首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a global numerical model, we have studied how the present Martian magnetosphere may have looked in the past when the planet had a global intrinsic magnetic field. A Mars version (HYB-Mars) of the self-consistent quasi-neutral hybrid model was used which treats the ions as particles and the electrons as a massless charge-neutralizing fluid. We compare four cases where an intrinsic dipole magnetic field was 0 nT (the present situation), 10, 30, and 60 nT at the surface of Mars along the magnetic equator. We find that the 10 nT dipolar magnetic field already results in a magnetosphere which in many respects is more Earth-like than, a non-magnetized, “induced” magnetosphere. However, the 10 nT dipole magnetosphere is still relatively strongly connected to the interplanetary magnetic field, while the 30 nT dipole case, and especially the 60 nT dipole case, results in a magnetosphere whose morphology is determined predominantly by the Martian intrinsic magnetic field. A change of the magnetosphere due to a decreasing dipole magnetic field strength from 60 to 0 nT could have happened during the history of Mars when a globally magnetized Mars turned into the present, globally non-magnetized, planet.  相似文献   

2.
Y.-C. Wang  J. Mueller  W.-H. Ip 《Icarus》2010,209(1):46-52
The latest measurements from the two encounters of the MESSENGER spacecraft in year 2008 have discovered several interesting features of the magnetosphere of Mercury. We have performed high-resolution 3D hybrid model calculations to simulate the solar wind interaction with the Hermean magnetosphere during the first two Mercury encounters of the MESSENGER spacecraft in 2008. It is found that the global structure of the Hermean magnetosphere is significantly controlled by the direction of the interplanetary magnetic field. The bow shock size and shape and the magnetotail configuration have very large differences in these two encounters with northward-pointing and southward-pointing interplanetary magnetic field, respectively. Comparisons are also given with the observed magnetic field profiles and the computational results. In general, good agreement can be found including the interesting feature of the relatively thick magnetopause current layer at outbound measurements. Our work shows that 3D hybrid simulation is a promising method to study in detail the Hermean magnetosphere in parallel with the post-MOI observations of the MESSENGER spacecraft and the Bepi-Colombo mission in future.  相似文献   

3.
Pulsars are presently believed to be rotating neutron stars with large frozen-in magnetic fields normally assumed to be dipole fields. It has been shown that such a star must possess a magnetosphere if it rotates sufficiently rapidly. By assuming that the magnetic field is dipolar, and unaffected by the trapped particles in the magnetosphere, and that the field dipole axis is parallel to the rotation axis, Goldreich and Julian determined many of the properties of the magnetosphere. In this paper is given a self-consistent model of the closed field lines of a pulsar magnetosphere. Using this model, it is shown that, close to the star, the above assumptions of Goldreich and Julian are justified. Their results are extended to the oblique rotator as well as to stars with magnetic multipoles of arbitrary order and arbitrary orientation.Supported in part by the U.S. Atomic Energy Commission under Grant 2171T.  相似文献   

4.
In the forward part of the magnetosphere the distant tail current system approximates a magnetic quadrupole composed of two distorted adjacent solenoids. The current in the neutral sheet at this distance is accurately approximated as an infinitesimally thin current sheet. We have calculated the magnetic field near the Earth by integrating over the entire tail current system assuming the magnetotail is a cylinder of constant radius and that the tail current decreases with distance into the tail as |x|?13. The field is then represented by a scalar potential expanded into spherical harmonics which may be conveniently added to the spherical harmonic expansion of the scalar potential representing the magnetopause current system.  相似文献   

5.
Isointensity contours of 630 nm auroral emission are traced into the magnetosphere, using two different empirical magnetic field models, the Mead-Fairfield model, and the Hedgecock-Thomas model. The auroral data are for a specific ISIS-II satellite pass, and so the starting points are expressed in geographic latitude and longitude coordinates, at a specific universal time. The magnetic field models are constructed from satellite magnetometer measurements, and those used correspond to magnetically quiet times. The projections are found to agree reasonably well with direct plasma measurements of the plasma sheet. The projections of the dayside contour connect to widely different regions of the magnetosphere, providing an interpretation that is consistent with observations of the dayside aurora. It is concluded that field line projections of the aurora into the magnetosphere using these models is a valid procedure, but only under quiet-time conditions.  相似文献   

6.
Voyager's plasma probe observations suggest that there are at least three fundamentally different plasma regimes in Saturn: the hot outer magnetosphere, the extended plasma sheet, and the inner plasma torus. At the outer regions of the inner torus some ions have been accelerated to reach energies of the order of 43 keV. We develop a model that calculates the acceleration of charged particles in the Saturn's magnetosphere. We propose that the stochastic electric field associated to the observed magnetic field fluctuations is responsible of such acceleration. A random electric field is derived from the fluctuating magnetic field – via a Monte Carlo simulation – which then is applied to the momentum equation of charged particles seeded in the magnetosphere. Taking different initial conditions, like the source of charged particles and the distribution function of their velocities, we find that particles injected with very low energies ranging from 0.129 eV to 5.659 keV can be strongly accelerated to reach much higher energies ranging from 22.220 eV to 9.711 keV as a result of 125,000 hitting events (the latter are used in the numerical code to produce the particle acceleration over a predetermined distance).  相似文献   

7.
The notion of death line of rotating pulsars is applied to model of oscillating neutron stars. It is shown that the magnetosphere of typical non-rotating oscillating stars may not contain secondary plasma to support the generation of radio emission in the region of open field lines of plasma magnetosphere.  相似文献   

8.
Jovian decametric radio wave emissions that were observed at Goddard Space Flight Center, U.S.A. for a period from 1 October to 31 December, 1974 and data obtained at Mt Zao observatory, Tohoku University, Japan, for a period from 14 July to 6 December, 1975 have been used to investigate the relationship of the occurrence of the Jovian decametric radio waves (JDW), from the main source, to the geomagnetic disturbance index, ΣKp. The dynamic cross-correlation between JDW and ΣKp indicates an enhanced correlation for certain values of delay time. The delay time is consistent with predicted values based on a model of rotating turbulent regions in interplanetary space associated with two sector boundaries of the interplanetary magnetic field, i.e. the rotating sector boundaries of the interplanetary magnetic field first encounter the Earth's magnetosphere producing the geomagnetic field disturbances, and after a certain period, they encounter the Jovian magnetosphere. There are also cases where the order of the encounter is opposite, i.e. the sector boundaries encounter first Jovian magnetosphere and encounter the Earth's magnetosphere after a certain period.  相似文献   

9.
By using an image-dipole magnetic field model for a variety of plasma density profiles we have studied the latitude effect of the 0.1–1.0-Hz hydromagnetic wave propagation in the Earth's magnetosphere. On comparing the results of signal group delay time calculations for dipole and model magnetic fields with ground and satellite observations we obtain some propagation characteristics of Pc1s and localize the regions of their generation. Our results show that most high-latitude Pc1 events are generated in the outer magnetosphere in accordance with ground and satellite observations and theoretical considerations. The non-dipole geometry of the geomagnetic field in the outer magnetosphere (at geomagnetic latitudes φ0 > 66°, L > 6) has a significant effect on the hydromagnetic wave propagation.  相似文献   

10.
A one-dimensional inhomogeneous cylindrical plasma model with the magnetic field, whose field lines are concentric circles and the equilibrium parameters of the magnetic field and a medium change across magnetic shells, has been considered. In the scope of this model, it has been indicated that Alfvén modes can have discrete spectra. Such modes originate when resonators exist across magnetic shells, which can be implemented in the ring current area or near the outer edge of the plasmapause. The characteristics of the implementation of the modes with discrete spectra have been studied. The results are compared with the satellite observations. It has been concluded that poloidallypolarized pulsations in the Earth’s magnetosphere are largely oscillations with discrete spectra. It has been shown that the proposed model, which does not consider many properties of the magnetosphere, makes it possible to explain the main features in the experimentally observed generation of azimuthal small-scale ULF oscillations in the near-Earth plasma. The results can be used to interpret the satellite and SuperDARN radar measurements.  相似文献   

11.
Under the purely centrifugal approximation (gravity and pressure force are neglected), stellar magnetospheres are classified into three main types of different physical properties in the two-dimensional parameter space. They are characterized essentially by the strength of the magnetic field and the plasma density, at the base of the magnetosphere. Among the three types, the type II magnetosphere has moderate surface densities for a given field strength, and is expected to possess a centrifugal wind blowing across the magnetic field lines without affecting them appreciably. Such a situation may be realized through a modification of the electric field from that under the ideal-MHD condition, owing to the inertia of a plasma. In order to illustrate this mechanism, the type II magnetosphere is taken up for a numerical simulation. The effect of artificial viscosity is avoided by integrating the characteristic equations for both components of the plasma, instead of solving the fluid equations directly. Our model reproduces a disk-like outflow of the centrifugal wind across the magnetic field lines which are closed through the equatorial plane.  相似文献   

12.
Bravo  S.  Stewart  G. A.  Blanco-Cano  X. 《Solar physics》1998,179(2):223-235
The Sun's magnetic field extends far from the photosphere, into the corona, defining a magnetically dominated region before being drawn out radially by the solar wind flow. This region, where the internal sources of the solar field dominate the plasma structures and the energetic particle movement, can be properly considered the solar magnetosphere. The magnetic field in this region can be approximately described by models that extrapolate photospheric magnetic field observations under some simplifying assumptions. In this paper we use a potential field model which describes the solar field up to a source surface at 3.25 Rs, where the field is constrained to become radial. We present the variation of the magnitude and inclination of the various multipolar components throughout the solar magnetic cycle that characterise the changes in the structure of the solar magnetosphere over a period of 22 years. We also present some 3-D images of the coronal magnetic structure to show the global evolution of the solar magnetosphere throughout the solar cycle and discuss the importance of taking this structure into account in order to relate interplanetary and solar features.  相似文献   

13.
AXIOM: advanced X-ray imaging of the magnetosphere   总被引:1,自引:0,他引:1  
Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth’s magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth’s magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth’s magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose ‘AXIOM: Advanced X-ray Imaging of the Magnetosphere’, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth–Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission.  相似文献   

14.
We calculate the structure of a force-free magnetosphere which is assumed to corotate with a central star and which interacts with an embedded differentially rotating accretion disc. The magnetic and rotation axes are aligned, and the stellar field is assumed to be a dipole. We concentrate on the case when the amount of field line twisting through the disc–magnetosphere interaction is large , and consider different outer boundary conditions. In general the field line twisting produces field line inflation (e.g. Bardou & Heyvaerts), and in some cases with large twisting many field lines can become open. We calculate the spin-down torque acting between the star and the disc, and we find that it decreases significantly for cases with large field line twisting. This suggests that the oscillating torques observed for some accreting neutron stars could be caused by the magnetosphere varying between states with low and high field line inflation. Calculations of the spin evolution of T Tauri stars may also have to be revised in the light of the significant effect that field line twisting has on the magnetic torque resulting from star–disc interactions.  相似文献   

15.
The magnetosphere of Jupiter has been the subject of extensive research in recent years due to its detectable radio emissions. Observations in the decimetric radio band have been particular helpful in ascertaining the general shape of the Jovian magnetic field, which is currently believed to be a dipole with minor perturbations. Although there is no direct evidence for thermal plasma in the magnetosphere of Jupiter, theoretical considerations about the physical processes that must occur in the ionosphere and magnetosphere surrounding Jupiter have lead to estimates of the thermal plasma distribution. These models of the Jovian magnetic field and thermal plasma distribution, specify the characteristic plasma and cyclotron frequencies in the magnetosplasma and thereby provide a basis for estimating thelocal electromagnetic and hydromagnetic noise around Jupiter. Spatial analogs of the well-known Clemmow-Mullaly-Allis (CMA) diagrams have been constructed to identify the loci of electron and ion resonances and cutoffs for the different field and plasma models. Regions of reflection, mode coupling, and probable amplification are readily identified. The corresponding radio noise properties may be estimated qualitatively on the basis of these various electromagnetic and hydromagnetic wave mode regions. Frequency bands and regions of intense natural noise may be estimated. On the basis of the models considered, the radio noise properties around Jupiter are quite different from those encountered in the magnetosphere around the Earth. Wave particle interactions are largely confined to the immediate vicinity of the zenographic equatorial plane and guided propagation from one hemisphere to the other apparently does not occur, except for hydromagnetic modes of propagation. The characteristics of these local signals are indicative of the physical processes occurring in the Jovian magnetosphere. Thus, as a remote sensing tool, their observation will be a vital asset in the exploration of Jupiter.  相似文献   

16.
We present a new model of the jovian magnetosphere in which the flaring of the magnetopause boundary can be varied. Magnetopause flaring is expected to vary due to changing conditions in the upstream interplanetary medium, related both to the dynamic pressure of the solar wind, and to changes in the direction of the interplanetary magnetic field. The model includes a tilted dipole field, which is screened by the magnetopause, a tail field current system, and the field of a screened equatorial current disc.  相似文献   

17.
Some features of field line resonances in the magnetosphere   总被引:1,自引:0,他引:1  
Field line resonances in the magnetosphere have received much attention. By using an extremely simplified model we examine the circumstances under which finite disturbance amplitude solutions of the coupled wave equation can be obtained in the vicinity of the resonant field line. General features of solutions are noted and the relevance of recent experimental work to the problem is pointed out. The observed latitude dependence of polarisation provides strong evidence of the role of resonating field lines as  相似文献   

18.
An analytic magnetic field model for the Earth's magnetosphere is constructed from a dipole field and a tail field. This model can be taken as a generalization of the Dungey's model, after one adds to it a horizontal component. The magnetic topology in the noon-midnight meridian plane of this model is fully determined and it is compared with the topology of other models. In this study it is found that, for a specific value of the parameterk, which is associated to any form of the model, the noon's side neutral points obey a bifurcation scheme.  相似文献   

19.
The comparison of data obtained in laboratory experiments on the solar wind interaction with a body endowed with a plasma shell, the observations of comet type I tails and the direct measurements near Venus show that an induced magnetosphere is formed with an extended magnetic tail. This magnetosphere appears due to currents associated with unipolar induction. The distribution of electrodynamical forces associated with the formation of the induced magnetosphere makes it possible to explain the acceleration of matter towards the tail as in the motion across the tail observed in comets and Venus. The analysis of the condensation motion in Halley's comet yields an estimate of tail magnetic field of 30 to 50. A three-dimensional model of the induced magnetospheres of Venus and comets is developed.  相似文献   

20.
Some new ideas on the interaction of the solar wind with the magnetosphere are brought forward. The mechanism of reflection of charged particles at the magnetopause is examined. It is shown that in general the reflection is not specular but that a component of momentum of the particle parallel to the magnetopause changes. A critical angle is derived such that particles whose trajectories make an angle less than it with the magnetopause enter the magnetosphere freely, so transferring their forward momentum to it. Spatially or temporally non-uniform entry of charged particles into the magnetosphere causes electric fields parallel to the magnetopause which either allow the free passage of solar wind across it or vacuum reconnection to the interplanetary magnetic field depending on the direction of the latter. These electric fields can be discharged in the ionosphere and so account qualitatively for the dayside agitation of the geomagnetic field observed on the polar caps. The solar wind wind plasma which enters the magnetosphere creates (1) a dawn-dusk electric field across the tail (2) enough force to account for the geomagnetic tail and (3) enough current during disturbed times to account for the auroral electrojets. The entry of solar wind plasma across the magnetosphere and connection of the geomagnetic to interplanetary field can be assisted by wind generated electric field in the ionosphere transferred by the good conductivity along the geomagnetic field to the magnetopause. This may account for some of the observed correlations between phenomena in the lower atmosphere and a component of magnetic disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号