首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of the atmosphere of the earth   总被引:1,自引:0,他引:1  
Michael H. Hart 《Icarus》1978,33(1):23-39
Computer simulations of the evolution of the Earth's atmospheric composition and surface temperature have been carried out. The program took into account changes in the solar luminosity, variations in the Earth's albedo, the greenhouse effect, variation in the biomass, and a variety of geochemical processes. Results indicate that prior to two billion years ago the Earth had a partially reduced atmosphere, which included N2, CO2, reduced carbon compounds, some NH3, but no free H2. Surface temperatures were higher than now, due to a large greenhouse effect. When free O2 appeared the temperature fell sharply. Had Earth been only slightly further from the Sun, runaway glaciation would have occured at that time. Simulations also indicate that a runaway greenhouse would have occured early in Earth's history had Earth been only a few percent closer to the Sun. It therefore appears that, taking into account the possibilities of either runaway glaciation or a runaway greenhouse effect, the continously habitable zone about a solar-type star is rather narrow, extending only from roughly 0.95 to 1.01 AU.  相似文献   

2.
The late Paleocene to early Eocene was one of the warmest intervals in Earth's history. Superimposed on this long-term warming was an abrupt short-term extreme warm event at or near the Paleocene/Eocene boundary and centered in the higher latitudes. This short-term climate warming was associated with a major benthic foraminiferal extinction and a dramatic 3–4% drop in the ocean's carbon isotopic composition. It has been suggested that the late paleocene/early Eocene global warming was caused by an enhanced greenhouse effect associated with higher levels of atmospheric CO2 relative to present levels. We present carbon isotopic data from the co-existing paleosols organic matter and carbonates from a terrestrial sequence in the Paris Basin, France that contradict the notion that an increase in atmospheric CO2 level was the cause of extreme warming for this time interval. Atmospheric pCO2 estimates for the Late Paleocene/early Eocene estimated from the terrestrial carbon isotopic record spanning the Paleocene/Eocene transition, are indistinguishable from each other and were generally between 300 and 700 ppm.  相似文献   

3.
Greenhouse warming due to carbon dioxide atmospheres may be responsible for maintaining the early Earth's surface temperature above freezing and may even have allowed for liquid water on early Mars. However, the high levels of CO2 required for such warming should have also resulted in the formation of CO2 clouds. These clouds, depending on their particle size, could lead to either warming or cooling. The particle size in turn is determined by the nucleation and growth conditions. Here we present laboratory studies of the nucleation and growth of carbon dioxide on water ice under martian atmospheric conditions. We find that a critical saturation, S=1.34, is required for nucleation, corresponding to a contact parameter between solid water and solid carbon dioxide of m=0.95. We also find that after nucleation occurs, growth of CO2 is very rapid, and we report the growth rates at a number of supersaturations. Because growth would be expected to continue until the CO2 pressure is lowered to its vapor pressure, we expect particles larger than those being currently suggested for the present and past martian atmospheres. Using this information in a microphysical model described in a companion paper, we find that CO2 clouds are best described as “snow,” having a relatively small number of large particles.  相似文献   

4.
Stabilization and global climate policy   总被引:1,自引:0,他引:1  
Academic and political debates over long-run climate policy often invoke “stabilization” of atmospheric concentrations of greenhouse gases (GHGs), but only rarely are non-CO2 greenhouse gases addressed explicitly. Even though the majority of short-term climate policies propose trading between gases on a global warming potential (GWP) basis, discussions of whether CO2 concentrations should be 450, 550, 650 or perhaps as much as 750 ppm leave unstated whether there should be no additional forcing from other GHGs beyond current levels or whether separate concentration targets should be established for each GHG. Here, we use an integrated modeling framework to examine multi-gas stabilization in terms of temperature, economic costs, carbon uptake and other important consequences. We show that there are significant differences in both costs and climate impacts between different “GWP equivalent” policies and demonstrate the importance of non-CO2 GHG reduction on timescales of up to several centuries.  相似文献   

5.
An enhanced “greenhouse effect” due to an increase in atmospheric CO2 is expected to produce significant climatic changes. If the combustion of fossil fuels is the only anthropogenic source of atmospheric CO2, measurements show that 54% resides in the atmosphere. The largest reservoir for the remaining 46% is the oceans. Known oceanic processes can account for 35% and the major uncertainty appears to be the role played by the intermediate waters. If, however, deforestation is as large a source of additional atmospheric CO2 as some have suggested, carbon balance cannot be obtained with presently identified removal processes. Various computer models have been used to calculate the effects of increasing atmospheric CO2. These include energy balance, radiative-convective and general circulation models (GCM's). Many feedback mechanisms must be considered including water vapour, clouds, oceans and the cryosphere. Although representing a considerable advance over other models, GCM's still require many approximations, of which the treatment of oceans and clouds are the most questionable. These models predict, for the scenario of the doubling of atmospheric CO2, an increase in global surface temperature of about 3°C with larger increases, up to 10° at higher latitudes. Significant changes in evaporation and precipitation patterns are also indicated.  相似文献   

6.
We present results from a new simulation code that accounts for the evolution of the reservoirs of carbon dioxide on Mars, from its early years to the present. We establish a baseline model parameter set that produces results compatible with the present (i.e., Patm?6.5 mbar with permanent CO2 ice cap) for a wide range of initial inventories. We find that the initial inventory of CO2 broadly determines the evolutionary course of the reservoirs of CO2. The reservoirs include the atmosphere, ice cap, adsorbed CO2 in the regolith, and carbonate rocks. We track the evolution of the free inventory: the atmosphere, ice cap and regolith. Simulations begin at 4.53 Gyr before present with a rapid loss of free inventory to space in the early Noachian. Models that assume a relatively small initial inventory (?5 bar) have pronounced minima in the free inventory of CO2 toward the end of the Noachian. Under baseline parameters, initial inventories below ∼4.5 bar result in a catastrophic loss of the free inventory to space. The current free inventory would be then determined by the balance between outgassing, sputtering losses and chemical weathering following the end of the late bombardment. We call these “thin” models. They generically predict small current free inventories in line with expectations of a small present CO2 ice cap. For “thick” models, with initial inventories ?5 bar, a surplus of 300-700 mbar of free CO2 remains during the late-Noachian. The histories of free inventory in time for thick models tend to converge within the last 3.5 Gyr toward a present with an ice cap plus atmospheric inventory of about 100 mbar. For thick models, the convergence is largely due to the effects of chemical weathering, which draws down higher free inventories more rapidly than the low. Thus, thick models have ?450 mbar carbonate reservoirs, while thin models have ?200 mbar. Though both thick and thin scenarios can reproduce the current atmospheric pressure, the thick models imply a relatively large current CO2 ice cap and thin models, little or none. While the sublimation of a massive cap at a high obliquity would create a climate swing of greenhouse warming for thick models, under the thin model, mean temperatures and pressures would be essentially unaffected by increases in obliquity.  相似文献   

7.
Although poorly understood, the north–south distribution of the natural component of atmospheric CO2 offers information essential to improving our understanding of the exchange of CO2 between the atmosphere, oceans, and biosphere. The natural or unperturbed component is equivalent to that part of the atmospheric CO2 distribution which is controlled by non-anthropogenic CO2 fluxes from the ocean and terrestrial biosphere. Models should be able to reproduce the true north–south gradient in CO2 due to the natural component before they can reliably estimate present-day CO2 sources and sinks and predict future atmospheric CO2. We have estimated the natural latitudinal distribution of atmospheric CO2, relative to the South Pole, using measurements of atmospheric CO2 during 1959–1991 and corresponding estimates of anthropogenic CO2 emissions to the atmosphere. Key features of the natural latitudinal distribution include: (1) CO2 concentrations in the northern hemisphere that are lower than those in the southern hemisphere; (2) CO2 concentration differences that are higher in the tropics (associated with outgassing of the oceans) than those currently measured; and (3) CO2 concentrations over the southern ocean that are relatively uniform. This natural latitudinal distribution and its sensitivity to increasing fossil fuel emissions both indicate that near-surface concentrations of atmospheric CO2 in the northern hemisphere are naturally lower than those in the southern hemisphere. Models that find the contrary will also mismatch present-day CO2 in the northern hemisphere and incorrectly ascribe that region as a large sink of anthropogenic CO2.  相似文献   

8.
A simulation model based on satellite observations of monthly vegetation cover was used to estimate monthly carbon fluxes in terrestrial ecosystems from 1982 to 1998. The NASA–CASA model was driven by vegetation properties derived from the Advanced Very High Resolution Radiometer (AVHRR) and radiative transfer algorithms that were developed for Moderate Resolution Imaging Spectroradiometer (MODIS). For the terrestrial biosphere, predicted net ecosystem production (NEP) flux for atmospheric CO2 has varied widely between an annual source of −0.9 Pg C per year and a sink of +2.1 Pg C per year. The southern hemisphere tropical zones (SHT, between 0° and 30°S) have a major influence over the predicted global trends in interannual variability of NEP. In contrast, the terrestrial NEP sink for atmospheric CO2 on the North American (NA) continent has been fairly consistent between +0.2 and +0.3 Pg C per year, except during relatively cool annual periods when continental NEP fluxes are predicted to total to nearly zero. The predicted NEP sink for atmospheric CO2 over Eurasia (EA) increased notably in the late 1980s and has been fairly consistent between +0.3 and +0.55 Pg C per year since 1988. High correlations can be detected between the El Niño Southern Oscillation (ENSO) and predicted NEP fluxes on the EA continent and for the SHT latitude zones, whereas NEP fluxes for the North American continent as a whole do not correlate strongly with ENSO events over the same time series since 1982. These observations support the hypothesis that regional climate warming has had notable but relatively small-scale impacts on high latitude ecosystem (tundra and boreal) sinks for atmospheric CO2.  相似文献   

9.
《Icarus》1987,71(2):241-249
We report new CO2 adsorption measurements on palagonites. These results are used together with earlier results on basalt and nontronite adsorption to derive a “generic” relationship which is valid to within a factor of 3 for likely mixtures of basalt and weathering products of basalt. The relationship involves only t, PCO2, and the specific surface area, and is relatively insensitive to mineralogy. It is used to predict the distribution and exchange of CO2 on Mars. We conclude: (1) One to two orders of magnitude more CO2 is adsorbed on the regolith than is present in the atmosphere and cap. (2) Nonetheless, most of the initially degassed CO2 must have been lost to space or must be present as carbonates, especially if there was enough degassed CO2 to provide a significant early greenhouse effect. (3) Given the derived relationship, the CO2 vapor pressure curve, and the constraint that the system exhibits the current PCO2 at the current obliquity, it is possible to predict approximately the atmospheric pressure at any obliquity (with or without a cap) without knowing the total available CO2 inventory, the regolith mass, the regolith distribution, or its mineralogy, any better than those parameters are currently known.  相似文献   

10.
In order to study the stability of martian climate, we constructed a two-dimensional (horizontal-vertical) energy balance model. The long-term CO2 mass exchange process between the atmosphere and CO2 ice caps is investigated with particular attention to the effect of planetary ice distribution on the climate stability. Our model calculation suggests that high atmospheric pressure presumed for past Mars would be unstabilized if H2O ice widely prevailed. As a result, a cold climate state might have been achieved by the condensation of atmospheric CO2 onto ice caps. On the other hand, the low atmospheric pressure, which is buffered by the CO2 ice cap and likely close to the present pressure, would be unstabilized if the CO2 ice albedo decreased. This may have led the climate into a warm state with high atmospheric pressure owing to complete evaporation of CO2 ice cap. Through the albedo feedback mechanisms of H2O and CO2 ices in the atmosphere-ice cap system, Mars may have experienced warm and cold climates episodically in its history.  相似文献   

11.
Current evidence indicates that the Martian surface is abundant with water presently in the form of ice, while the atmosphere was at one time more massive with a past surface pressure of as much as 1 atm of CO2. In an attempt to understand the Martian paleoclimate, we have modeled a past CO2H2O greenhouse and find global temperatures which are consistent with an earlier presence of liquid surface water, a finding which agrees with the extensive evidence for past fluvial erosion. An important aspect of the CO2H2O greenhouse model is the detailed inclusion of CO2 hot bands. For a surface pressure of 1 atm of CO2, the present greenhouse model predicts a global mean surface temperature of 294°K, but if the hot bands are excluded, a surface temperature of only 250°K is achieved.  相似文献   

12.
《Icarus》1987,71(2):203-224
Theoretical arguments are presented in support of the idea that Mars possessed a dense CO2 atmosphere and a wet, warm climate early in its history. Calculations with a one-dimensional radiative-convective climate model indicate that CO2 pressures between 1 and 5 bars would have been required to keep the surface temperature above the freezing point of water early in the planet's history. The higher value corresponds to globally and orbitally averaged conditions and a 30% reduction in solar luminosity; the lower value corresponds to conditions at the equator during perihelion at times of high orbital eccentricity and the same reduced solar luminosity.The plausibility of such a CO2 greenhouse is tested by formulating a simple model of the CO2 geochemical cycle on early Mars. By appropriately scaling the rate of silicate weathering on present Earth, we estimate a weathering time constant of the order of several times 107 years for early Mars. Thus, a dense atmosphere could have persisted for a geologically significant time period (109years) only if atmospheric CO2 was being continuously resupplied. The most likely mechanism by which this might have been accomplished is the thermal decomposition of carbonate rocks induced directly and indirectly (through burial) by intense, global-scale volcanism. For plausible values of the early heat flux, the recycling time constant is also of the order of several times 107 years. The amount of CO2 dissolved in standing bodies of water was probably small; thus, the total surficial CO2 inventory required to maintain these conditions was approximately 2 to 10 bars. The amount of CO2 in Mars' atmosphere would eventually have dwindled, and the climate cooled, as the planet's internal heat engine ran down. A test for this theory will be provided by spectroscopic searches for carbonates in Mars' crust.  相似文献   

13.
Geologic evidence of the prior existence of liquid water on Mars suggests surface temperatures Ts were once considerably warmer than at present; and that such a condition may have arisen from a larger atmospheric greenhouse. Here we develop a simple climate model for a CO2/H2O Mars atmosphere including water vapor-longwave opacity feedback in the atmosphere and temperature-albedo feedback at surface icecaps, under the assumption that once the Martian surface pressure was ps ≥ 1 atm CO2. Longwave flux to space is computed as a function of Ts and ps using band-absorption models for the effect of the 15-μm fundamental, and the 10- and 15-μm hot bands, of the CO2 molecule; as well as the pure rotation bands and e continuum of H2O. The derived global radiative balance predicts a global mean surface temperature of 283°K at 1 atm CO2. When the emission model is coupled to a latitudinally resolved energy balance climate model, including the effect of poleward heat transfer by atmospheric baroclinic eddies, the solutions vary, depending on ps. We considered two cases: (1) the present Mars (ps ? 0.007 atm) with pressure-buffering by solid CO2 icecaps, and limited poleward heat flux by the atmosphere; and (2) a hypothetical “hot Mars” (ps ? 1.0 atm), whose much higher CO2 amount augmented by H2O evaporative feedback yields a theoretical Ts distribution with latitude admitting liquid water over 95% of the surface, water icecaps at the poles, and a diminished equator-to-pole temperature gradient relative to the present.  相似文献   

14.
In Simpson’s (Simpson, G.C. [1927]. Mem. R. Meteorol. Soc. II (16), 69–95) classical derivation of the temperature of the Earth in the semi-gray model, the surface temperature diverges as the fourth root of the thermal radiation’s optical depth. No resolution to this apparent paradox was yet obtained under the strict semi-gray approximation. Using this approximation and a simplified approach, we study the saturation of the runaway greenhouse effect.First we generalize the problem of the semi-gray model to cases in which a non-negligible fraction of the stellar radiation falls on the long-wavelength range, and/or that the planetary long-wavelength emission penetrates into the transparent short wavelength domain of the absorption.Second, applying the most general assumptions and independently of any particular properties of an absorber, we show that the greenhouse effect saturates and that any Earth-like planet has a maximal temperature which depends on the type of and distance to its main-sequence star, its albedo and the primary atmospheric components which determine the cutoff frequency below which the atmosphere is optically thick. For example, a hypothetical convection-less planet similar to Venus, that is optically thin in the visible, could have at most a surface temperature of 1200–1300 K irrespective of the nature of the greenhouse gas.We show that two primary mechanisms are responsible for the saturation of the runaway greenhouse effect, depending on the value of λcut, the wavelength above which the atmosphere becomes optically thick. Unless λcut is small and resides in the optical region, saturation is achieved by radiating the thermal flux of the planet through the short wavelength tail of the thermal distribution. This has an interesting observational implication, the radiation from such a planet should be skewed towards the NIR. Otherwise, saturation takes place by radiating through windows in the FIR.  相似文献   

15.
Mars General Circulation Model (GCM) simulations are presented to illustrate the importance of the ice emissivity of the seasonal CO2 polar caps in regulating the effects of airborne dust on the martian CO2 cycle. Simulated results show that atmospheric dust suppresses CO2 condensation when the CO2 ice emissivity is high but enhances it when the CO2 ice emissivity is low. This raises the possibility that the reason for the repeatable nature of the CO2 cycle in the presence of a highly variable dust cycle is that the CO2 ice emissivity is “neutral” - the value that leads to no change in CO2 condensation with changing atmospheric dust. For this GCM, the “neutral” emissivity is approximately 0.55, which is low compared to observed cap emissivities. This inconsistency poses a problem for this hypothesis. However, it is clear that the CO2 ice emissivity is a critical physical parameter in determining how atmospheric dust affects the CO2 cycle on Mars.  相似文献   

16.
Despite a fainter Sun, the surface of the early Earth was mostly ice-free. Proposed solutions to this so-called “faint young Sun problem” have usually involved higher amounts of greenhouse gases than present in the modern-day atmosphere. However, geological evidence seemed to indicate that the atmospheric CO2 concentrations during the Archaean and Proterozoic were far too low to keep the surface from freezing. With a radiative-convective model including new, updated thermal absorption coefficients, we found that the amount of CO2 necessary to obtain 273 K at the surface is reduced up to an order of magnitude compared to previous studies. For the late Archaean and early Proterozoic period of the Earth, we calculate that CO2 partial pressures of only about 2.9 mb are required to keep its surface from freezing which is compatible with the amount inferred from sediment studies. This conclusion was not significantly changed when we varied model parameters such as relative humidity or surface albedo, obtaining CO2 partial pressures for the late Archaean between 1.5 and 5.5 mb. Thus, the contradiction between sediment data and model results disappears for the late Archaean and early proterozoic.  相似文献   

17.
The mid-infrared spectra of mixed vapor deposited ices of CO2 and H2O were studied as a function of both deposition temperature and warming from 15 to 100 K. The spectra of ices deposited at 15 K show marked changes on warming beginning at 60 K. These changes are consistent with CO2 segregating within the ice matrix into pure CO2 domains. Ices deposited at 60 and 70 K show a greater degree of segregation, as high as 90% for 1:4 CO2:H2O ice mixtures deposited at 70 K. As the ice is warmed above 80 K, preferential sublimation of the segregated CO2 is observed. The kinetics of the segregation process is also examined. The segregation of the CO2 as the ice is warmed corresponds to temperatures at which the structure of the water ice matrix changes from the high density amorphous phase to the low density amorphous phase. We show how these microstructural changes in the ice have a profound effect on the photochemistry induced by ultraviolet irradiation. These experimental results provide a framework in which observations of CO2 on the icy bodies of the outer Solar System can be considered.  相似文献   

18.
Increases in the partial pressure of carbon dioxide (pCO2) in the atmosphere will significantly affect a wide variety of terrestrial fauna and flora. Because of tight atmospheric–oceanic coupling, shallow-water marine species are also expected to be affected by increases in atmospheric carbon dioxide concentrations. One proposed way to slow increases in atmospheric pCO2 is to sequester CO2 in the deep sea. Thus, over the next few centuries marine species will be exposed to changing seawater chemistry caused by ocean–atmospheric exchange and/or deep-ocean sequestration. This initial case study on one allogromiid foraminiferal species (Allogromia laticollaris) was conducted to begin to ascertain the effect of elevated pCO2 on benthic Foraminifera, which are a major meiofaunal constituent of shallow- and deep-water marine communities. Cultures of this thecate foraminiferan protist were used for 10–14-day experiments. Experimental treatments were executed in an incubator that controlled CO2 (15 000; 30 000; 60 000; 90 000; 200 000 ppm), temperature and humidity; atmospheric controls (i.e., ~ 375 ppm CO2) were executed simultaneously. Although the experimental elevated pCO2 values are far above foreseeable surface water pCO2, they were selected to represent the spectrum of conditions expected for the benthos if deep-sea CO2 sequestration becomes a reality. Survival was assessed in two independent ways: pseudopodial presence/absence and measurement of adenosine triphosphate (ATP), which is an indicator of cellular energy. Substantial proportions of A. laticollaris populations survived 200 000 ppm CO2 although the mean of the median [ATP] of survivors was statistically lower for this treatment than for that of atmospheric control specimens. After individuals that had been incubated in 200 000 ppm CO2 for 12 days were transferred to atmospheric conditions for ~ 24 h, the [ATP] of live specimens (survivors) approximated those of the comparable atmospheric control treatment. Incubation in 200 000 ppm CO2 also resulted in reproduction by some individuals. Results suggest that certain Foraminifera are able to tolerate deep-sea CO2 sequestration and perhaps thrive as a result of elevated pCO2 that is predicted for the next few centuries, in a high-pCO2 world. Thus, allogromiid foraminiferal “blooms” may result from climate change. Furthermore, because allogromiids consume a variety of prey, it is likely that they will be major players in ecosystem dynamics of future coastal sedimentary environments.  相似文献   

19.
The “overshoot scenario” is an emissions scenario in which CO2 concentration in the atmosphere temporarily exceeds some pre-defined, “dangerous” threshold (before being reduced to non-dangerous levels). Support for this idea comes from its potential to achieve a balance between the burdens of current and future generations in dealing with global warming. Before it can be considered a viable policy, the overshoot scenario needs to be examined in terms of its impacts on the global climate and the environment. In, particular, it must be determined if climate change cause by the overshoot scenario is reversible or not, since crossing that “dangerous” CO2 threshold could result in climate change from which we might not be able to recover. In this study, we quantify the change in several climatic and environmental variables under the overshoot scenario using a global climate model of intermediate complexity. Compared to earlier studies on the overshoot scenario, we have an explicit carbon cycle model that allows us to represent carbon-climate feedbacks and force the climate model more realistically with CO2 emissions rates rather than with prescribed atmospheric pCO2. Our standard CO2 emissions rate is calculated on the basis of historical atmospheric pCO2 data and the WRE S650 non-overshoot stabilization profile. It starts from the preindustrial year 1760, peaks in the year 2056, and ends in the year 2300. A variety of overshoot scenarios were constructed by increasing the amplitude of the control emissions peak but decreasing the peak duration so that the cumulative emissions remain essentially constant. Sensitivity simulations of various overshoot scenarios in our model show that many aspects of the global climate are largely reversible by year 2300. The significance of the reversibility, which takes roughly 200 years in our experiments, depends on the time horizon with which it is viewed or the number of future generations for whom equity is sought. At times when the overshoot scenario has emissions rates higher then the control scenario, the transient changes in atmospheric and oceanic temperatures and surface ocean pH can be significant, even for moderate overshoot scenarios that remain within IPCC SRES emissions scenarios. The large transient changes and the centennial timescale of climate reversibility suggest that the overshoot might not be the best mitigation approach, even if it technically follows the optimal economic path.  相似文献   

20.
The chemical composition of a planetary atmosphere plays an important role for atmospheric structure, stability, and evolution. Potentially complex interactions between chemical species do not often allow for an easy understanding of the underlying chemical mechanisms governing the atmospheric composition. In particular, trace species can affect the abundance of major species by acting in catalytic cycles. On Mars, such cycles even control the abundance of its main atmospheric constituent CO2. The identification of catalytic cycles (or more generally chemical pathways) by hand is quite demanding. Hence, the application of computer algorithms is beneficial in order to analyze complex chemical reaction networks. Here, we have performed the first automated quantified chemical pathways analysis of the Martian atmosphere with respect to CO2-production in a given reaction system. For this, we applied the Pathway Analysis Program (PAP) to output data from the Caltech/JPL photochemical Mars model. All dominant chemical pathways directly related to the global CO2-production have been quantified as a function of height up to 86 km. We quantitatively show that CO2-production is dominated by chemical pathways involving HOx and Ox. In addition, we find that NOx in combination with HOx and Ox exhibits a non-negligible contribution to CO2-production, especially in Mars’ lower atmosphere. This study reveals that only a small number of chemical pathways contribute significantly to the atmospheric abundance of CO2 on Mars; their contributions to CO2-production vary considerably with altitude. This analysis also endorses the importance of transport processes in governing CO2-stability in the Martian atmosphere. Lastly, we identify a previously unknown chemical pathway involving HOx, Ox, and HO2-photodissociation, contributing 8% towards global CO2-production by chemical pathways using recommended up-to-date values for reaction rate coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号