共查询到20条相似文献,搜索用时 15 毫秒
1.
Translationally hot O(3P) atoms are produced in the atmosphere of Earth by photolysis of O2 and O3 and quenching of O(1D). A rigorous kinetic theory analysis of this problem is developed and compared with the approach previously employed by Logan and McElroy [Planet. Space Sci.25, 117 (1977)]. It is shown that the kinetic theory employed by the previous workers is somewhat deficient. With the line-of-centers cross-section, the rates of reactions of the translationally hot O(3P) atoms with other atmospheric gases are calculated and found to be in some instances many orders of magnitude larger than the equilibrium rates. Though the non-equilibrium reaction rates with O(3P) are substantially increased, they are still not competitive with the corresponding reaction rates with O(1D). 相似文献
2.
We have measured the linewidths of the NI multiplets produced in the dissociative excitation of N2 by energy electrons. The infrared transitions excite the N(4P) resonance state by cascade and they account for > 50% of the total N(4P) cross section at 100 eV. Both the i.r. and v.u.v. lines are found to be highly Doppler broadened ( ~ 25 times the thermal Doppler line width). These results indicate that dissociative excitation of N2 produces N (4P) atoms with sufficient kinetic energy so that the resonance radiation emitted by these excited atoms would be optically thin in the Earth's upper atmosphere. We also found that the line strength ratios for the resolved components of the triplet excited by dissociative excitation differ from those predicted by the multiplicities of the states involved and used in current entrapment models; the intensity ratios also vary with the energy of the incident electron. These developments introduce new complications into the analysis of the terrestrial ultraviolet dayglow. 相似文献
3.
It is proposed that energy transfer from excited O2 contributes to the production of O(1S) in aurora. An analysis is presented of the OI5577 Å emission in an IBC II+ aurora between 90 and 130 km. The volume emission rate of the emission at these altitudes is consistent with the production rate of O(1S) by energy transfer to O(3P) from N2 in the A3Σ2+ state and O2 in the A3Σu+, C3Δc1Σu? states, the N2A state being populated by direct electron impact excitation and B → A cascade and the excited O2 states by direct excitation. Above the peak emission altitude (~105 km), energy transfer from N2A is the predominant production mechanism for O(1S). Below it, the contribution from quenching of the O2 states becomes significant. 相似文献
4.
The rate at which O(1S) is quenched in the atmosphere has been calculated as a function of altitude in the 75–115 km region. Recent measurements of the temperature-dependent O 2 quenching rate coefficient have been used, while for quenching by O(3P), an expression combining new theoretical and experimental results is employed. For the O(3P) altitude profile, the Jacchia (1971) model is chosen. The quenching profile shows a pronounced minimum quenching rate at about 87 km. It is concluded that different studies carried out on pulsating Type-B red aurorae, which extract an O(1S) quenching rate from the time lag between N 2+(B?X) emission and 5577-Åemission, can now be interpreted as indicating an altitude range for these aurorae of 84–89 km. This conclusion is in accord with observations made on artificial aurorae. 相似文献
5.
M.H. Rees 《Planetary and Space Science》1984,32(3):373-378
The results of recent laboratory experiments suggest that the reaction N+ + O2 → NO+ + O(1S) is the principal source of O(1S) in aurora. A negligible time delay between auroral ionization and O(1S) production is associated with this indirect process, which is a necessary condition for a viable mechanism. The volume emission rate ratio associated with this production source remains constant with altitude. The problems encountered by the currently accepted source of O(1S), the reaction of N2(A3Σ) molecules with atomic oxygen are explored, and the contributions of this and other reactions to the auroral green line emission are reevaluated. 相似文献
6.
Recent laboratory measurements of the deactivation rate constants for O(1S) have suggested that the dominant production mechanism for the green line in the nightglow is a two-step process. A similar mechanism involving energy transfer from an excited state of molecular oxygen is considered as a potential source of the OI (5577 Å) emission in the aurora. It is shown that the mechanism, , is consistent with auroral observations; the intermediate excited state has been tentatively identified as the O2(c1∑?u) state. For the proposed energy transfer mechanism to be the primary source of the auroral green line, the peak electron impact cross-section for O21 production must be approximately 2 × 10?17 cm2. 相似文献
7.
Measurements of the twilight enhancement of airglow emission from O+(2P) near 7325 Å reveal major changes which accompany geomagnetic activity, no significant distance between evening and morning and an increase in brightness paralleling the approach to solar maximum. The principal source for O+(2P) is direct photoionization from O(3P) but at low solar activity there appears to be a contribution from another source in early twilight which may be local photoelectron ionization into O+(2P). The geomagnetic and solar effects appear to reflect changes in the O and N2 density in the thermosphere; ground based twilight measurements of O+ emissions thus provide a simple means for monitoring thermospheric structure from 300 km to ~ 500 km at solar minimum and to ~600 km at solar maximum. 相似文献
8.
The line shape of the non-thermal O(1D) 6300 Å emission is calculated using the two population model of Schmitt, Abreu and Hays (Planet. Space Sci.29, 1095, 1981). The calculated line shapes simulate observations made from a space platform at different zenith angles and altitudes. The non-thermal line shapes observed at zenith angles other than the local vertical have been obtained by using the Addition theorem for spherical harmonics of a Legendre polynomial expansion of the non-thermal population distribution function. 相似文献
9.
An analysis is presented of photometric measurements of the NI (λ = 520nm),OI(λ = 630nm)and other emissions made at Nord, where the invariant latitude is Λ = 80°4. The time variations of the intensities are interpreted in the following way by comparison with simultaneous ground based or satellite measurements.The N(2D) atoms formed in the dayside cleft are carried by the neutral wind in a plume across the polar cap, so that the ratio of λ(630 nm) to λ(520 nm) intensities decreases along the plume with increasing distance from the source region.In the polar cap, but outside the plume region, 630 nm emission is produced by electron impact of polar rain and by substorms that reach high latitudes. Ionization produced at the same time, especially by the substorms, will produce further 630 nm emission through dissociative recombination. In any case, the region outside the plume may be regarded as a source region, with a high value of the ratio . This explains in part the diurnal variations, since this ratio is depressed as Nord crosses the dayside plume.The electron energy along the oval increases progressively from the dayside to the nightside. The intensity ratio increases with increasing electron energy because N(2D) is quenched more rapidly than O(1D). Thus the ratio rises progressively from noon to midnight.An effect of the interplanetary magnetic field is superimposed on this pattern : as its North-South component Bz increases, the oval contracts so that Nord becomes nearer from the cleft source and the intensity ratio increases on the dayside. The inverse effect is also observed. On the nightside, negative Bz is associated with substorms that produce poleward expansions of the poleward oval boundary, that brings more energetic precipitation to Nord. This causes the intensity ratio to increase with decreasing Bz in a way that is opposite to that for the dayside. 相似文献
10.
Recent laboratory measurements have shown that N(2P) atoms, and thus probably hot N(2D) atoms, will recombine with atomic oxygen via an associative ionization process at the gas kinetic rate. While the reaction is endothermic, it has been suggested that this has interesting implications for the upper atmosphere in that N(2D) atoms in the tail of the velocity distribution could provide an additional source of NO+ through the reverse of the dissociative recombination reaction . It has also been suggested that this process might account for the difference between a laboratory determination of the rate coefficient and that determined from the Atmospheric Explorer Satellite data. In this paper we investigate further the likelihood of the associative ionization of N(2D) and O playing a significant role in the normal ionosphere, in the light of several recent relevant studies. We conclude that the associative ionization process is not an important factor and that a more probable cause for disagreements in the various determinations of the recombination coefficient, is the difference in excited states of the ions in the various experiments. 相似文献
11.
12.
A major loss process for the metastable species, O+(2D), in the thermosphere is quenching by electrons .To date no laboratory measurement exists for the rate coefficient of this reaction. Thermospheric models involving this process have thus depended on a theoretically calculated value for the rate coefficient and its variation with electron temperature. Earlier studies of the O+(2D) ion based on the Atmosphere Explorer data gathered near solar minimum, could not quantify this process. However, Atmosphere Explorer measurements made during 1978 exhibit electron densities that are significantly enhanced over those occurring in 1974, due to the large increases that have occurred in the solar extreme ultraviolet flux. Under such conditions, for altitudes ? 280 km, the electron quenching process becomes the major loss mechanism for O+(2D), and the chemistry of the N+2 ion, from which the O+(2D) density is deduced, simplifies to well determined processes. We are thus able to use the in situ satellite measurements made during 1978 to derive the electron quenching rate coefficient. The results confirm the absolute magnitude of the theoretical calculation of the rate coefficient, given by the analytical expression k(Te) = 7.8 × 10?8 (Te/300)?0.5cm3s?1. There is an indication of a stronger temperature dependence, but the agreement is within the error of measurement. 相似文献
13.
The absolute cross-sections for the excitation of the 989 Å, 1027 Å, 7990 Å, 8446 Å, 1.1287 μm and 1.3164 μm multiplets of atomic oxygen by electron impact dissociation of O2 are reported. The radiative branching ratios for these transitions are calculated from these results and compared with the NBS compilation of Wiese et al. (1966) and the recent theoretical calculations of Pradhan and Saraph (1977). The cascade models of O+ radiative recombination and of electron-impact excitation of the OI(3S) state in the terrestrial airglow are discussed in the light of the laboratory measurements, and the effects of the resonant absorption of components of the λ 989 Å and λ. 1027 Å multiplets by the Birge-Hopfield band system of N2 are investigated. This process is shown to depend sensitively on the N2 vibrational temperature and to cause characteristic changes in the OI e.u.v. emission spectrum in auroras and in the sunlit F-region at high exospheric temperatures. It is also suggested that the λ 1027 Å radiation observed in auroral spectra is actually due to molecular nitrogen band emission that has been enhanced by entrapment effects and not to the excitation of the 2p 3P-3d 3D0 transition of atomic oxygen as believed previously. 相似文献
14.
Fine-structure collision strengths are calculated for transitions between the ground-state levels of atomic oxygen. The R -matrix method is used in which the (2p4 ) 3 P, 1 D and 1 S terms are included as well as three pseudo-states chosen to represent the dipole polarizability of the 3 P ground state. Very sophisticated configuration–interaction wavefunctions are used for the target states and a recoupling transformation to pair coupling is applied to the inner-region Hamiltonian matrix, with the 3 P fine-structure energy levels being adjusted to match the observed splitting prior to diagonalization. Effective collision strengths are obtained by integrating over a Maxwellian distribution and the rate coefficient of the cooling of electron gas is determined. The cooling rates are significantly lower than those currently available, in confirmation of the result deduced from measurements of the Earth's ionosphere electron gas. 相似文献
15.
《Planetary and Space Science》1986,34(11):1143-1145
The rate coefficient for the quenching ofO(1D) by O(3P) has recently been calculated by Yee et al. (1985). Their results indicate that quenching by atomic oxygen should not be ignored in the analysis of the 6300 Å emission airglow. Data obtained by the Visible Airglow Experiment (VAE) on board the AE satellites have been reanalyzed to determine the quenching rate of O(1D) by atomic oxygen. The results of this analysis are presented. 相似文献
16.
17.
In this paper we confirm an earlier finding that the reaction constitutes a major source of OI 6300 Å dayglow. The rate coefficient for this reaction is found to be consistent with an auroral result, namely k1 ≈ 6 × 10?12cm3s?1. We correct an error in an earlier publication and demonstrate that reaction (1) is consistent with the laboratory determined quenching rate for the reaction where . Dissociative recombination of O+2 with electrons is found to be a major daytime source in summer above ~220 km. 相似文献
18.
Asgeir Brekke 《Planetary and Space Science》1973,21(4):698-702
In a recent paper, Brekke and Pettersen (1972) have introduced a method for estimating any indirect process in the production of the ) atoms in pulsating aurora; for 38 per cent of their data they found that the decay time for the indirect mechanism was shorter than the effective lifetime of the state. These data are related to the energy transfer from the N2(A3Σ) molecules to the state, and evidence is found for this process to contribute in the altitude range below 125 km. 相似文献
19.
M. J. Jamieson M. Finch R. S. Friedman A. Dalgarno 《Planetary and Space Science》1992,40(12):1719-1721
Pectroscopic data on the shifts and widths of the energy levels of molecular oxygen have been used in the empirical construction of a diabatic potential matrix that characterizes the interactions of the B3∑−u state with the 5Πu, 23∑+u, 3Πu and 1Πu states. The diabatic potential matrix is u theory formulation to calculate the cross-sections for the excitation of O(1D) atoms in collisions of two O(3P) atoms. Total cross-sections are obtained by adding the excitation from the 3Πg, channel. The rate coefficient for quenching of O(1D) by O(3P) is evaluated as a function of temperature. The values conflict with a recent analysis of the emission of the oxygen red line in the upper atmosphere. 相似文献
20.
J.L. Queffelec B.R. Rowe M. Morlais J.C. Gomet F. Vallee 《Planetary and Space Science》1985,33(3):263-270
The yield of metastable nitrogen atoms in dissociative recombination of N2+ (v = 0, 1)ions has been tudied for different experimental conditions. In a first experiment, the branching ratio for N(2D) production was directly measured as being higher than 1.85; for N2+ (v = 0) this implies that 2D + 2D is the main reaction channel; for N2+ (v = 1) a minor channel could be 2P + 2D, 2P being then quenched toward 2D by electrons. In a second experiment, at higher electron densities, the influence of superelastic collisions was studied; a steady state analysis yields the quenching rate coefficient k4, of 2D towards 4S equal to 2.4 × 10?10 cm3 s?1for Te = 3900 K and shows that 2D + 2D is always the major channel of the reaction for N2+ (v = 1), 2D + 2P being a minor channel. All these results are in good agreement with thermospheric models but imply that N2+ dissociative recombination is a less important source for nitrogen escape of Mars. 相似文献