首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some new ideas on the interaction of the solar wind with the magnetosphere are brought forward. The mechanism of reflection of charged particles at the magnetopause is examined. It is shown that in general the reflection is not specular but that a component of momentum of the particle parallel to the magnetopause changes. A critical angle is derived such that particles whose trajectories make an angle less than it with the magnetopause enter the magnetosphere freely, so transferring their forward momentum to it. Spatially or temporally non-uniform entry of charged particles into the magnetosphere causes electric fields parallel to the magnetopause which either allow the free passage of solar wind across it or vacuum reconnection to the interplanetary magnetic field depending on the direction of the latter. These electric fields can be discharged in the ionosphere and so account qualitatively for the dayside agitation of the geomagnetic field observed on the polar caps. The solar wind wind plasma which enters the magnetosphere creates (1) a dawn-dusk electric field across the tail (2) enough force to account for the geomagnetic tail and (3) enough current during disturbed times to account for the auroral electrojets. The entry of solar wind plasma across the magnetosphere and connection of the geomagnetic to interplanetary field can be assisted by wind generated electric field in the ionosphere transferred by the good conductivity along the geomagnetic field to the magnetopause. This may account for some of the observed correlations between phenomena in the lower atmosphere and a component of magnetic disturbance.  相似文献   

2.
Nearly 1000 magnetopause crossings from HEOS-2, HEOS-1, OGO-5 and 5 IMP space-craft covering most of the northern and part of the southern dayside and near-Earth tail magnetopause (X >?15 RE) have been used to perform a detailed study of the three-dimensional shape and location of the magnetopause. The long-term influence of the solar wind conditions on the average magnetopause geometry has been reduced by normalising the radial distances of the observed magnetopause crossings to an average dynamical solar wind pressure. Best-fit ellipsoids have been obtained to represent the average magnetopause surface in geocentric solar ecliptic (GSE) and (as a function of tilt angle) in solar magnetic (SM) coordinates. Average geocentric distances to the magnetopause for the 1972–1973 solar wind conditions (density 9.4 cm?3, velocity 450 km s?1) are 8.8 RE in the sunward direction, 14.7 RE in the dusk direction, 13.4 RE in the dawn direction and 13.7 RE in the direction normal to the ecliptic plane. The magnetopause surface is tilted by 6.6° ± 2° in a direction consistent with that expected from the aberration effect of the radial solar wind. Our data suggest that the solar wind plasma density and the interplanetary magnetic field (IMF) orientation affect the distance to the polar magnetopause, larger distances corresponding to higher plasma density and southward fields. Our best-fit magnetopause surface shows larger geocentric distances than predicted by the model of Choe et al. [Planet Space Sci. 21, 485 (1973).] normalised to the same solar wind pressure.  相似文献   

3.
4.
The solar wind is a magnetized flowing plasma that intersects the Earth's magnetosphere at a velocity much greater than that of the compressional fast mode wave that is required to deflect that flow. A bow shock forms that alters the properties of the plasma and slows the flow, enabling continued evolution of the properties of the flow on route to its intersection with the magnetopause. Thus the plasma conditions at the magnetopause can be quite unlike those in the solar wind. The boundary between this “magnetosheath” plasma and the magnetospheric plasma is many gyroradii thick and is surrounded by several boundary layers. A very important process occurring at the magnetopause is reconnection whereby there is a topological change in magnetic flux lines so that field lines can connect the solar wind plasma to the terrestrial plasma, enabling the two to mix. This connection has important consequences for momentum transfer from the solar wind to the magnetosphere. The initiation of reconnection appears to be at locations where the magnetic fields on either side of the magnetopause are antiparallel. This condition is equivalent to there being no guide field in the reconnection region, so at the reconnection point there is truly a magnetic neutral or null point. Lastly reconnection can be spatially and temporally varying, causing the region of the magnetopause to be quite dynamic.  相似文献   

5.
We have studied the solar wind-magnetosphere interaction using a 3-D electromagnetic particle code. The results for an unmagnetized solar wind plasma streaming past a dipole magnetic field show the formation of a magnetopause and a magnetotail, the penetration of energetic particles into cusps and radiation belt and dawn-dusk asymmetries. The effects of interplanetary magnetic field (IMF) have been investigated in a similar way as done by MHD simulations. The simulation results with a southward IMF show the shrunk magnetosphere with great particle entry into the cusps and nightside magnetosphere. This is a signature of a magnetic reconnection at the dayside magnetopause. After a quasi-stable state is established with an unmagnetized solar wind we switched on a solar wind with an northward IMF. In this case the significant changes take place in the magnetotail. The waving motion was seen in the magnetotail and its length was shortened. This phenomena are consistent with the reconnections which occur at the high latitude magnetopause. In our simulations kinetic effects will determine the self-consistent anomalous resistivity in the magnetopause that causes reconnections.Deceased January 24, 1993; R. Bunemanet al. 1993.  相似文献   

6.
In June 2006 Venus Express crossed several times the outer boundary of Venus induced magnetosphere, its magnetosheath and its bow shock. During the same interval the Cluster spacecraft surveyed the dawn flank of the terrestrial magnetosphere, intersected the Earth's magnetopause and spent long time intervals in the magnetosheath. This configuration offers the opportunity to perform a joint investigation of the interface between Venus and Earth's outer plasma layers and the shocked solar wind. We discuss the kinetic structure of the magnetopause of both planets, its global characteristics and the effects on the interaction between the planetary plasma and the solar wind. A Vlasov equilibrium model is constructed for both planetary magnetopauses and provides good estimates of the magnetic field profile across the interface. The model is also in agreement with plasma data and evidence the role of planetary and solar wind ions on the spatial scale of the equilibrium magnetopause of the two planets. The main characteristics of the two magnetopauses are discussed and compared.  相似文献   

7.
The plasma flow in the equatorial plane of the magnetosphere is examined within the framework of a one-dimensional model in which all quantities are supposed to depend only on the distance along the Sun-Earth axis. The following models are considered: (1) the gasdynamical model in which the Ampère force is ignored, (2) the magnetohydrodynamical model in which the normal component of the Ampère force on the magnetopause is taken into account. The flow regime is calculated in the region including two regions: (1) the layer of the return flow where flow velocity is directed from the Sun, (2) the region of convection where the velocity is directed toward the Sun - on the assumption that the form of the magnetopause and the distribution of the solar wind pressure on the magnetopause are known.The following physical mechanisms are taken into account: (1) the appearance of a centrifugal force owing to the magnetopause curvature, the centrifugal force partly compensating for the solar wind pressure; (2) the existence of the critical point which is analogous to the point of transition through the local sound velocity in the Laval nozzle or in the Parker model of the solar corona. The thickness of the layer of the return flow and the velocity of convection in the magnetosphere are calculated; and the following peculiarities are found: (1) in the gasdynamical model the convection regime is only possible with high velocities corresponding to the substorm, (2) in the magnetohydrodynamic model the convection velocity and the thickness of the layer of the return flow are reduced; the reduction being connected to the fact that the pressure of the solar wind is partially compensated for by the jump of the magnetic pressure on the magnetopause.  相似文献   

8.
A possible mechanism for the generation of a reverse fast shock in the magnetosheath in the solar wind flow around the Earth’s magnetosphere is considered. It is shown that such a shock can emerge through the breaking of a nonlinear fast magnetosonic compression wave reflected from the magnetopause toward the bow shock rear. In this case, the magnetopause is represented as a tangential discontinuity with a zero normal magnetic field component at it and the mechanism under consideration is assumed to be secondary with respect to the sudden disturbance of the bow shock-Earth’s magnetosphere system by a nonstationary solar wind shock. A possible confirmation of the process under study by in-situ SC3 experimental observations of the bow shock front motion on the Cluster spacecraft is pointed out.  相似文献   

9.
The role of the ionospheric conductance in the solar wind-magnetosphere coupling is studied using global MHD simulations. The simulations with varying conductance and a constant solar wind input show that the field-aligned currents, whose magnitude depends on the ionospheric conductance, affect the size of the magnetopause at the flanks by increasing the local magnetic pressure and thus altering the surface equilibrium at the magnetopause. A current system that generates the magnetic stresses required to account for the location and geometrical structure of the magnetosphere observed in the simulations is proposed.  相似文献   

10.
On 2001 March 31 a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMC) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind‐magnetosphere interaction during the peak of this geomagnetic storm. Robertson et al. then modeled the expected soft X‐ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on 2000 July 14 (Bastille Day). We again modeled X‐ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X‐ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Hydrodynamic and electrodynamic problems of solar wind interaction with the Earth's magnetosphere on the day-side are investigated.The initial fact, well established, is that the density of the magnetic field energy in the solar wind is rather small. Magnetic field intensity and orientation are shown to determine the character of the solar wind flow around the magnetosphere. For mean parameters of the wind, if the tangential component of the magnetic field is more or equal 5γ, the flow in the magneto-sheath will be laminar. For other cases the flow is of a turbulent type.For turbulent flow, typical plasma parameters are estimated: mean free path, internal scale of inhomogeneities and dissipated energy. The results obtained are compared with experimental data.For the case of laminar flow, special attention is paid to the situation when magnetic fields of the solar wind and Earth are antiparallel. It is suggested, on the basis of solid arguments, that the southward interplanetary field diffuses from the magnetosheath into the Earth's magnetosphere. These ideas are used for the estimation of the distance to the magnetopause subsolar point. A detailed comparison with results of observation is made. The coincidence is satisfactory. Theoretical investigation has been made to a great extent for thin magnetopause with thickness δRHe-gyroradius of an electron.It is shown that during magnetospheric substorms relaxation oscillations with the period τ = 100–300 sec must appear. A theorem is proved about the appearance of a westward electrical field during the substorm development, when the magnetosphere's day-side boundary moves Earthward and about the recovery phase, when the magnetopause motion is away from the Earth, when there is an eastward electrical field.In the Appendix, plasma wave exitation in the magnetopause is considered and conductivity magnitudes are calculated, including the reduction due to the scattering by plasma turbulence.  相似文献   

12.
The distance to the dayside magnetopause is statistically analyzed in order to detect the possible dependence of the dayside magnetic flux on the polarity of the interplanetary magnetic field. The effect of changing solar wind pressure is eliminated by normalizing the observed magnetopause distances by the simultaneous solar wind pressure data. It is confirmed that the normalized size of the dayside magnetosphere at the time of southward interplanetary magnetic field is smaller than that at the time of northward interplanetary magnetic field. The difference in the magnetopause position between the two interplanetary field polarity conditions ranges from 0 to 2RE. Statistics of the relation between the magnetopause distance and the magnetic field intensity just inside the magnetopause testifies that the difference in the magnetopause position is not due to a difference in the magnetosheath plasma pressure. The effect of the southward interplanetary magnetic field is seen for all longitudes and latitudes investigated (|λGM|? 45°, |φSM|? 90°). These results strongly suggest that a part of the dayside magnetic flux is removed from the dayside at the time of southward interplanetary magnetic field.  相似文献   

13.
The magnetized solar wind carries a large amount of energy but only a small fraction of it enters the magnetosphere and powers its dynamics. Numerous observations show that the interplanetary magnetic field (IMF) is a key parameter regulating the solar wind-magnetosphere interaction. The main factor determining the amount of energy extracted from the solar wind flow by the magnetosphere is the plasma flow structure in the region adjacent to the sunward side of the magnetopause. While compared to the energy of the solar wind flow the IMF magnetic energy is relatively weak, it is considerably enhanced in a thin layer next to the dayside magnetopause variously called the plasma depletion layer or magnetic barrier. Important features of this barrier/layer are (i) a pile-up of the magnetic field with (ii) a concurrent decrease of density, (iii) enhancement of proton temperature anisotropy, (iv) asymmetry of plasma flow caused by magnetic field tension, and (v) characteristic wave emissions (ion cyclotron waves). Importantly, the magnetic barrier can be considered as an energy source for magnetic reconnection. While the steady-state magnetic barrier has been extensively examined, non-steady processes therein have only been addressed by a few authors. We discuss here two non-steady aspects related to variations of the magnetic barrier caused by (i) a north-to-south rotation of the IMF, and (ii) by pulses of magnetic field reconnection at the magnetopause. When the IMF rotates smoothly from north-to-south, a transition layer is shown to appear in the magnetosheath which evolves into a thin layer bounded by sharp gradients in the magnetic field and plasma quantities. For a given reconnection rate and calculated parameters of the magnetic barrier, we estimate the duration and length scale of a reconnection pulse as a function of the solar wind parameters. Considering a sudden decrease of the magnetic field near the magnetopause caused by the reconnection pulse, we study the relaxation process of the magnetic barrier. We find that the relaxation time is longer than the duration of the reconnection pulse for large Alfvén-Mach numbers.  相似文献   

14.
The interaction between the geomagnetic and interplanetary magnetic fields is studied through its effects upon the intensities of solar electrons reaching the polar caps during times of strongly anisotropic electron fluxes in the magnetosheath. During the particle event of 18 November 1968, electrons of solar origin were observed outside the magnetopause with detectors aboard OGO-5. This is the only case on record for which high resolution directional flux observations are available for determining in detail the electron angular distribution, and thus the electron density in the magnetosheath. Correlative studies of these satellite observations and concurrent measurements by riometers and ionospheric forward scatter systems in both polar regions have revealed that the initial stage of the associated Polar Cap Absorption event is attributable to the prompt arrival of solar electrons. The electron flux precipitating into the south polar region was equal to or larger than the mean directional flux in interplanetary space, whereas over the north pole it was equal to or less than the backscattered flux. This evidence of a north-south asymmetry in the solar electron flux at a time when the interplanetary magnetic field vector was nearly parallel with the ecliptic plane supports an open magnetospheric model. The ratio of particle intensities in the High Polar Latitude and Low Polar Latitude regions in the southern hemisphere is consistent with that determined at times when the interplanetary electron fluxes were isotropic. The analysis indicates that an anisotropic electron flux may be isotropized at the magnetopause before propagating into the polar regions.  相似文献   

15.
A theoretical model is proposed for the interaction of a plane discontinuity in the solar wind with the magnetosphere. The presence of the bow shock and magnetosheath are taken into account, the calculation being based on the Spreiter et al. (1966) gas-dynamic model for a solar wind Mach Number M = 5. The model proposed predicts the manner in which the shape of the interplanetary discontinuity is distorted in its passage through the magnetosheath; it is found that the point of first impact with the magnetopause makes an angle of 56° with the Sun-Earth line for relatively quiet solar wind conditions.  相似文献   

16.
A quantitative magnetospheric magnetic field model has been calculated in three dimensions. The model is based on an analytical solution of the Chapman-Ferraro problem. For this solution, the magnetopause was assumed to be an infinitesimally thin discontinuity with given geometry. The shape of the dayside magnetopause is in agreement with measurements derived from spacecraft boundary crossings.The magnetic field of the magnetopause currents can be derived from scalar potentials. The scalar potentials result from solutions of Laplace's equation with Neumann's boundary conditions. The boundary values and the magnetic flux through the magnetopause are determined by all magnetic sources which are located inside and outside the magnetospheric cavity. They include the Earth's dipole field, the fields of the equatorial ring current and tail current systems, and the homogeneous interplanetary magnetic field. In addition, the flux through the magnetopause depends on two constants of interconnection which provide the possibility of calculating static interconnection between magnetospheric and interplanetary field lines. Realistic numerical values for both constants have been derived empirically from observed displacements of the polar cusps which are due to changes in the orientation of the interplanetary field. The transition from a closed to an open magnetosphere and vice versa can be computed in terms of a change of the magnetic boundary conditions on the magnetopause. The magnetic field configuration of the closed magnetosphere is independent of the amount and orientation of the interplanetary field. In contrast, the configuration of the open magnetosphere confirms the observational finding that field line interconnection occurs primarily in the polar cusp and high latitude tail regions.The tail current system reflects explicitly the effect of dayside magnetospheric compression which is caused by the solar wind. In addition, the position of the plasma sheet relative to the ecliptic plane depends explicitly on the tilt angle of the Earth's dipole. Near the tail axis, the tail field is approximately in a self-consistent equilibrium with the tail currents and the isotropic thermal plasma.The models for the equatorial ring current depend on the Dst-parameter. They are self-consistent with respect to measured energy distributions of ring current protons and the axially symmetric part of the magnetospheric field.  相似文献   

17.
We present a new model of the jovian magnetosphere in which the flaring of the magnetopause boundary can be varied. Magnetopause flaring is expected to vary due to changing conditions in the upstream interplanetary medium, related both to the dynamic pressure of the solar wind, and to changes in the direction of the interplanetary magnetic field. The model includes a tilted dipole field, which is screened by the magnetopause, a tail field current system, and the field of a screened equatorial current disc.  相似文献   

18.
Recent U.S.S.R. studies of the magnetic field and solar wind flow in the vicinity of Mars and Venus confirm earlier U.S.A. reports of a bow shock wave developed as the solar wind interacts with these planets. Mars 2 and 3 magnetometer experiments report the existence of an intrinsic planetary magnetic field, sufficiently strong to form a magnetopause, deflecting the solar wind around the planet and its ionosphere. This is in contrast to the case for Venus, where it is assumed to be the ionosphere and processes therein which are responsible for the solar wind deflection. An empirical relationship appears to exist between planetary dipole magnetic moments and their angular momentum for Moon, Mars, Venus, Earth and Jupiter. Implications for the magnetic fields of Mercury and Saturn are discussed.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973  相似文献   

19.
The reflection and refraction of MHD waves through an “open” magnetopause (rotational discontinuity) is studied. It is found that most of the incident wave energy can be transmitted through the open magnetopause. A transverse Alfvén wave (or a compressional magnetosonic wave) from the solar wind incident upon the open magnetopause would generally lead to the generation of both the transverse Alfvén and compressional magnetosonic waves in the magnetosphere. Transmission of Alfvén waves in the coplanar rotational discontinuity is studied in detail. The integral power of the Alfvén-wave transfer is found to be proportional to the open magnetic flux of the magnetosphere and is typically ~ 1% of the power of the total electromagnetic energy transfer through the open magnetopause. The transmitted wave power may contribute significantly to the geomagnetic pulsations observed on the ground, especially in the open-field-line region.  相似文献   

20.
Magnetospheres, which result from a solar wind flow parallel to the magnetic dipole, are expected for Uranus at its solstitial points and perhaps for the Palaeo-Earth during the times of field reversal. We present a two-dimensional analytical model for a pole-on magnetopause and the magnetospheric magnetic field line configuration, employing a conformal mapping method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号