首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present some results from a model of forced oscillations of the magnetosphere. The purpose of this work is to examine the effects and consequences of damping on geomagnetic pulsations as observed on the ground. The aim of the current work is to quantify the amount of damping applicable to geomagnetic pulsation waveforms. Ionospheric conductivities vary with latitude and time of day and this variation will effect the damping of geomagnetic pulsations. The variations in ionospheric conductivities are taken into account to predict the changes in amplitude and phase of geomagnetic pulsations over an extended latitudinal array of ground observatories. Three situations are modelled where the damping factor γ/ωn, which is related to the amplitude loss per cycle, is different: (i) γ/ωn approximately equal to 0.01, this corresponds to the ionospheric Joule damping of Newton et al. (1978); (ii) λ/ωn equal to 0.1, this value is consistent with the empirically determined day-time damping factors from the observed latitude-dependent transient decays of the pulsation single effect events discussed by Siebert (1964). The value of 0.1 as the damping factor is taken as typical of day-time conditions and its effect on amplitude and phase for continuous pulsations is considered; and (iii) λ/ωn is latitude-dependent; three different levels of damping are used appropriate for the night-time conditions associated with the auroral electrojet, plasmatrough and plasmasphere.The results from the model suggest that observationally determined damping factors are greater than those computed from ionospheric Joule damping alone. The model also illustrates the broadening of the latitudinal resonance width with increasing damping and the reducing of the phase change across resonance to less than 180°. The model also successfully reproduces features of pulsation single effect events and Pi2 pulsations.  相似文献   

2.
Evidence is presented from spectral analysis of Pi2 pulsations detected during a substorm by the University of Alberta meridian chain of magnetometers to support the conclusion that at auroral latitudes there is no apparent correlation between the principal spectral components of Pi2 pulsations and the latitude of the observations. From these data we infer that the Pi2 magnetic variations observed at the Earth's surface are not generated by simple MHD eigenoscillations of magnetospheric field. As well, the data show clear contributions to the Pi2 pulsation spectrum by ionospheric currents. These observations lead to the suggestion that Pi2 pulsation spectra are produced by the sudden changes in magnetospheric and ionospheric current systems which take place at the beginning of a substorm.  相似文献   

3.
The global distribution and temporal variations of thermospheric heating due to Joule dissipation of measured ionospheric electric fields are computed. It is shown that the volume Joule dissipation rate at high and middle latitude is similar in magnitude and altitudinal profile to the global solar EUV absorption rate discussed in the previous papers. Thus, Joule dissipation contributes significantly towards reconciling the quantitatively known sources of thermospheric heat input and that required to maintain the normal thermosphere. The combined heat source due to EUV absorption and Joule dissipation varies with the annual cycle in a manner closely resembling that of the thermospheric density.  相似文献   

4.
Geomagnetic pulsations recorded on the ground are the signatures of the integrated signals from the magnetosphere. Pc3 geomagnetic pulsations are quasi-sinusoidal variations in the earth’s magnetic field in the period range 10–45 seconds. The magnitude of these pulsations ranges from fraction of a nT (nano Tesla) to several nT. These pulsations can be observed in a number of ways. However, the application of ground-based magnetometer arrays has proven to be one of the most successful methods of studying the spatial structure of hydromagnetic waves in the earth’s magnetosphere. The solar wind provides the energy for the earth’s magnetospheric processes. Pc3–5 geomagnetic pulsations can be generated either externally or internally with respect to the magnetosphere. The Pc3 studies undertaken in the past have been confined to middle and high latitudes. The spatial and temporal variations observed in Pc3 occurrence are of vital importance because they provide evidence which can be directly related to wave generation mechanisms both inside and external to the magnetosphere. At low latitudes (L < 3) wave energy predominates in the Pc3 band and the spatial characteristics of these pulsations have received little attention in the past. An array of four low latitude induction coil magnetometers were established in south-east Australia over a longitudinal range of 17 degrees at L = 1.8 to 2.7 for carrying out the study of the effect of the solar wind velocity on these pulsations. Digital dynamic spectra showing Pc3 pulsation activity over a period of about six months have been used to evaluate Pc3 pulsation occurrence. Pc3 occurrence probability at low latitudes has been found to be dominant for the solar wind velocity in the range 400–700 km/s. The results suggest that solar wind controls Pc3 occurrence through a mechanism in which Pc3 wave energy is convected through the magnetosheath and coupled to the standing oscillations of magnetospheric field lines.  相似文献   

5.
On 9 January 1979 an SI-excited pulsation event was observed by the Scandinavian Magnetometer Array. The pulsation period shows a clear variation with latitude which suggests decoupled oscillations of individual magnetic field shells. The pulsation amplitudes exhibit an e-fold decay with the damping rate γ varying both in longitudinal and latitudinal directions. Assuming Joule heating in the ionosphere as the dominant damping mechanism (and thus γΣ?1p) approximate height-integrated Pedersen conductivity profiles were calculated which fit well with previously observed Σp distributions. This is interpreted as observational evidence for ionosopheric Joule dissipation as the major damping mechanism for high-latitude ULF-pulsations.  相似文献   

6.
Geomagnetic field research carried out at the Hermanus Magnetic Observatory over the past decade is reviewed. An important aspect of this research has been the study of geomagnetic field variations, with particular emphasis on ULF geomagnetic pulsations. Features of geomagnetic pulsations which are unique to low latitude locations have been investigated, such as the cavity mode nature of low latitude Pi 2 pulsations and the role played by ionosphericO + ions in the field line resonances responsible for Pc 3 pulsations. A theoretical model has been developed which is able to account for the observed relationships between geomagnetic pulsations and oscillations in the frequency of HF radio waves traversing ionospheric paths. Other facets of the research have been geomagnetic field modelling, aimed at improving the accuracy and resolution of regional geomagnetic field models, and the development of improved geomagnetic activity indices.  相似文献   

7.
Most measurements of long period ULF pulsations have come from ground based and single satellite observations. The observations have given strong support to the idea that these waves are resonant standing hydromagnetic waves on geomagnetic field lines. Simultaneous ground-satellite observations provide further details of the pulsation structure and are useful for examining the effect of the ionosphere on the transmission of the waves to the ground. Recently, multisatellite observations have been used to provide further insight into the nature of pulsations and we review the results obtained using this technique. Among the results presented are those from the ISEE 1 and 2 spacecraft which are closely spaced in identical orbits, making it possible to distinguish temporal from spatial structure in waves. The ISEE spacecraft have made measurements of resonant region widths and resonance harmonics. In addition, examples are shown of recent multisatellite observations of the global nature of some pulsations and the localization of Pi2 pulsations in space.  相似文献   

8.
An isolated substorm occurred in Northern Scandinavia on 1 March, 1977 around magnetic midnight. The ionospheric phenomena associated with this substorm were studied by ground magnetometers, the Scandinavian Twin Auroral Radar Experiment (STARE), riometers and an all-sky camera. The physical properties of the auroral electrojet are determined from the ground magnetic field and the ionospheric electric field data. Mid and low latitude magnetic field data show evidence of field-aligned current flow. It is shown that the enhancement of the electrojet's current density is essentially determined by an increase in the ionospheric conductivity. The current system derived from the data of this study corresponds to a model of Yasuhara et al. (1975a).  相似文献   

9.
Cross-spectral analysis of ULF wave measurements recorded at ground magnetometer stations closely spaced in latitude allows accurate determinations of magnetospheric field line resonance (FLR) frequencies. This is a useful tool for remote sensing temporal and spatial variations of the magnetospheric plasma mass density. The spatial configuration of the South European GeoMagnetic Array (SEGMA, 1.56 <  L <  1.89) offers the possibility to perform such studies at low latitudes allowing to monitor the dynamical coupling between the ionosphere and the inner plasmasphere. As an example of this capability we present the results of a cross-correlation analysis between FLR frequencies and solar EUV irradiance (as monitored by the 10.7-cm solar radio flux F10.7) suggesting that changes in the inner plasmasphere density follow the short-term (27-day) variations of the solar irradiance with a time delay of 1–2 days. As an additional example we present the results of a comparative analysis of FLR measurements, ionospheric vertical soundings and vertical TEC measurements during the development of a geomagnetic storm.  相似文献   

10.
Auroral radar observations of transient ULF pulsations with latitudinally varying period have recently been reported. An event of this type is analysed using data from the Scandinavian Magnetometer Array, the STARE radar, and the GEOS-2 satellite. The magnetometers show long-period (~450 s) oscillations consistent with the pulsations observed in the ionosphere using STARE, and confirm that the geomagnetic field shells are resonating in the toroidal mode. There is also a localised, small-amplitude component with 250-s period South of the STARE pulsations. Electric field measurements at GEOS-2 show only an impulsively stimulated pulsation of 250-s period. The wave fields at GEOS-2 imply that the satellite was earthward of a localised toroidal standing-wave resonance, which mapped to the ionosphere at least one degree South of the expected position. A radial profile of equatorial plasma mass density is inferred from the GEOS-2 and STARE results. This shows a radially increasing density near GEOS-2, and a radially decreasing density outside the satellite position.An interpretation of the event is given in which a tailward propagating hydromagnetic impulse directly stimulates field shells outside 7 RE to oscillate at their eigenperiods. In the region of increasing density near GEOS-2, a relatively highly-damped surface wave is excited. This feeds energy rapidly into a narrow monochromatic toroidal field-line resonance, which subsequently decays more slowly through ionospheric dissipation.  相似文献   

11.
12.
A significant sink of geomagnetic pulsation energy is due to Joule dissipation in the ionosphere. To investigate this we have computed the damping experienced by standing Alfvén waves in a dipole magnetic field. Both the uncoupled poloidal and toroidal modes are considered with Joule dissipation being introduced through a boundary condition which relates the electric and magnetic field strengths at the ionosphere, viz: 4πΣ pEc = b, where Σp is the height integrated Pederson conductivity. The damping rates are strongly dependent on the ionospheric conductivity and we find that typically the normalized damping rate, γω, is ~0.1 for nightside values of conductivity and ~0.01 for the dayside. This would account for the observed scale of bandwidths in pulsation signals. Away from regions of extreme damping we find γL?1Σp?1.  相似文献   

13.
A review of recent experimental results from studies of high latitude Pi 2 pulsations indicates that these pulsations are fundamentally related to the initiation of the auroral breakup and substorm. At high latitudes, the Pi 2's show their peak intensities in the region where the breakup begins and appear to remain in this region after the breakup has spread poleward. In addition, the Pi 2's occur simultaneously with, or before all other ionospheric phenomena associated with the breakup. The field aligned and ionospheric currents associated with the Pi 2 resemble those of a typical substorm, but the ionospheric currents are phase shifted compared to the field aligned current. The periodic oscillations of the Pi 2's are probably caused by a reflection of the initial field aligned current pulse from the auroral ionosphere. This pulse is trapped on dipolar field lines leading to multiple reflections from North and South auroral ionospheres.  相似文献   

14.
We show how large vertical components may be induced in geomagnetic pulsation signals because of the localised nature of the source. The effect is greatest when the signal varies on a horizontal scale length which is shorter than the skin depth of the signal in the Earth. However, the horizontal scale length is also constrained to be equal or larger than the height of the ionospheric E-region (~ 120 km) as signals varying on a shorter scale are severely attenuated. Such conditions are best met by high latitude pulsations and some recent high latitude observations are explained by our results. We find that the vertical component is best correlated with the horizontal component in the direction in which the signal varies most rapidly.  相似文献   

15.
During magnetically quiet or slightly disturbed nights, closely correlated oscillations of the geomagnetic field and the F-layer were observed by means of magnetometers and a vertical-icidence continuous-wave Doppler sounder at 3.57 MHz. The magnetic oscillations were mostly Pi2 pulsations with periods from 0.5 to 2 min, and an amplitude of 10?9 T corresponding to a Doppler shift of the order of 0.3 Hz. The observations cannot be explained by a dynamo-motor hypothesis assuming that the magnetic and ionospheric oscillations are caused by alternating E-layer currents, but they agree well with the theory of downgoing hydromagnetic waves. In particular, this theory explains the observed effects due to sporadic E-layer ionization and ion-neutral collisions. The results are found to differ substantially from those of other authors.  相似文献   

16.
Damped hydromagnetic eigenmodes are calculated numerically for a simple inhomogeneous plasma that is assumed to be contained within rigid perfectly conducting walls, and subject only to Joule dissipation. It is found that E must be included in order to obtain well-behaved damped eigenmodes that include resonant field lines, even though E is relatively very small. The thickness of the resonant region in the equatiorial plane, estimated from the model, is of order 10?3 of an L number, which seems about two orders of magnitude too small to match observed long period micropulsations. The fact that mid-latitude micropulsations sometimes lead in phase at the lower latitudes is shown probably to be an effect of the local increase in resonant period with latitude.  相似文献   

17.
The AMBER array contains four magnetometers and spans across the geomagnetic equator from L of 1 to an L of 1.4. In addition to filling the largest land-based gap in global magnetometer coverage, the AMBER array will address two fundamental areas of space physics: (1) the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and (2) ULF pulsation strength and its connection with equatorial electrojet strength at low/mid-latitude regions. Satellite observations show unique equatorial ionospheric structures in the African sector, though these have not been confirmed by observation from the ground due to lack of ground-based instruments in the region. In order to have a complete global understanding of equatorial ionosphere motions, deployment of ground-based magnetometers in Africa is essential. One focus of IHY is the deployment of networks of small instruments, including the development of research infrastructure in developing nations through the United Nations Basic Space Science (UNBSS) Small Instrument Array. Therefore, AMBER magnetometer array in partnership with parallel US funded GPS receivers in Africa will allow us to understand the electrodynamics that governs equatorial ionosphere motions. While AMBER routinely observes the F region plasma drift mechanism (E × B drift), the GPS stations will monitor the structure of plasma at low/mid-latitudes in the African sectors. In addition to new scientific discoveries and advancing the space science research into Africa by establishing scientific collaborations between scientists in the developing and developed nations, the AMBER project also contributes to developing the basic science of heliophysics through cross-disciplinary studies of universal process. This includes the creation of sustainable research/training infrastructure within the developing nations (Africa).  相似文献   

18.
19.
Cosmic noise absorption pulsation events observed with fast response riometers at Macquarie Island in the southern auroral zone have almost always been accompanied by Pi 1 micropulsations. A cross-spectral analysis of fast response riometer data and vertical component induction magnetometer data for one such event showed that, after the low frequency components are removed, the absorption A(t) is better correlated with the absolute value of the field Z(t) than with the recorded quantity dZdt. The peaks in Z(t) lag those in A(t) by one second while A(t) lags dZdt by abou second. Furthermore, many of the pulsations in Z(t) show a similar time asymmetry to that commonly observed in c.n.a. pulsations, viz. a more rapid onset time than decay time.These results are taken as evidence that the Pi 1 micropulsations observed from the ground during the recovery phase of an auroral substorm are brought about by fluctuations in the ionospheric currents which give rise to the magnetic bay, these fluctuations being due to conductivity changes resulting from particle precipitation. The lag between A(t) and Z > (t) is attributed to the self-inductance of the electrojet.  相似文献   

20.
Using magnetic data from the geostationary satellites of ATS 6 and SMS/GOES series, long-period geomagnetic pulsations, Psc 4 and Psc 5, associated with geomagnetic sudden commencements (SC's) were statistically analyzed. Local time and geomagnetic latitude dependence of the occurrence, and local time dependence of the period and the amplitude were examined for 218 SC's. For transverse Psc 5 pulsations which could be observed at all local times, the period was shorter and the amplitude was smaller near noon than in the morning and evening sides. Compressional Psc 5's, which were observed mainly from about 09.00 L.T. to midnight, had larger amplitude near noon. The period seemed to be longer near noon. As for Psc 4 pulsations the period tended to be shorter near noon. Psc 4's with the largest amplitude appeared near noon, but on the whole Psc 4's in the evening side had larger amplitude. The compressional Psc occurred more frequently near the geomagnetic equator (geomagnetic latitude φm≌ 5°N) than at higher latitude (φm≌ 9° ~ 12°N). We suggest that the transverse Psc 5 pulsations can be considered to be magnetic field-line resonant oscillations excited by impulsive waves, while the compressional Psc 5's may be oscillations localized near the geomagnetic equator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号