首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis is made of giant pulsation (Pg) data recorded at ground stations in the Northern Auroral Zone in Scandanavia (mainly at Tromsø, L = 6.4 and Kiruna, L = 5.5) during the period September 1976 to December 1977. They are shown to have a meridional variation of amplitude and polarization consistent with a field line resonance structure and their vertical component behaviour suggests that they also have a rapid azimuthal phase variation. Limited data from conjugate stations at L = 4.4 are used to show that Pg's are odd mode oscillations of the field line. Pg's are equated to the observation of a unique compressional wave in space at synchronous orbit and it is suggested that they result from the drift wave instability of the compressional Alfven wave at the outer edge of the quiet time ring current.  相似文献   

2.
We have examined the polarizations of local night impulsive (Pi2-type) hydromagnetic waves measured on the ground during a field campaign using three magnetometer stations spaced in latitude near L ~ 1.9. We find, contrary to our results at these latitudes for more continuous waves on the dayside, that the sense of rotation and phases of the waves do not change over the array for a given event. We also find, statistically, that the ellipse orientations in the horizontal plane change from the first quadrant (Northeast/Southwest direction) for pre-local midnight events, to the second quadrant (Northwest/Southeast direction) for post-local midnight events. The wave ellipticities are found to be left-handed, independent of local time. These latter two results cannot be reconciled quantitatively in terms of hydromagnetic wave resonance theory for low latitude Pi2 events, where the plasmapause acts like a resonance region for one of the high latitude Pi2 source frequencies. The results are qualitatively in agreement with expectations from the substorm electrojet current wedge concept.  相似文献   

3.
This work investigates the effect of guiding field on low-frequency electromagnetic instabilities in collisionless current sheets using the dispersion relation obtained in the collisionless and compressible magnetohydrodynamic model. The results in the following three cases show that the guiding field can strongly affect the 3-dimensional propagating disturbed waves. (1) On the middle plane of the current sheet (z = 0), if there is no guiding field, then no instability is observed. But if there a guiding field, then instability can take place. (2) Near the middle plane of the current sheet (z = 0.2), the current sheet becomes unstable. With increasing the intensity of the guiding field, the instability grows obviously. The wave mode may be whistler or low-hybrid wave. (3) Near the edge of the current sheet (z = 0.8), the guiding field exhibits no evident effect and the unstable wave mode is a quasi-parallel whistler wave.  相似文献   

4.
A quiet-time Pc 5 event (designated Spacequake) of March 18, 1974, first noted on the Fort Churchill magnetopram, was studied using global data. Its amplitude was found to be largest in the northern part of the auroral zone and its period seemed to increase with latitude. The clockwise polarization of the event noted at Baker Lake and higher latitudes changed to counterclockwise at Fort Churchill in X-Y, X-Z and Y-Z planes. The resonance of a field line (L ? 10) excited due to an instability of the Kelvin-Helmholtz type may have given rise to the observed event. It is conjectured that the cause of instability at this high altitude was internal convection of the magnetosphere. Similar quiet-time events from four Canadian observatories were selected from approximately 11 years of magnetograms and their statistical analysis revealed that (i) occurrences maximized near dawn and dusk (ii) the amplitude-latitude profile peaked at Great Whale River (L ? 6.67), (iii) periods increased with increasing geomagnetic latitudes, (iv) a large number of events occurred in January, February and March every year, and (v) frequency of occurrence increased with increasing sunspot numbers. Comparison of these results with those available in the literature from analyses of satellite data clearly indicate that quiet-time Pc 5 events (Spacequakes) originate in the outer magnetosphere.  相似文献   

5.
The Kelvin-Helmholtz instability is believed to be an important means for the transfer of energy, plasma, and momentum from the solar wind into planetary magnetospheres, with in situ measurements reported from Earth, Saturn, and Venus. During the first MESSENGER flyby of Mercury, three periodic rotations were observed in the magnetic field data possibly related to a Kelvin-Helmholtz wave on the dusk side magnetopause. We present an analysis of the event, along with comparisons to previous Kelvin-Helmholtz observations and an investigation of what influence finite ion gyro radius effects, believed to be of importance in the Hermean magnetosphere, may have on the instability. The wave signature does not correspond to that of typical Kelvin-Helmholtz events, and the magnetopause direction does not show any signs of major deviation from the unperturbed case. There is thus no indication of any high amplitude surface waves. On the other hand, the wave period corresponds to that expected for a Kelvin-Helmholtz wave, and as the dusk side is shown to be more stable than the dawn side, we judge the observed waves not to be fully developed Kelvin-Helmholtz waves, but they may be an initial perturbation that could cause Kelvin-Helmholtz waves further down the tail.  相似文献   

6.
The paper deals with a nonlinear instability of quasi-monochromatic VLF signals and whistlers in the Earth's magnetosphere due to induced scattering. The instability growth rates and the threshold values of the signal amplitude at which the instability occurs have been found. The instability is shown to be more effectively excited when the initial transverse VLF wave transforms into plasma oscillations at the lower hybrid resonance (LHR) frequency and may be responsible for the phenomena such as trigger LHR emission, the amplitude and phase modulation of artificial VLF signals and be the origin of some types of discrete VLF signals.  相似文献   

7.
Two envelope soliton events below the H + gyrofrequency with localized density depletion were discovered in low auroral region (∼ 1760 km)by Freja satellite. These events were correlated in time with the observations of the ratio of oxygen ion density to hydrogen ion density sharp increase and the electrons energization. These envelope solitons have a characteristic frequency at ∼ 180–190 Hz, which are obviously different from the electron-ion lower hybrid wave frequency and the helium ion gyrofrequency in low auroral plasma, but it is close to the resonancefrequency of hydrogen ion-oxygen ion hybrid wave. A modulational instability model of an ion-ion hybrid wave has been discussed here. It is found that the envelope soliton below the H + gyrofrequency in low auroral region may be generated by this modulational instability on condition that the local oxygen ion density is larger than the local hydrogen ion density. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Starting with MHD equations we study the linear theory of stability of a plasma column with flow. From the dispersion equation derived, we calculate the dispersion curves and thereby estimate the effect of a flow in the linear theory. We find that, like the toroidal component of the magnetic field, a flow promotes instability: the rate of growth of instability may be increased by one or two orders of magntiude and the wavelength range for instability is also increased. When the flow velocity is large, the m=o and m=1 modes may appear almost together. Finally, a qualitative interpretation of three typical solar events is given on the basis of our results.  相似文献   

9.
We study global non-axisymmetric oscillation modes trapped near the inner boundary of an accretion disc. Observations indicate that some of the quasi-periodic oscillations (QPOs) observed in the luminosities of accreting compact objects (neutron stars, black holes and white dwarfs) are produced in the innermost regions of accretion discs or boundary layers. Two simple models are considered in this paper. The magnetosphere–disc model consists of a thin Keplerian disc in contact with a uniformly rotating magnetosphere with and low plasma density, while the star–disc model involves a Keplerian disc terminated at the stellar atmosphere with high density and small density scaleheight. We find that the interface modes at the magnetosphere–disc boundary are generally unstable due to Rayleigh–Taylor and/or Kelvin–Helmholtz instabilities. However, differential rotation of the disc tends to suppress Rayleigh–Taylor instability, and a sufficiently high disc sound speed (or temperature) is needed to overcome this suppression and to attain net mode growth. On the other hand, Kelvin–Helmholtz instability may be active at low disc sound speeds. We also find that the interface modes trapped at the boundary between a thin disc and an unmagnetized star do not suffer Rayleigh–Taylor or Kelvin–Helmholtz instability, but can become unstable due to wave leakage to large disc radii and, for sufficiently steep disc density distributions, due to wave absorption at the corotation resonance in the disc. The non-axisymmetric interface modes studied in this paper may be relevant to the high-frequency QPOs observed in some X-ray binaries and in cataclysmic variables.  相似文献   

10.
A parametric excitation of the Alfvén wave (kA, ωa) by the magnetosonic wave (K1fs, ω1fs), which propagates obliquely to the static magnetic field, has been analyzed. The theoretical model for a one-fluid with uniform, unbounded, ideally conducting and compressible plasma is employed. The resonance conditions are chosen such as, k1fs = k1fs + kA and ω1fs ? ωA = δω2fs. The p wave is assumed to be strong enough, so that the pump wave is given as a constant. In both the case of the standing and the propagating pump the growth rates of the excited waves depend on not only the pump power but also the β-ratio. In the standing pump the threshold pump intensity of the oscillating instability is zero at the perfect matching. It is found that we can obtain a larger growth rate of the parametric excitation of Alfvén wave by the fast magnetosonic pump wave for θ1f ~ 70–80° and the occurrence regions of parametric excitations are localized at the resonance point in the magnetosphere (βme/mi). It is concluded that the parametric instability of Pc3 range HM-waves is the more possible theory than the linear resonance theory.  相似文献   

11.
F. MarzariH. Scholl 《Icarus》2002,159(2):328-338
We have numerically explored the mechanisms that destabilize Jupiter's Trojan orbits outside the stability region defined by Levison et al. (1997, Nature385, 42-44). Different models have been exploited to test various possible sources of instability on timescales on the order of ∼108 years.In the restricted three-body model, only a few Trojan orbits become unstable within 108 years. This intrinsic instability contributes only marginally to the overall instability found by Levison et al.In a model where the orbital parameters of both Jupiter and Saturn are fixed, we have investigated the role of Saturn and its gravitational influence. We find that a large fraction of Trojan orbits become unstable because of the direct nonresonant perturbations by Saturn. By shifting its semimajor axis at constant intervals around its present value we find that the near 5:2 mean motion resonance between the two giant planets (the Great Inequality) is not responsible for the gross instability of Jupiter's Trojans since short-term perturbations by Saturn destabilize Trojans, even when the two planets are far out of the resonance.Secular resonances are an additional source of instability. In the full six-body model with the four major planets included in the numerical integration, we have analyzed the effects of secular resonances with the node of the planets. Trojan asteroids have relevant inclinations, and nodal secular resonances play an important role. When a Trojan orbit becomes unstable, in most cases the libration amplitude of the critical argument of the 1:1 mean motion resonance grows until the asteroid encounters the planet. Libration amplitude, eccentricity, and nodal rate are linked for Trojan orbits by an algebraic relation so that when one of the three parameters is perturbed, the other two are affected as well. There are numerous secular resonances with the nodal rate of Jupiter that fall inside the region of instability and contribute to destabilize Trojans, in particular the ν16. Indeed, in the full model the escape rate over 50 Myr is higher compared to the fixed model.Some secular resonances even cross the stability region delimited by Levison et al. and cause instability. This is the case of the 3:2 and 1:2 nodal resonances with Jupiter. In particular the 1:2 is responsible for the instability of some clones of the L4 Trojan (3540) Protesilaos.  相似文献   

12.
The spatial structure and stability properties of the coupled Alfvén and drift compressional modes in a space plasma are studied in a gyrokinetic framework in a model taking into account field-line curvature and plasma and magnetic field inhomogeneity across the magnetic shells. The perturbation is found to be localized in two transparent regions, the Alfvén and drift compressional transparent regions, where the wave vector radial component squared is positive. Both regions are bounded by the resonance and cut-off surfaces, where the wave vector radial component turns into infinity and zero, respectively. An existence of the drift compressional resonance is one of the most important results of this work. It is argued that on the surface of this resonance the longitudinal and azimuthal components of the wave's magnetic field have a pole and logarithmic singularities, respectively. The instability conditions and expressions for the growth rate of the coupled modes have been obtained. In the Alfvénic transparent region, an instability occurs in the presence of the negative plasma temperature gradient. This instability does not lead to a non-stationary wave behavior: all the energy gained from the resonance particles was finally absorbed owing to any dissipation process. In a drift compressional transparent region, a necessary condition for the instability is the growth of the temperature with the radial coordinate. The growth rate is almost independent of the radial coordinate, which means that the wave energy gained from the particles cannot disappear. It will lead to an ever increasing wave amplitude, and no stationary picture for the unstable drift compressional mode is possible.  相似文献   

13.
Magnetic field measurements from 133 low-latitude transits of the HEOS-1 satellite through the magnetosphere have been used to analyse the low-frequency pulsation activity in the outer regions of the geomagnetic field. Providing full longitude coverage in the sunward hemisphere at geocentric distances larger than ~7.5 Re, this survey complements previous low-frequency pulsation data from satellites at smaller geocentric distances. Several giant PC5 events, each being mainly compressional and lasting 1–2 hr, are described in detail and it is shown that this phenomenon is relatively common in the 8–12 Re, geocentric distance range near dusk. A depression of the ambient field magnitude always accompanied the events, suggesting that they are associated with a region of enhanced plasma pressure. The properties of these wave events are compared with the predictions of current micropulsation theories involving a Kelvin-Helmholtz generation mechanism and field-line resonance. Unlike the PC5 events observed nearer Earth, these events were not obviously related to periods of enhanced geomagnetic activity.  相似文献   

14.
An analysis of new observations showing fine structures consisting of narrowband fiber bursts as substructures of large-scale zebra-pattern stripes is carried out. We study four events using spectral observations taken with a newly built spectrometer located at the Huairou station, China, in the frequency range of 1.1 – 2.0 GHz with extremely high frequency and time resolutions (5 MHz and 1.25 ms). All the radio events were analyzed by using the available satellite data (SOHO LASCO, EIT, and MDI, TRACE, and RHESSI). Small-scale fibers always drift to lower frequencies. They may belong to a family of ropelike fibers and can also be regarded as fine structures of type III bursts and broadband pulsations. The radio emission was moderately or strongly polarized in the ordinary wave mode. In three main events fiber structure appeared as a forerunner of the entire event. All four events were small decimeter bursts. We assume that for small-scale fiber bursts the usual mechanism of coalescence of whistler waves with plasma waves can be applied, and the large-scale zebra pattern can be explained in the conventional double plasma resonance (DPR) model. The appearance of an uncommon fine structure is connected with the following special features of the plasma wave excitation in the radio source: Both whistler and plasma wave instabilities are too weak at the very beginning of the events (i.e., the continuum was absent), and the fine structure is almost invisible. Then, whistlers generated directly at DPR levels “highlight” the radio emission only from these levels owing to their interaction with plasma waves.  相似文献   

15.
Ming Xiong  Xing Li 《Solar physics》2012,279(1):231-251
Using linear Vlasov theory of plasma waves and quasi-linear theory of resonant wave–particle interaction, the dispersion relations and the electromagnetic field fluctuations of fast and Alfvén waves are studied for a low-beta multi-ion plasma in the inner corona. Their probable roles in heating and accelerating the solar wind via Landau and cyclotron resonances are quantified. In this paper, we assume that i) low-frequency Alfvén and fast waves, emanating from the solar surface, have the same spectral shape and the same amplitude of power spectral density (PSD); ii) these waves eventually reach ion cyclotron frequencies due to a turbulence cascade; iii) kinetic wave–particle interaction powers the solar wind. The existence of alpha particles in a dominant proton/electron plasma can trigger linear mode conversion between oblique fast-whistler and hybrid alpha–proton cyclotron waves. The fast-cyclotron waves undergo both alpha and proton cyclotron resonances. The alpha cyclotron resonance in fast-cyclotron waves is much stronger than that in Alfvén-cyclotron waves. For alpha cyclotron resonance, an oblique fast-cyclotron wave has a larger left-handed electric field fluctuation, a smaller wave number, a larger local wave amplitude, and a greater energization capability than a corresponding Alfvén-cyclotron wave at the same wave propagation angle θ, particularly at 80°<θ<90°. When Alfvén-cyclotron or fast-cyclotron waves are present, alpha particles are the chief energy recipient. The transition of preferential energization from alpha particles to protons may be self-modulated by a differential speed and a temperature anisotropy of alpha particles via the self-consistently evolving wave–particle interaction. Therefore, fast-cyclotron waves, as a result of linear mode coupling, constitute a potentially important mechanism for preferential energization of minor ions in the main acceleration region of the solar wind.  相似文献   

16.
We investigate the interaction of three consecutive large-scale coronal waves with a polar coronal hole, simultaneously observed on-disk by the Solar TErrestrial Relations Observatory (STEREO)-A spacecraft and on the limb by the PRoject for On-Board Autonomy 2 (PROBA2) spacecraft on 27 January 2011. All three extreme ultraviolet (EUV) waves originate from the same active region, NOAA 11149, positioned at N30E15 in the STEREO-A field of view and on the limb in PROBA2. For the three primary EUV waves, we derive starting velocities in the range of ≈?310 km?s?1 for the weakest up to ≈?500 km?s?1 for the strongest event. Each large-scale wave is reflected at the border of the extended coronal hole at the southern polar region. The average velocities of the reflected waves are found to be smaller than the mean velocities of their associated direct waves. However, the kinematical study also reveals that in each case the ending velocity of the primary wave matches the initial velocity of the reflected wave. In all three events, the primary and reflected waves obey the Huygens–Fresnel principle, as the incident angle with ≈?10° to the normal is of the same magnitude as the angle of reflection. The correlation between the speed and the strength of the primary EUV waves, the homologous appearance of both the primary and the reflected waves, and in particular the EUV wave reflections themselves suggest that the observed EUV transients are indeed nonlinear large-amplitude MHD waves.  相似文献   

17.
We study the scattering of low-energy cosmic rays (CRs) in a turbulent, compressive magnetohydrodynamic (MHD) fluid. We show that compressible MHD modes – fast or slow waves with wavelengths smaller than CR mean free paths induce cyclotron instability in CRs. The instability feeds the new small-scale Alfvénic wave component with wavevectors mostly along magnetic field, which is not a part of the MHD turbulence cascade. This new component gives feedback on the instability through decreasing the CR mean free path. We show that the ambient turbulence fully suppresses the instability at large scales, while wave steepening constrains the amplitude of the waves at small scales. We provide the energy spectrum of the plane-parallel Alfvénic component and calculate mean free paths of CRs as a function of their energy. We find that for the typical parameters of turbulence in the interstellar medium and in the intercluster medium the new Alfvénic component provides the scattering of the low-energy CRs that exceeds the direct resonance scattering by MHD modes. This solves the problem of insufficient scattering of low-energy CRs in the turbulent interstellar or intracluster medium that was reported in the literature.  相似文献   

18.
A unified theory of low frequency instabilities in a two component (cold and hot) finite-β magnetospheric plasma is suggested. It is shown that the low frequency oscillations comprise two wave modes : compressional Alfvén and drift mirror mode. No significant coupling between them is found in the long-wave approximation. Instabilities due to spontaneous excitation of these oscillations are considered. It is found that the temperature anisotropy significantly influences the instability growth rate at low frequency. A new instability due to the temperature anisotropy and density gradient appears when the frequency of compressional Alfvén waves is close to the drift mirror mode frequency. The theoretical predictions are compared in detail with the Pc5 event of 27 October 1978 observed simultaneously by the GEOS 2 satellite and the STARE radar facility. It is shown that the experimental results can be interpreted in terms of a compressional Alfvén wave driven by the drift anisotropy instability.  相似文献   

19.
Recent theoretical work has predicted the possible existence of “quarter-wave” ULF pulsation resonances, in which the wave electric field has a near-node in one ionosphere and an antinode in the conjugate ionosphere. Eigenvalues are derived for quarter-wave toroidal and guided poloidal resonances for a range of L-values and plasma density distributions. From these eigenvalues, resonant periods can be obtained.Three pulsation events with anomalously long periods (when interpreted as half-waves) are examined in the light of these results. It is decided that only one event is a good candidate for quarter-wave status; this event seems likely to be a driven resonance effectively in the quarter-wave guided poloidal mode.  相似文献   

20.
The identification of substorm onset is quite important in studying the mechanism of excitation of substorm disturbances. At present, one of the most practical methods to identify accurately the onset of substorms is to use low-latitude Pi2, which is sensitively related to the plasma instability in the magnetosphere, that triggers the substorm disturbances. This method is applied to examine the onset times of three substorm events which were already defined by various methods other than the low-latitude Pi2 method. Preceding the onset times, other evident substorm onsets are clearly determined with Pi2 onsets for all the three events by examining only the H-component of rapid-run magnetogram from a single low-latitude station in the dark hemisphere. Cooperative monitoring of Pi2 at three low-latitude stations on three well-separated meridians, therefore, is really effective in detecting most substorms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号