at small diameters (∼2-250 m) by filtering impactor populations via ablation, aerobraking and breakup of entering objects. The atmosphere of Mars undergoes rapid and drastic obliquity-driven variations in density, corresponding to pressure variations between zero and several tens of millibars. Here a simulation is used to assess the fate of a large population of impactors interacting with the present and predicted past and future martian atmospheres. We find that even Mars's present atmosphere significantly reduces crater production rates at small diameters (<30 m) and past denser atmospheres would have affected cratering even more strongly, and to considerably larger diameters. These effects are increased if the inner Solar System's small impactor population contains significant numbers of icy, cometary bodies. Evidence of recent atmospheric density variations may be detectable in the martian small cratering record with future planned imaging capabilities. Because of martian atmospheric effects and variations, surface ages derived from counts of craters of less than about 250 m on Mars may be underestimated. 相似文献
20.
Analyses of broad moustache profiles of Balmer lines and Ca ii H and K lines are performed based upon our spectroscopic observation under good seeing conditions. Hα emission profiles are found to consist of three components, i.e., a central absorption, a Gaussian core and a power-law wing. Each of them has a different Doppler shift from others. From the data of Doppler shifts, mass motions with velocity of about 6 km s ?1 are found to be present in chromospheric levels of moustache atmospheres. Computations of Hα emission profiles radiated from a variety of model atmospheres are made. Comparison of computed profiles with the observed ones leads us to the conclusion that a broad Hα profile is due to a formation of heated ( ΔT = 1500 K) and condensed ( ?/? 0 = 5) chromospheric layers relative to the normal. 相似文献
|