首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Auroral radar observations of transient ULF pulsations with latitudinally varying period have recently been reported. An event of this type is analysed using data from the Scandinavian Magnetometer Array, the STARE radar, and the GEOS-2 satellite. The magnetometers show long-period (~450 s) oscillations consistent with the pulsations observed in the ionosphere using STARE, and confirm that the geomagnetic field shells are resonating in the toroidal mode. There is also a localised, small-amplitude component with 250-s period South of the STARE pulsations. Electric field measurements at GEOS-2 show only an impulsively stimulated pulsation of 250-s period. The wave fields at GEOS-2 imply that the satellite was earthward of a localised toroidal standing-wave resonance, which mapped to the ionosphere at least one degree South of the expected position. A radial profile of equatorial plasma mass density is inferred from the GEOS-2 and STARE results. This shows a radially increasing density near GEOS-2, and a radially decreasing density outside the satellite position.An interpretation of the event is given in which a tailward propagating hydromagnetic impulse directly stimulates field shells outside 7 RE to oscillate at their eigenperiods. In the region of increasing density near GEOS-2, a relatively highly-damped surface wave is excited. This feeds energy rapidly into a narrow monochromatic toroidal field-line resonance, which subsequently decays more slowly through ionospheric dissipation.  相似文献   

2.
Nearly 1000 magnetopause crossings from HEOS-2, HEOS-1, OGO-5 and 5 IMP space-craft covering most of the northern and part of the southern dayside and near-Earth tail magnetopause (X >?15 RE) have been used to perform a detailed study of the three-dimensional shape and location of the magnetopause. The long-term influence of the solar wind conditions on the average magnetopause geometry has been reduced by normalising the radial distances of the observed magnetopause crossings to an average dynamical solar wind pressure. Best-fit ellipsoids have been obtained to represent the average magnetopause surface in geocentric solar ecliptic (GSE) and (as a function of tilt angle) in solar magnetic (SM) coordinates. Average geocentric distances to the magnetopause for the 1972–1973 solar wind conditions (density 9.4 cm?3, velocity 450 km s?1) are 8.8 RE in the sunward direction, 14.7 RE in the dusk direction, 13.4 RE in the dawn direction and 13.7 RE in the direction normal to the ecliptic plane. The magnetopause surface is tilted by 6.6° ± 2° in a direction consistent with that expected from the aberration effect of the radial solar wind. Our data suggest that the solar wind plasma density and the interplanetary magnetic field (IMF) orientation affect the distance to the polar magnetopause, larger distances corresponding to higher plasma density and southward fields. Our best-fit magnetopause surface shows larger geocentric distances than predicted by the model of Choe et al. [Planet Space Sci. 21, 485 (1973).] normalised to the same solar wind pressure.  相似文献   

3.
The ambient photoelectron spectrum above 300 km has been measured for a sample of 500 AE-E orbits during the period 13 December 1975 to 24 February 1976 corresponding to solar minimum conditions. The 24 h average and maximum ΣKp were 19 and 35, respectively. The photoelectron flux above 300 km was found to have an intensity and energy spectrum characteristic of the 250–300 km production region only when there was a low plasma density at the satellite altitude. Data taken at local times up to 3 h after sunrise were of this type and the escaping flux was observed to extend to altitudes above 900 km with very little modification, as predicted by several theoretical calculations. The flux at high altitudes was found to be extremely variable throughout the rest of the day, probably as a result of attenuation and energy loss to thermal plasma along the path of the escaping photoelectrons. This attenuation was most pronounced where the photoelectrons passed through regions of high plasma density associated with the equatorial anomaly. At altitudes of 600 km, the photoelectron fluxes ranged from severely attenuated to essentially unaltered—depending on the specific conditions, Photoelectron fluxes from conjugate regions were often less attenuated than those observed arriving from the high density regions immediately below. Comparison of the observed attenuations, photoelectron line broadening, and energy loss due to coulomb scattering from the thermal plasma with rough calculations based on stopping power and transmission coefficients of thermal plasma for fast electrons yielded order of magnitude agreement—satisfactory in view of the large number of assumptions necessary for the calculations. Overall, the impression of the high altitude photoelectron flux which emerges from this work is that the fluxes are extremely variable as a consequence of interactions with the thermal plasma whose density is in turn affected by electrodynamic and neutral wind processes in the underlying F region.  相似文献   

4.
Whistlers recorded at Eights (L ? 4) and Byrd (f ? 7), Antarctica have been used to study large-scale structure in equatorial plasma density at geocentric distances ?3–6 RE. The observations were made during conditions of magnetic quieting following moderate disturbance. The structures were detected by a “scanning” process involving relative motion, at about one tenth of the Earth's angular velocity or greater, between the observed density features and the observing whistler station or stations. Three case studies are described, from 26 March 1965, 11 May 1965 and 29 August 1966. The cases support satellite results by showing outlying high density regions at ?4–6 RE that are separated from the main plasmasphere by trough-like depressions ranging in width from ?0.2 to 1 RE. The structures evidently endured for periods of 12 hr or more. In the cases of deepest quieting their slow east-west motions with respect to the Earth are probably of dynamo origin. The cases observed during deep quieting (11 May 1965 and 29 August 1966) suggest the approximate rotation with the Earth of structure formed during previous moderate disturbance activity in the dusk sector. The third case, from 26 March 1965, may represent a structure formed near local midnight. The reported structures appear to be closely related to the bulge phenomenon. The present work supports other experimental and theoretical evidence that the dusk sector is one of major importance in the generation of outlying density structure. It is inferred that irregularities of the type reported here regularly develop near 4–5 RE during moderate substorm activity. This research suggests that at least a major class of the density structures that develop near 4 RE are tail-like in nature, joined to the main body of the plasmasphere. The apparent disagreement with Chappell's results from OGO 5, which are interpreted as showing regions of “detached” plasma beyond 5 RE, may be related to the pronounced spatial structure of electric fields observed in high-latitude ionospheric regions that are conjugate to the magnetospheric regions in which the OGO-5 observations were made.  相似文献   

5.
The ambient photoelectron spectrum below 300 km has been studied for a sample of 500 AE-E orbits taken during the period 13 December 1975 to 24 February 1976. During this solar minimum period, the average and maximum Σ Kp were 19 and 35 respectively. The agreement between the measured spectral shape and several recent calculations is extremely good. The daytime photoelectron spectrum below 300 km from 1 to 100 eV is illustrated by a number of spectra. Detailed 0–32 eV spectra are presented at various altitudes and solar zenith angles. High resolution 10–32eV spectra show the widths of the photoelectron lines in the spectrum and the variation of the linewidth and intensity with altitude. Data from the entire 500 orbit sample are combined into plots of the average flux over a number of altitude ranges up to 300 km at various local times and solar zenith angles. The data show that the photoelectron flux below 300 km is remarkably constant (typical variation less than ±50%) over a period of several months. The photoelectron lines between 20 and 30 eV are extremely sharp when the total plasma density is low but broaden significantly at high altitudes as the plasma density builds up during the day. The N2 vibration-rotation excitation dip at 2.3 eV is strongest at the lowest altitudes and decreases with increasing altitude and plasma density. The absolute accuracy of the experiment is discussed in detail and a correction factor for previously published AE-E fluxes is given.  相似文献   

6.
Magnetic field measurements from 133 low-latitude transits of the HEOS-1 satellite through the magnetosphere have been used to analyse the low-frequency pulsation activity in the outer regions of the geomagnetic field. Providing full longitude coverage in the sunward hemisphere at geocentric distances larger than ~7.5 Re, this survey complements previous low-frequency pulsation data from satellites at smaller geocentric distances. Several giant PC5 events, each being mainly compressional and lasting 1–2 hr, are described in detail and it is shown that this phenomenon is relatively common in the 8–12 Re, geocentric distance range near dusk. A depression of the ambient field magnitude always accompanied the events, suggesting that they are associated with a region of enhanced plasma pressure. The properties of these wave events are compared with the predictions of current micropulsation theories involving a Kelvin-Helmholtz generation mechanism and field-line resonance. Unlike the PC5 events observed nearer Earth, these events were not obviously related to periods of enhanced geomagnetic activity.  相似文献   

7.
Dipolarization fronts in the magnetotail plasma sheet   总被引:1,自引:0,他引:1  
We present a THEMIS study of a dipolarization front associated with a bursty bulk flow (BBF) that was observed in the central plasma sheet sequentially at X=−20.1, −16.7, and −11.0RE. Simultaneously, the THEMIS ground network observed the formation of a north-south auroral form and intensification of westward auroral zone currents. Timing of the signatures in space suggests earthward propagation of the front at a velocity of 300 km/s. Spatial profiles of current and electron density on the front reveal a spatial scale of 500 km, comparable to an ion inertial length and an ion thermal gyroradius. This kinetic-scale structure traveled a macroscale distance of 10RE in about 4 min without loss of coherence. The dipolarization front, therefore, is an example of space plasma cross-scale coupling. THEMIS observations at different geocentric distances are similar to recent particle-in-cell simulations demonstrating the appearance of dipolarization fronts on the leading edge of plasma fast flows in the vicinity of a reconnection site. Dipolarization fronts, therefore, may be interpreted as remote signatures of transient reconnection.  相似文献   

8.
The influence of low-frequency electrostatic turbulence on the flux of precipitating magnetospheric electrons is analyzed in the framework of the quasilinear kinetic equation. It is shown that an electron population in a turbulent region, with an electric field parallel to the ambient magnetic field, can be separated into two parts by introducing a pitch angle dependent runaway velocity vr(θ). Lower energy electrons with parallel velocity v < vr are effectively scattered by plasma waves, so that they remain in the main population and are subjected to an anomalous transport equation. A distribution function fv?4 (or the particle flux vs energy JE?1) is established in this velocity range. Faster electrons with v ? vr are freely accelerated by a parallel electric field, so that they contribute directly to hot electron fluxes which are observed at ionospheric altitudes. New expressions are derived for the magnetic-field aligned current and the electron energy flux implied by this model. These expressions agree well with empirical relations observed in auroral inverted-V structures.  相似文献   

9.
A numerical model of current F-region theory is use to calculate the diurnal variation of the mid-latitude ionospheric F-region over Millstone Hill on 23–24 March 1970, during quiet geomagnetic conditions. From the solar EUV flux, the model calculates at each altitude and time step primary photoelectron spectra and ionization rates of various ion species. The photoelectron transport equation is solved for the secondary ionization rates, photoelectron spectra, and various airglow excitation rates. Five ion continuity equations that include the effects of transport by diffusion, magnetospheric-ionospheric plasma transport, electric fields, and neutral winds are solved for the ion composition and electron density. The electron and ion temperatures are also calculated using the heating rates determined from chemical reactions, photoelectron collisions, and magnetospheric-ionospheric energy transport. The calculations are performed for a diurnal cycle considering a stationary field tube co-rotating with the Earth; only the vertical plasma drift caused by electric fields perpendicular to the geomagnetic field line is allowed but not the horizontal drift. The boundary conditions used in the model are determined from the incoherent scatter radar measurements of Te, Ti and O+ flux at 800km over Millstone Hill (Evans, 1971a). The component of the neutral thermospheric winds along the geomagnetic field has an important influence on the overall ionospheric structure. It is determined from a separate dynamic model of the neutral thermosphere, using incoherent scatter radar measurements.The calculated diurnal variation of the ionospheric structure agrees well with the values measured by the incoherent scatter radar when certain restrictions are placed on the solar EUV flux and model neutral atmospheric compositions. Namely, the solar EUV fluxes of Hinteregger (1970) are doubled and an atomic oxygen concentration of at least 1011cm3 at 120 km is required for the neutral model atmosphere. Calculations also show that the topside thermal structure of the ionosphere is primarily maintained by a flow of heat from the magnetosphere and the night-time F2-region is maintained in part by neutral winds, diffusion, electric fields, and plasma flow from the magnetosphere. The problem of maintaining the calculated night-time ionosphere at the observed values is also discussed.  相似文献   

10.
Bursts of energetic particles have been observed simultaneously by IMP-6 (≈ 24 RE, Rp ? 0.21 MeV) and IMP-8 (≈ 29.7 RE, Ep ? 0.29 MeV, Ee ? 0.22 MeV) in the distant magnetotail on Nov. 26, 1973 at a time when the auroral electrojet showed significant intensification. During one of the bursts IMP-6 was briefly in the duskside plasma sheet and IMP-8 was only a few RE away at the magnetopause/boundary layer, as revealed from magnetic field and plasma measurements. The time behaviour of the proton intensities and anisotropies indicate that the particles have their origin in the plasma sheet. Measurements of the energy spectra during one of the bursts in the boundary layer/magnetosheath show significant variation of the differential exponent and suggest a rigidity-dependent escape of energetic particles from the plasma sheet into the magnetosheath. With the high temporal resolution of IMP-8 data intensity peaks of relativistic electrons and/or energetic protons could be detected at the magnetopause when Bx ≈ 0 γ. They appear superimposed on the general intensity time profile of the burst and last 2–3 min. It is concluded that some of the relativistic electrons can escape from the plasma sheet very fast and form a temporally-varying layer at the magnetopause.  相似文献   

11.
The distance to the dayside magnetopause is statistically analyzed in order to detect the possible dependence of the dayside magnetic flux on the polarity of the interplanetary magnetic field. The effect of changing solar wind pressure is eliminated by normalizing the observed magnetopause distances by the simultaneous solar wind pressure data. It is confirmed that the normalized size of the dayside magnetosphere at the time of southward interplanetary magnetic field is smaller than that at the time of northward interplanetary magnetic field. The difference in the magnetopause position between the two interplanetary field polarity conditions ranges from 0 to 2RE. Statistics of the relation between the magnetopause distance and the magnetic field intensity just inside the magnetopause testifies that the difference in the magnetopause position is not due to a difference in the magnetosheath plasma pressure. The effect of the southward interplanetary magnetic field is seen for all longitudes and latitudes investigated (|λGM|? 45°, |φSM|? 90°). These results strongly suggest that a part of the dayside magnetic flux is removed from the dayside at the time of southward interplanetary magnetic field.  相似文献   

12.
The sunlit portion of planetary ionospheres is sustained by photoionization. This was first confirmed using measurements and modelling at Earth, but recently the Mars Express, Venus Express and Cassini-Huygens missions have revealed the importance of this process at Mars, Venus and Titan, respectively. The primary neutral atmospheric constituents involved (O and CO2 in the case of Venus and Mars, O and N2 in the case of Earth and N2 in the case of Titan) are ionized at each object by EUV solar photons. This process produces photoelectrons with particular spectral characteristics. The electron spectrometers on Venus Express and Mars Express (part of ASPERA-3 and 4, respectively) were designed with excellent energy resolution (ΔE/E=8%) specifically in order to examine the photoelectron spectrum. In addition, the Cassini CAPS electron spectrometer at Saturn also has adequate resolution (ΔE/E=16.7%) to study this population at Titan. At Earth, photoelectrons are well established by in situ measurements, and are even seen in the magnetosphere at up to 7RE. At Mars, photoelectrons are seen in situ in the ionosphere, but also in the tail at distances out to the Mars Express apoapsis (∼3RM). At both Venus and Titan, photoelectrons are seen in situ in the ionosphere and in the tail (at up to 1.45RV and 6.8RT, respectively). Here, we compare photoelectron measurements at Earth, Venus, Mars and Titan, and in particular show examples of their observation at remote locations from their production point in the dayside ionosphere. This process is found to be common between magnetized and unmagnetized objects. We discuss the role of photoelectrons as tracers of the magnetic connection to the dayside ionosphere, and their possible role in enhancing ion escape.  相似文献   

13.
The theory of dissipation of ionospheric electric currents is extended to include viscosity. In a steady state (i.e. usually above about 140 km altitude) the joule plus viscous heating may be calculated by μ∇2v. E × B/B2. At lower altitudes where viscosity may, in some circumstances, be relatively unimportant the joule dissipation is calculated by the usual formula j. (E + v × B). In a prevalent model of the auroral electrojets it is found that the joule heating can be much more intense outside auroral forms than within them. Heating due to auroral electrojets cause a semi-annual variation in the thermosphere. Movement caused by auroral electric fields make a contribution to the super-rotation of the midlatitude upper atmosphere. Random electric fields lead to an eddy ‘viscosity’ or ‘exchange coefficientrs in the upper thermosphere of magnitude ρER2/B3tR2|∇E|. where tR is the correlation time of the random component of electric fields ER and ρ is air density. Theoretical conditions for significant heating by field-aligned currents are derived.  相似文献   

14.
A quasi-self-consistent axially symmetric model of a storm-time ring current that has evolved quasi-adiabatically through inward motion from a prestorm state is presented in which the disturbance field as a function of geocentric distance, r, in the equatorial plane (including the value, H, at r = 0 from which Dst can be found), the beta of the plasma as a function of r, and the ring current magnetic moment are all given in terms of analytic expressions, having only two independent ring current parameters: the geocentric distance to the inner edge of the ring current, R, and the distance at which the beta of the plasma is unity, k—a constant of the model. The model is used to find H as a function of R at constant k, which corresponds to the growth of Dst as the ring current moves earthward, and to illustrate how the radial profile of the disturbance field varies also as the ring current moves earthward. Comparison with published S3-A storm-time, particle and field data shows reasonable agreement. The model is also able to fit the empirically determined relationship between Dst and the equatorward extension of quiet auroral arcs. This result applied to the great magnetic storm of September 1859 predicts a Dst of the order of 2000 nT, a value for which the sparse magnetometer data for that storm offer some support. Because the model (quasi) self-consistently determines the particle distribution function by allowing it to (quasi) adiabatically evolve in a field of its own making, the model avoids difficulties encountered by previous ring current models in which the particle distribution function had to be assumed. For example, the ring current magnetic moment is not limited to values less than the geomagnetic dipole moment, and null points in the field do not develop even in very high beta situations.  相似文献   

15.
The near-Earth micrometeoroid data of Prospero has been re-appraised in the light of recent data from the HEOS satellite and other detectors which sampled the near-Earth region. This has enabled a cumulative micrometeoroid flux-mass curve to be defined for this region which shows a pronounced flux enhancement above the similar, more detailed, curve obtained at greater geocentric distances. The latter curve is shown to be consistent with flux data obtained from recent lunar microcrater studies. The trend of increasing flux with decreasing geocentric distance is now positively established. The high flux which is detected at Prospero altitudes, a majority fraction of which appears to occur in clusters, a feature also apparent from HEOS data, is shown to be consistent with a model for the origin of near-Earth micrometeoroids based on the fragmentation of larger meteors in the upper atmosphere.  相似文献   

16.
We consider the process of flux tubes straightening in the Venus magnetotail on the basis of MHD model. We estimate the distance x t, where flux tubes are fully straightened due to the magnetic tension and the magnetotail with the characteristic geometry of field lines (“slingshot” geometry) ends. We investigate the influence of the transversal current sheet scale on the process of flux tubes straightening. The assumption of a thin current sheet allows to obtain a lower estimate of the magnetotail length, x t > 31R V (R V is the Venus radius), while the assumption of a broad current sheet allows to obtain an upper estimate, x t < 44R V. We show that kinetic effects associated with the losses of particles with small pitch angles from the flux tube and the influx of magnetosheath plasma into the flux tube do not significantly affect the estimate of the magnetotail length. The model predicts the existence of energetic fluxes of protons H+ (2–5 keV) and oxygen ions O+ (35–80 keV) in the distant tail. We discuss the magnetotail structure at x > x t.  相似文献   

17.
The plasmapause position is determined by the innermost equipotential surface which is tangent to the ‘Roche-Limit’ surface of the ionospheric plasma filling the magnetosphere. When the thermal particles corotate with the Earth's angular velocity, the ‘Roche-Limit’ equatorial distance is Lc=5.78 [RE]. When the angular convection velocity is evaluated from the quiet time electric field distribution E3 of McIIwain (1972), Lc depends on the local time. Its minimum value is then LC=4.5Near 2400 LT, and the plasmapause shape and position satisfactorily fit the observations. The diffusive equilibrium dnesity distribution appropriated inside the plasmasphere, becomes convectively unstable beyond L = Lc, where the collisions type of model satisfactorily represents the observations. In the intermediate region between the plasmapause and the last closed magnetic field line, contimues ionization fluxes are expected to flow out of the midlatitude ionosphere  相似文献   

18.
The plasma lines observed by the French incoherent scatter radar during the period 1973–1974 are studied. Two methods are used to determine the steady-state photoelectron flux from plasma line measurements; one using a Maxwellian model for the photoelectron distribution and the other by solving (numerically) the differential equation that is satisfied by the distribution.The direct numerical calculation of the photoelectron flux is used to obtain theoretical kTp values which are compared with those from the plasma line observation. The comparison leads to the conclusion that there must be a sharp increase of the photoelectron flux when the energy decreases below 4 ~ 5 eV.This result, in agreement with rocket and satellite measurements of the low energy photoelectron flux, is used to bear a new insight to the problem of the electron-gas heat balance: the problem is reduced to the need of an additional photoelectron flux production below 5 eV.  相似文献   

19.
Data series for the same time interval of characteristic solar parameters (sunspot number R; flux at 2.8 GHz), ionospheric parameters (critical frequency of the E-region) and atmospheric parameters (stratospheric and tropospheric temperatures T) have been analysed by the maximum-entropy method, in order to study the occurrence of periodicities in those parameters in the range from 12 to 150 days. Digital filtering of the most pronounced of the detected periods (mainly in the range between 19 to 33 days) shows a similar but not identical feature in the time interval 1974–1978. It is demonstrated that sunspot number and solar radio flux at 2.8 GHz behave in a similar way on the average, and at periods greater than 20 days. Although a number of similar periods occurred in solar, ionospheric and atmospheric parameters, cross-correlation estimations only show a relationship between periods in solar and ionospheric data, but none between solar data and stratospheric and tropospheric temperatures; exception: T (35 km) correlates with R at 12.3 days. The most obvious correlation was found between the critical frequency of the E layer and the solar flux at 2.8 GHz at a frequency of approximately 1/23 days–1.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

20.
Coordinated observations involving ion composition, thermal plasma, energetic particle, and ULF magnetic field data from GEOS 1 and 2 often reveal the presence of electromagnetic ion cyclotron and magnetosonic waves, which are distinguished by their respective polarization characteristics and frequency spectra. The ion cyclotron waves are identified by a magnetic field perturbation that lies in a plane perpendicular to the Earth's magnetic field B0 and propagate along B0. They are associated with the abundance of cold He+ in the presence of anisotropic pitch angle distributions of ions having energies E > 20 keV, and were observed at frequencies near the He+ gyrofrequency. The magnetosonic waves are characterized by a magnetic field perturbation parallel to B0 and thus seem to be propagating perpendicular to the Earth's magnetic field. They often occur at harmonics (not always including the fundamental) at the proton gyrofrequency and are associated with phase-space-density distributions that peak at energies E ~ 5–30 keV and at a pitch angle of 90°. Such a ring-like distribution is shown to excite instability in the magnetosonic mode near harmonics of the proton gyrofrequency. Magnetosonic waves are associated in other cases with sharp spatial gradients in energetic ion intensity. Such gradients are encountered in the early afternoon sector (as a consequence of the drift shell distortion caused by the convection electric field) and could likewise constitute a source of free energy for plasma instabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号