首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations and numerical magnetohydrodynamic (MHD) simulations indicate the existence of outflows and ordered large-scale magnetic fields in the inner region of hot accretion flows. In this paper, we present the self-similar solutions for advection-dominated accretion flows (ADAFs) with outflows and ordered magnetic fields. Stimulated by numerical simulations, we assume that the magnetic field has a strong toroidal component and a vertical component in addition to a stochastic component. We obtain the self-similar solutions to the equations describing the magnetized ADAFs, taking into account the dynamical effects of the outflow. We compare the results with the canonical ADAFs and find that the dynamical properties of ADAFs such as radial velocity, angular velocity and temperature can be significantly changed in the presence of ordered magnetic fields and outflows. The stronger the magnetic field is, the lower the temperature of the accretion flow will be and the faster the flow rotates. The relevance to observations is briefly discussed.  相似文献   

2.
Third order virial equations have been used to investigate the oscillations and the stability of the sequence of differentially rotating, compressible Maclaurin spheroids in the presence of toroidal magnetic fields. It is shown that the neutral point occurring at eccentricitye=0.731 13, which is the analogue of the first point of bifurcation along the Dedekind sequence, remains unaffected by the presence of differential rotation or a toroidal magnetic field. The point of onset of dynamical instability corresponding to the third harmonic deformations does, however, depend upon the magnetic field. It is shifted to values higher thane=0.966 96, the value that obtains in the case of uniform rotation; and a sufficiently large magnetic field can suppress this point. Complete frequency spectra (‘Kelvin’ modes belonging to the harmonicsl=3 and compressible modes belonging tol=1) are obtained in two cases of interest: when the equilibrium state is one of equipartition, and when toroidal magnetic and velocity fields (vanishing at the surface) are present in a configuration rotating with a constant angular velocity.  相似文献   

3.
The magnetic fields of celestial bodies are usually supposed to be due to a ‘hydromagnetic dynamo’. This term refers to a number of rather speculative processes which are supposed to take place in the liquid core of a celestial body. In this paper we shall follow another approach which is more closely connected with hydromagnetic processes well-known from the laboratory, and hence basically less speculative. The paper should be regarded as part of a general program to connect cosmical phenomena with phenomena studied in the laboratory. As has been demonstrated by laboratory experiments, a poloidal magnetic field may be increased by the transfer of energy from a toroidal magnetic field through kink instability of the current system. This mechanism can be applied to the fluid core of a celestial body. Any differential rotation will produce a toroidal field from an existing poloidal field, and the kink instability will feed toroidal energy back to the poloidal field, and hence amplify it. In the Earth-Moon system the tidal braking of the Earth's mantle acts to produce a differential angular velocity between core and mantle. The braking will be transferred to the core by hydromagnetic forces which at the same time give rise to a strong magnetic field. The strength of the field will be determined by the rate of tidal braking. It is suggested that the magnetization of lunar rocks from the period ?4 to ?3 Gyears derives from the Earth's magnetic field. As the interior of the Moon immediately after accretion probably was too cool to be melted, the Moon could not produce a magnetic field by hydromagnetic effects in its core. The observed lunar magnetization could be produced by such an amplified Earth field even if the Moon never came closer than 10 or 20 Earth's radii. This hypothesis might be checked by magnetic measurements on the Earth during the same period.  相似文献   

4.
The purpose of this paper is to explore the effect of magnetic fields on the dynamics of magnetized filamentary molecular clouds.We suppose there is a filament with cylindrical symmetry and two components of axial and toroidal magnetic fields.In comparison to previous works,the novelty in the present work involves a similarity solution that does not define a function of the magnetic fields or density.We consider the effect of the magnetic field on the collapse of the filament in both axial and toroidal directions and show that the magnetic field has a braking effect,which means that the increasing intensity of the magnetic field reduces the velocity of collapse.This is consistent with other studies.We find that the magnetic field in the central region tends to be aligned with the filament axis.Also,the magnitude and the direction of the magnetic field depend on the magnitude and direction of the initial magnetic field in the outer region.Moreover,we show that more energy dissipation from the filament causes a rise in the infall velocity.  相似文献   

5.
Tikhomolov  Evgeniy 《Solar physics》2001,199(1):165-186
In the traditional axisymmetric models of the 11-year solar cycle, oscillations of the magnetic fields appear in the background of nonoscillating (over time scale considered) turbulent velocity fields and differential rotation. In this paper, an alternative approach is developed: The excitation of magnetic oscillations with the 22-year period is the consequence of hydrodynamic oscillations with the 11-year period. In the excitation of hydrodynamic oscillations, two processes taking place in high latitudes near the interface between the convective and radiative zones play a key role. One is forcing of the westerly zonal flow, the conditions for which are due to deformation of the interfacial surface. The other process is the excitation of a shear instability of zonal flow as a consequence of a strong radial gradient of angular velocity. The development of a shear instability at some stage brings about the disruption of the forcing of differential rotation. In the first (hydrodynamic) part of the paper, the dynamics of axisymmetric flows near the bottom of the convection zone is numerically simulated. Forcing of differential rotation having velocity shear in latitude and the existence of solutions in the form of torsional waves with the 11-year oscillation period are shown. In the second part the dynamics of the magnetic field is studied. The most pronounced peculiarities of the solutions are the existence of forced oscillations with the 22-year period and the drift of the toroidal magnetic field component from the mid latitudes to the equator. In high and low latitudes after cycle maximum, the toroidal component is of opposite sign in accordance with observations. In the third part, the transport of momentum from the bottom of the convection zone to the outer surface by virtue of diffusivity is considered. The existence of some sources of differential rotation in the convection zone is not implied. A qualitative correspondence of the differential rotation profile in the bulk of the convection zone and on its outer surface to experimental data is shown. The time correspondence between torsional and magnetic oscillations is also in accordance with observations.  相似文献   

6.
In this paper the process of magnetic convection is studied. It is shown that outside of a radius of about 2 × 105 km, magnetic fields in the Sun may be buoyant. Outside this limit strong field regions tend to rise at the expense of weak field regions which tend to sink. Magnetic convection may be important in magnetic stars and even in the solar interior. A recent calculation of the angular velocity of the Sun provides a period of rotation for the solar core of from 0.5 to 5 days. This calculation requires that the magnetic field extract angular momentum from the solar interior. Magnetic convection thus seems to be required, if this calculation is correct. Furthermore, magnetic convection may transfer heat and thereby possibly change the internal temperature structure of the Sun from what would be expected solely by radiation transfer.  相似文献   

7.
Eclipse photographs indicate that large regions of the inner solar corona are confined in various types of closed magnetic configurations and, as a result, do not participate in the general solar wind expansion. In this paper, the rotation of initially poloidal loop configurations of this type, as influenced by differential rotation of the footpoints, is investigated. The analysis is restricted to axially symmetric fields and it is assumed that the toroidal magnetic field induced by differential rotation is small as compared to the initial poloidal field. This restricts the validity of the analysis to times less than about one month.The most interesting physical situation is that of flux tubes existing in one solar hemisphere only, one end of the tube being fixed in the photosphere at a higher latitude than the other. As a consequence, the lower end of the tube rotates at a faster rate than the upper end. Solution of the pertinent equations reveals that the angular velocity measured along a field line increases monotonically from its value at the poleward footpoint to that at the lower footpoint. The variation of angular velocity along the field depends upon the field geometry only and is not directly related to the variation of angular velocity along the solar surface between the footpoints. Depending upon the field configuration, both outward radial increases and decreases are possible. Using the Newton and Nunn model for the surface differential rotation rate, the angular velocity distribution on two particularly simple types of closed magnetic loop systems is determined analytically. It is shown that the angular velocity increases outward in the polar regions but decreases outward near the equator - leading to a decrease in differential rotation with height.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

8.
We study a mean field model of the solar dynamo, in which the non-linearity is the action of the azimuthal component of the Lorentz force of the dynamo-generated magnetic field on the angular velocity. The underlying zero-order angular velocity is consistent with recent determinations of the solar rotation law, and the form of the alpha effect is chosen so as to give a plausible butterfly diagram. For small Prandtl numbers we find regular, intermittent and apparently chaotic behaviour, depending on the size of the alpha coefficient. For certain parameters, the intermittency displays some of the characteristics believed to be associated with the Maunder minimum. We thus believe that we are capturing some features of the solar dynamo.  相似文献   

9.
For the case in which the gas of a magnetized filamentary cloud obeys a polytropic equation of state, gravitational collapse of the cloud is studied using a simplified model. We concentrate on the radial distribution and restrict ourselves to a purely toroidal magnetic field. If the axial motions and poloidal magnetic fields are sufficiently weak, we could reasonably expect our solutions to be a good approximation. We show that while the filament experiences gravitational condensation and the density at the centre increases, the toroidal flux-to-mass ratio remains constant. A series of spatial profiles of density, velocity and magnetic field for several values of the toroidal flux-to-mass ratio and the polytropic index, is obtained numerically and discussed.  相似文献   

10.
Chandrasekhar and Prendergast have established a result which has been assumed to imply that axisymmetric stars with an internal toroidal magnetic field should have zero external poloidal field. By considering mildly singular functions, the range of solutions is increased, and models can then be constructed which have toroidal and poloidal fields in the interior and a non-zero, external, poloidal field. Both the magnetic field and its associated current are continuous everywhere.  相似文献   

11.
Solving the nonlinear partial differential equations of magnetohydrodynamics numerically, we examine (1) the time development of a purely toroidal magnetic field (a magnetic ring) and (2) the interaction of a magnetic ring with a poloidal magnetic field. Axisymmetry and incompressibility are assumed. Parameters are chosen to correspond to photospheric conditions. In case (1), the magnetic ring contracts to the axis and then splits in two with one ring travelling up along the axis and the other down. In case (2), a large toroidal velocity field is generated which has opposite direction of flow above and below the magnetic ring. The magnetic and flow patterns of case (2) may persist with little change for a relatively long time. We conjecture that toroidal magnetic fields may be involved in the bright rings of sunspots or in the dynamics of spicules.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

12.
We study the equilibrium of pressure truncated, filamentary molecular clouds that are threaded by rather general helical magnetic fields. We first apply the virial theorem to filamentary molecular clouds, including the effects of non-thermal motions and the turbulent pressure of the surrounding ISM. When compared with the data, we find that many filamentary clouds have a mass per unit length that is significantly reduced by the effects of external pressure, and that toroidal fields play a significant role in squeezing such clouds.
We also develop exact numerical MHD models of filamentary molecular clouds with more general helical field configurations than have previously been considered. We examine the effects of the equation of state by comparing 'isothermal' filaments, with constant total (thermal plus turbulent) velocity dispersion, with equilibria constructed using a logatropic equation of state.
Our theoretical models involve three parameters: two to describe the mass loading of the toroidal and poloidal fields, and a third that describes the radial concentration of the filament. We thoroughly explore our parameter space to determine which choices of parameters result in models that agree with the available observational constraints. We find that both equations of state result in equilibria that agree with the observational results. Moreover, we find that models with helical fields have more realistic density profiles than either unmagnetized models or those with purely poloidal fields; we find that most isothermal models have density distributions that fall off as r −1.8 to r −2, while logatropes have density profiles that range from r −1 to r −1.8. We find that purely poloidal fields produce filaments with steep radial density gradients that are not allowed by the observations.  相似文献   

13.
We have developed a new numerical scheme for obtaining structures of rapidly rotating stars with strong magnetic fields. In our scheme, both poloidal and toroidal magnetic fields can be treated for stars with compressibility and infinite conductivity. By introducing the vector potential and its integral representation, we can treat the boundary condition for the magnetic fields across the surface properly. We show structures and distributions of magnetic fields as well as the distributions of the currents of rotating magnetic polytropic stars with polytropic index   N = 1.5  . The shapes of magnetic stars are oblate as long as the magnetic vector potential decreases as 1/ r when   r →∞  . For extremely strong magnetic fields, equilibrium configurations can be of toroidal shapes.  相似文献   

14.
We have performed 3-D numerical simulations of compressible convection under the influence of rotation and magnetic fields in spherical shells. They aim at understanding the subtle coupling between convection, rotation and magnetic fields in the solar convection zone. We show that as the magnetic Reynolds number is increased in the simulations, the magnetic energy saturates via nonlinear dynamo action, to a value smaller but comparable to the kinetic energy contained in the shell, leading to increasingly strong Maxwell stresses that tend to weaken the differential rotation driven by the convection. These simulations also indicate that the mean toroidal and poloidal magnetic fields are small compared to their fluctuating counterparts, most of the magnetic energy being contained in the non-axisymmetric fields. The intermittent nature of the magnetic fields generated by such a turbulent convective dynamo confirms that in the Sun the large-scale ordered dynamo responsible for the 22-year cycle of activity can hardly be located in the solar convective envelope.  相似文献   

15.
Identifying generic physical mechanisms responsible for the generation of magnetic fields and turbulence in differentially rotating flows is fundamental to understand the dynamics of astrophysical objects such as accretion disks and stars. In this paper, we discuss the concept of subcritical dynamo action and its hydrodynamic analogue exemplified by the process of nonlinear transition to turbulence in non‐rotating wall‐bounded shear flows. To illustrate this idea, we describe some recent results on nonlinear hydrodynamic transition to turbulence and nonlinear dynamo action in rotating shear flows pertaining to the problem of turbulent angular momentum transport in accretion disks. We argue that this concept is very generic and should be applicable to many astrophysical problems involving a shear flow and non‐axisymmetric instabilities of shearinduced axisymmetric toroidal velocity or magnetic fields, such as Kelvin‐Helmholtz, magnetorotational, Tayler or global magnetoshear instabilities. In the light of several recent numerical results, we finally suggest that, similarly to a standard linear instability, subcritical MHD dynamo processes in high‐Reynolds number shear flows could act as a large‐scale driving mechanism of turbulent flows that would in turn generate an independent small‐scale dynamo. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We investigate the rotation profile of solar-like stars with magnetic fields. A diffu-sion coefficient of magnetic angular momentum transport is deduced. Rotating stellar models with different mass incorporating the coefficient are computed to give the rotation profiles. The total angular momentum of a solar model with only hydrodynamic instabilities is about 13 times larger than that of the Sun at the age of the Sun, and this model can not reproduce quasi-solid rotation in the radiative region. However, the solar model with magnetic fields not only can reproduce an almost uniform rotation in the radiative region, but also a total angular momentum that is consistent with the helioseismic result at the 3 σ level at the age of the Sun. The rotation of solar-like stars with magnetic fields is almost uniform in the radiative region, but for models of 1.2-1.5 M⊙, there is an obvious transition region between the convective core and the radiative region, where angular velocity has a sharp radial gradient, which is different from the rotation profile of the Sun and of massive stars with magnetic fields. The change of angular velocity in the transition region increases with increasing age and mass.  相似文献   

17.
S. T. Suess 《Solar physics》1971,18(1):172-175
Some recent observations of the Sun suggest a class of wave-like motions moving both eastward and westward at a uniform velocity with respect to the mean solar angular velocity. It is suggested that these may be hydromagnetic planetary waves. An estimate of the mean toroidal magnetic field is made, based on a theoretical treatment of such waves already in the literature, and a slight correction to the mean rate of rotation of the Sun is inferred.  相似文献   

18.
Ion velocity distributions in the auroral ionosphere   总被引:1,自引:0,他引:1  
For application to studies of the auroral ionosphere we have calculated the velocity distribution of the ions in a weakly-ionized plasma subjected to crossed electric and magnetic fields. We have retained enough terms in the series expansion of the distribution to enable us to determine under what conditions departures from the Maxwellian form become significant and what the nature of these departures is, but we cannot calculate precise values of the distribution function when the departures are large. Departures are negligibly small under conditions appropriate to the auroral ionosphere at low altitudes, where the ion-neutral collision frequency is much larger than the ion cyclotron frequency. At altitudes above about 120 km, however, the magnitude of the departures varies little with altitude. Electric fields greater than 25 mV m−1 cause departures from the Maxwellian distribution that are greater than 20 per cent at random velocities equal to or greater than twice the mean thermal speed of the ions. Under almost all conditions we find that the distribution is depleted in ions moving parallel to the magnetic field relative to those moving perpendicular, an effect that might be detectable in ionospheric measurements of ion temperature.  相似文献   

19.
We present the results of the continuation of our magnetic survey with FORS 1 at the VLT of a sample of B‐type stars consisting of confirmed or candidate β Cephei stars and Slowly Pulsating B (hereafter SPB) stars, along with a small number of normal B‐type stars. A weak mean longitudinal magnetic field of the order of a few hundred Gauss was detected in three β Cephei stars and two stars suspected to be β Cephei stars, in five SPB stars and eight stars suspected to be SPB stars. Additionally, a longitudinal magnetic field at a level larger than 3σ has been diagnosed in two normal B‐type stars, the nitrogen‐rich early B‐type star HD 52089 and in the B5 IV star HD 153716. Roughly one third of β Cephei stars have detected magnetic fields: Out of 13 β Cephei stars studied to date with FORS 1, four stars possess weak magnetic fields, and out of the sample of six suspected β Cephei stars two show a weak magnetic field. The fraction of magnetic SPBs and candidate SPBs is found to be higher: Roughly half of the 34 SPB stars have been found to be magnetic and among the 16 candidate SPBs eight stars possess magnetic fields. In an attempt to understand why only a fraction of pulsating stars exhibit magnetic fields, we studied the position of magnetic and non‐magnetic pulsating stars in the H‐R diagram. We find that their domains in the H‐R diagram largely overlap, and no clear picture emerges as to the possible evolution of the magnetic field across the main sequence. It is possible that stronger fields tend to be found in stars with lower pulsating frequencies and smaller pulsating amplitudes. A somewhat similar trend is found if we consider a correlation between the field strength and the v sin i ‐values, i.e. stronger magnetic fields tend to be found in more slowly rotating stars (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The evolution of the large-scale magnetic field of the Sun has been studied using an algorithm of tomographic inversion. By analyzing line-of-sight magnetograms, we mapped the radial and toroidal components of the Sun??s large-scale magnetic field. The evolution of the radial and toroidal magnetic field components in the 11-year solar cycle has been studied in a time?Clatitude aspect. It is shown that the toroidal magnetic field of the Sun is causally related to sunspot activity; i.e., the sunspot formation zones drift in latitude and follow the toroidal magnetic fields. The results of our analysis support the idea that the high-latitude toroidal magnetic fields can serve as precursors of sunspot activity. The toroidal fields in the current cycle are anomalously weak and also show a barely noticeable equatorward drift. This behavior of the toroidal magnetic field suggests low activity levels in the current cycle and in the foreseeable future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号