首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We report Permian (ca. 272 Ma ±5.4 Ma) felsic dykes that intrude into the Neoproterozoic (ca. 750 Ma) magmatic suite of the Nagar Parkar Igneous Complex (NPIC), the western extension of the Malani Igneous Suite (MIS). The NPIC consists of Neoproterozoic basement amphibolites and granites (riebeckite–aegirine gray granites and the biotite–hornblende pink granites), all of which are intruded by several generations of mafic and felsic dykes. Granitic magmatism occurred in the Late Neoproterozoic (ca. 750 Ma) due to the subduction‐, followed by the rift‐related tectonic regime during the breakup of the Rodinia supercontinent. U–Th–Pb zircon and monazite CHIME age data of 700–800 Ma from the earlier generation porphyritic felsic dykes suggest the dyke intrusion was coeval or soon after the emplacement of the host granites. Our findings of Permian age orthophyric felsic dykes provide new insights for the prevalence of active tectonics in the MIS during late Paleozoic. Textural features and geochemistry also make the orthophyric dykes distinct from the early‐formed porphyritic dykes and the host granites. Our newly obtained age data combined with geochemistry, suggest the existence of magmatism along the western margin of India (peri‐Gondwana margin) during Permian. Like elsewhere in the region, the Permian magmatism in the NPIC could be associated with the rifting of the Cimmerian micro‐continents from the Gondwana.  相似文献   

2.
Seon-Gyu  Choi  V. J. Rajesh  Jieun  Seo  Jung-Woo  Park  Chang-Whan  Oh  Sang-Joon  Pak  Sung-Won  Kim 《Island Arc》2009,18(2):266-281
Collision between the North and South China continental blocks began in the Korean peninsula during the Permian (290–260 Ma). The Haemi area in the Hongseong collision belt (proposed as the eastern extension in South Korea of the Dabie–Sulu collision zone of China) within the Gyeonggi Massif comprises post-collisional high Ba–Sr granite with intermediate enclaves that intruded into the Precambrian rocks. The intermediate enclaves have a shoshonitic affinity whereas the granite is a high-K calc-alkaline variety. The chondrite-normalized rare earth element (REE) pattern with relative enrichment of LREE over HREE and absence of a significant negative Eu anomaly typifies both enclaves and granite. Geochemical similarities of enclaves and granite are attributed to the involvement of enriched mantle sources in their genesis. However, dominant crustal components were involved in the formation of high Ba–Sr granites. A granite crystallization age of 233 ± 2 Ma was obtained from SHRIMP U–Pb zircon dating. This age is slightly younger than the Triassic collision event in the Hongseong Belt. Geochemical data, U–Pb zircon age, and regional tectonics indicate that the Haemi high Ba–Sr granite formed in a post-collisional tectonic environment. A Mesozoic post-collisional lithospheric delamination model can account for the genesis of high Ba–Sr granite in the Haemi area.  相似文献   

3.
广东南山花岗岩体位于陂头复式岩体西端,锆石的SHRIMP U-Pb年龄为158.1±1.8Ma,是燕山早期岩浆活动的产物。岩石化学特征显示岩体以高硅、富碱、贫Ca和Mg以及高TFeO/MgO、低CaO/Na2O为特征。其K2O/Na2O〉1,A/NK=7.8~11.92,A/CNK=1.33~1.68,属过铝质碱性岩石。在稀土和微量元素组成上,岩石富含稀土元素(除明显的负Eu异常,δEu=0.09~0.16)以及Zr、Y、Th、U、Nb等高场强元素,贫Ba、Sr、Ti等,高10000x Ga/Al(比值大于2.6)。在Zr、Nb、Ce、Y对10000×Ga/Al以及TFeO/MgO-SiO2等A型花岗岩多种判别图上,投影点主要落在A型花岗岩区,而与高分异的I、S型花岗岩明显不同。这些特征均指示,南山岩体具有铝质A型花岗岩的特点。通过Y-Nb-3Ga和Y-Nb-Ce构造环境判别图解将其进一步划分为A2型花岗岩,代表其形成于拉张的构造背景之下。本文在此研究基础上,认为南山花岗质岩浆可能形成于相对挤压的中侏罗世。而在晚侏罗世早期相对拉张的作用下,岩石圈减薄,软流圈地幔上涌,地壳的泥质岩和少量砂质岩受到幔源流体富集后发生部分熔融后上侵形成铝质A型花岗岩,且有较强的结晶分异作用。  相似文献   

4.
Neoproterozoic igneous and metamorphic complexes occur as tectonic domes in the Longmen Mountains of the western margin of the Yangtze Block, and are important in reconstructing the Rodinian supercontinent and constraining the timing and mechanism of tectonic denudational processes. The Pengguan dome consists of granitic intrusions and metamorphic rocks of the Huangshuihe Group and is tectonically overlain by ductilly deformed Sinian to Paleozoic strata. The plutonic intrusions consist of granites with abundant amphibolite enclaves. New LA-ICP-MS zircon U-Pb dating yielded an emplacement age of 809±3 Ma and a protolith age of 844±6 Ma for the granite. The granitic rocks have geochemical signatures typical of A-type granites, indicating their formation under an extensional environment, by melting of newly formed tonalite-trondhjemite-granodiorite (TTG) rocks. A detachment fault, characterized by variable ductile shear deformation of S-C fabric and ESE-ward kinematics, separates the Pengguan dome from the Sinian-Paleozoic cover. 40Ar/39Ar dating of muscovite from the mylonite in the detachment fault of the dome demonstrates that ductile deformation occurred at ~160 Ma. This study indicates the existence of a Neoproterozoic magmatic arc-basin system, which was denudated by a Jurassic middle crustal ductile channel flow along the Longmenshan thrust belt.  相似文献   

5.
Although a number of petrographic observations and isotopic data suggest that magma mixing is common in genesis of many granite plutons, it is still controversial whether the mantle-derived magmas were involved in granites. We carried out in this study a systematic analysis of in situ zircon Hf-O isotopes for three early Yanshanian intrusions dated at ca. 160 Ma from the Nanling Range of Southeast China. The Qinghu monzonite has very homogeneous zircon Hf-O isotopic compositions, εHf(t) =11.6±0.3 and δ18O=5...  相似文献   

6.
Once a mafic intrusive rock has become altered, it is generally difficult to obtain a reliable intrusion age using conventional isotopic dating methods. To overcome this problem, this study used zircon fission track (ZFT) thermochronometry to determine the timing of crystallization of altered mafic intrusions. ZFT dating was carried out on samples of baked granite country rock adjacent to dolerite dikes (5–10 m thick) in the Takato area of central Japan. Three granite samples collected within 8 mm of a dike contact yielded consistent ZFT ages of 17–16 Ma, with confined track lengths indicative of the complete annealing of pre‐existing tracks by reheating due to dike intrusion. An older ZFT age was obtained for one granite sample collected within 20 mm of the contact, but confined track length measurements indicate that this is an incompletely reset age that lies between the ZFT age of the unbaked granitic country rocks (ca. 55 Ma) and the emplacement age of the dike. Petrographic examinations suggest that post‐intrusion hydrothermal activity did not influence the ZFT ages. We conclude that the 17–16 Ma ZFT age represents the emplacement age of the dikes. Our results show that ZFT dating of baked country rock is an effective tool for dating altered mafic intrusions, for which other dating techniques are not applicable. In the eastern part of Southwest Japan, dispersed volcanic activity occurred in the late Early to early Middle Miocene (18–15 Ma), and the volcanic belt extended into the forearc. This pulse of activity was possibly related to the injection of asthenospheric material into the trench‐side mantle wedge beneath the Japan arc. We also present young apatite fission track ages (ca. 4 Ma) that may reflect a Middle Miocene or later thermal event associated with local magmatic activity near the Takato area.  相似文献   

7.
The Late Permian (260 Ma) Emeishan large igneous province of SW China contains numerous magmatic Fe–Ti oxide deposits. The Fe–Ti oxide deposits occur in the lower parts of evolved layered gabbroic intrusions which are spatially and temporally associated with A-type granitic rocks. The 260 Ma Panzhihua layered gabbroic intrusion hosts one of the largest magmatic Fe–Ti oxide deposits in China and is coeval with a peralkaline A-type granitic pluton. The granite has intruded the overlying Emeishan flood basalts and fed at least one dyke which erupted onto the surface producing columnar jointed trachytes. The presence of syenodiorite between the layered gabbro and granite is evidence for compositional evolution from mafic to intermediate to felsic rocks. The syenodiorites have intermediate to felsic composition with SiO2 = 61 to 65 wt.%, MgO = 0.27 to 0.6 wt.% and CaO = 1.0 to 2.5 wt.% as compared to the granite SiO2 = 65 to 72 wt.%, MgO = 0.1 to 0.4 wt.%, CaO = < 1.0 wt.%. Primitive-mantle-normalized incompatible element plots show corresponding reciprocal patterns between the mafic and felsic rocks. The chondrite-normalized REE patterns show Eu anomalies changing from > 1(Eu/Eu? = 1.1 to 2.6) in the gabbroic intrusion, to < 1 in the syenodiorite (Eu/Eu? = 0.75 to 0.83), granites and trachytes (Eu/Eu? = 0.55–0.87). Previously published εNd(T) values from clinopyroxenes (εNd(T) = + 1.1 to + 3.2) of the gabbroic intrusion match the whole-rock values of the syenodiorite (εNd(T) = + 2.1 to + 2.5), granite and trachyte (εNd(T) = + 2.2 to + 2.9), suggesting that all rock types originated from the same mantle source. MELTS and trace element modeling confirm that all rock types can be generated by fractional crystallization of high-Ti Emeishan basalt. The jump in SiO2 from the gabbro to the syenodiorite is attributed to the en masse crystallization of the Fe–Ti oxides. The geological and geochemical data indicate that fractional crystallization of a common parental magma produced the layered gabbroic intrusion and Fe–Ti oxide deposit, the syenodiorite, granites and trachyte of the Panzhihua region, which thus form a genetically related plutonic-hypabyssal-volcanic complex. Other granite–gabbro complexes in the region likely formed in a similar manner.  相似文献   

8.
The Nanling metallogenic belt in South China is characterized by well-developed tungsten-tin mineralization related to multiple-aged granitoids. This belt is one of the 5 key prospecting and exploration areas among the 19 important metallogenic targets in China. Important progress has been made in recent years in understanding the Nanling granitoids and associated mineralization, and this paper introduces the latest major findings as follows: (1) there exists a series of Caledonian, Indosinian, and Yanshanian W-Sn-bearing granites; (2) the Sn-bearing Yanshanian granites in the Nanling Range form an NE-SW trending aluminous A-type granite belt that stretches over 350 km. The granites typically belong to the magnetite series, and dioritic micro-granular enclaves with mingling features are very common; (3) the Early Yanshanian Sn- and W-bearing granites possess different petrological and geochemical features to each other: most Sn-bearing granites are metaluminous to weakly peraluminous biotite (hornblende) granites, with zircon ?Hf(t) values of ca. ?2 to ?8, whereas most W-bearing granites are peraluminous two-mica granites or muscovite granites with ?Hf(t) values of ca. ?8 to ?12; (4) based on the petrology and geochemistry of the W-Sn-bearing granites, mineralogical studies have shown that common minerals such as titanite, magnetite, and biotite may be used as indicators for discriminating the mineralizing potential of the Sn-bearing granites. Similarly, W-bearing minerals such as wolframite may indicate the mineralizing potential of the W-bearing granites. Future studies should be focused on examining the internal relationships between the multiple-aged granites in composite bodies, the metallogenic peculiarities of multiple-aged W-Sn-bearing granites, the links between melt evolution and highly evolved ore-bearing felsic dykes, and the connections between granite domes and mineralization.  相似文献   

9.
Zircon LA-ICP-MS U-Pb dating reveals that the Baimashan Pluton is composed mainly of late Indosinian (204.5±2.8 Ma-209.2±3.8 Ma) biotite granodiorites/monzonitic granites (LIGs) and early Yanshanian (176.7±1.7 Ma) two-micas monzonitic granites (EYGs), and the coeval (203.2±4.5 Ma-205.1±3.9 Ma) mafic microgranular enclaves (MMEs) are generally found in the former. In addition, the ages of cores within zircons from LIGs and MMEs ranging from 221.4±4.0 Ma to 226.5±4.1Ma provide evidence of multistage magma intrusion during Indosinian in the study area. Measured 3010±20.6 Ma of inherited zircon age suggests that there may be recycling Archaean curstal material in existence in this area. LIGs and EYGs share some similar geochemical features: subalkaline and peraluminous granites, enrichment of Th, U, K, Ta, Zr, Hf and LREE but depletion of Ba, Nb, P, Ti and Eu, low εNd(t) values but high (87Sr/86Sr)i ratios, and old T2DM (ca. 1.9-2.0 Ga). The behaviors of incompatible elements and REE are mainly dominated by fractional crystallization of plagioclase, K-feldspar, ilmenite and apatite, but that of Sr isotope mainly controlled by EC-AFC. They are crust-sourced and derived from partial melting of paleo-Proterozoic metagreywackes and related to biotite dehydration melting. LIGs are formed in post-collisional tectonic setting as crustal local extension and thinning during late Indosinian. But EYGs may be evolved products of congeneric granitic magma with LIGs formed in late Indoinian, which were emplaced again when crust underwent extensive thinning and extension in post-orogenic tectonic setting during Yanshanian in SC after undergoing EC-AFC. MMEs should be cognate enclaves and derived from liquid immiscibility of host magma.  相似文献   

10.
Granitoids in the Hida region of Japan encompass two main rock types: younger type‐1 granites and older type‐2 granites. Sensitive high mass‐resolution ion microprobe (SHRIMP) U–Pb zircon dating of older type‐2 granites collected from the Tateyama area show similar ages of 245 ± 2 Ma and 248 ± 5 Ma for two gneissose granites, while a significantly younger intrusion age of 197 ± 3 Ma was determined for the younger type‐1 granites collected from the Hayatsukigawa River which belongs to the Okumayama pluton. A felsic gneiss sample (07HI‐3) collected from the right bank of the Hayatsukigawa River yielded multiple complex ages at 330 ± 6 Ma, indicating the timing of the Hida regional tectono‐thermal events that formed the Hida gneisses; 243 ± 8 Ma, representing the timing of intrusion of the augen granite; and 220 Ma, indicating the timing of regional dextral ductile shearing that caused a repeated recrystallization of metamorphic rocks in the study area. Considering the geochronological data, the rock types and assemblages, basement, and Sr–Nd isotopic constraints, we propose that the Hida Belt separated from the Jiamushi massif, which is located in the eastern margin of the Central Asian Orogenic Belt.  相似文献   

11.
Abstract The tectonic history of the Okcheon Metamorphic Belt (OMB) is a key to understanding the tectonic relationship between South Korea, China and Japan. The petrochemistry of 150 psammitic rocks in the OMB indicates that the depositional environment progressively deepened towards the northwest. These data, combined with the distribution pattern of oxide minerals and the abundance of carbonaceous material, support a half‐graben basin model for the OMB. Biotite and muscovite K–Ar dates from metasediments in the central OMB range from 102 to 277 Ma. K–Ar ages of 142–194 Ma are widespread throughout the area, whereas the older ages of 216–277 Ma are restricted to the metasediments of the middle part of the central OMB. The younger (Cretaceous) ages are only found in metasediments that are situated near the Cretaceous granite intrusions. The 216–277 Ma dates from weakly deformed areas represent cooling ages of M1 intermediate pressure/temperature (P/T) metamorphism. The relationship between age distribution and deformation pattern indicates that the Jurassic muscovite and biotite dates can be interpreted as complete resetting ages, caused by thermal and deformational activities associated with Jurassic granite plutonism. Well‐defined 40Ar/39Ar plateau ages of 155–169 Ma for micas from both metasediments and granitic rocks can be correlated with the main Jurassic K–Ar mica ages (149–194 Ma). U–Pb zircon dates for biotite granite from the southwest OMB are 167–169 Ma. On the basis of the predominantly Jurassic igneous and metamorphic ages and the uniformity of d002 values for carbonaceous materials in the study area, it is suggested that the OMB has undergone amphibolite facies M2 metamorphism after M1 metamorphism. This low P/T M2 regional thermal metamorphism may have been caused by the regional intrusion of Jurassic granites. The OMB may have undergone tectono‐metamorphic evolution as follows: (i) the OMB was initiated as an intraplate rift in the Neoproterozoic during break‐up of Rodinia, and may represent the extension of Huanan aulacogen within the South China block; (ii) sedimentation continued from the Neoproterozoic to the Ordovician, perhaps with several unconformities; (iii) M1 intermediate P/T metamorphism occurred during the Late Paleozoic due to compression caused by collision between the North and South China blocks in an area peripheral to the collision zone; and (iv) during the Early to Middle Jurassic, north‐westward subduction of the Farallon‐Izanagi Plate under the Asian Plate resulted in widespread intrusion of granites, which triggered M2 low P/T regional thermal metamorphism in the OMB. This event also formed the dextral Honam shear zone at the boundary between the OMB and Precambrian Yeongnam massif.  相似文献   

12.
IntroductionTheinversionapproachofregionalstressfielddevelopedinrecent10to20yearsprovidesausefultoolforstudyingthemeanstressinagivenregion(Angeller,1979;Ellsworth,1981,Xu,Ge,1984).Becauseitusesmultitudinousfaultsinsteadofsinglefault,itcanremovetheinhomogeneityoflocalmediumsoastorevealtheregionalstressinformation.Besides,thismethodproducesaRvalue,whichisdefinedby(O-2--q)/(q--q),andmaydescribestherelativemagnitUdeofintermediateprincipalstress,whereq,acand%arethemaximum,theintermediateandthemi…  相似文献   

13.
SHRIMPP U-Pb zircon age and geochemical and Nd isotopic data are reported for the Aoyitake plagiogranite in western Tarim Block, NW China. The plagiogranite intruded the Middle Pro- terozoic and Lower Carboniferous with an exposure area of ca. 60 km2 and crystallized at 330.7±4.8 Ma. Rock types mainly include tonalite, trondhjemite and minor amounts of diorite and quartz-diorite. Feldspars in the rocks are dominated by oligoclase-andesine, and minor perthite observed locally. The granites are sodic with Na/K ratios (molar) between 4 and 87. Total REE (50-220 ppm) show a clear positive correlation with SiO2. There is no LRRE/HREE fractionation (LaN/YbN=0.5-1.5), me- dium negative Eu anomalies (δ Eu=0.3-0.6), high Y content and low Sr/Y ratio (~1.0). These granites exhibit relatively juvenile Nd T2DM model ages of 470 to 580 Ma and positive εNd(331 Ma) values of 6.23 to 7.65. The aforementioned characteristics are similar to those of ocean island or ocean ridge plagiogranites. However, the regional geology, especially its scale, precludes that the plagiogranite pluton was derived directly from fractionational crystallization of mantle-derived basaltic magma. We interpreted that the primary magma of the pluton might be tonalitic in composition generated by ca. 50% partial melting of the juvenile basaltic crust. The primary magma experienced intensive frac- tionational crystallization, and intruded into the middle to upper crusts to form the granite pluton. In combination with the previous regional geological data, it is concluded that the plagiogranite pluton was emplaced within the Tarim Block in respond to the Carboniferous continental rifting along the Tianshan orogenic belt.  相似文献   

14.
 The geochemistry and the injection mechanism of hypovolcanic ring dykes have been extensively studied, but such is not the case for their internal fabric. The Tertiary Western Red Hills epigranites of the Isle of Skye are a classic example of such intrusions. Using anisotropy of magnetic susceptibility measurements, we present the first structural data of their internal magmatic fabric. The magnetic foliations, equated with the magmatic flow planes, have strikes which roughly follow the walls of the different intrusions. They dip steeply toward the convex wall of each intrusion. The lineations, or maximal magnetic susceptibility axes, generally have shallow plunges, except in the latest granite intrusion. These structures appear to be related to the compressional deformation of each intrusion toward the end of its crystallization. This shortening would be a consequence of a radial and compressive stress field acting after each injection of magma. This radial stress field is interpreted as the effect of high magma pressures originating from the acid magma chamber underlying the ring-dyke complex at a shallow depth. Received: 10 October 1995 / Accepted: 4 June 1997  相似文献   

15.
This paper presents a review on the rock associations, geochemistry, and spatial distribution of Mesozoic-Paleogene igneous rocks in Northeast Asia. The record of magmatism is used to evaluate the spatial-temporal extent and influence of multiple tectonic regimes during the Mesozoic, as well as the onset and history of Paleo-Pacific slab subduction beneath Eurasian continent. Mesozoic-Paleogene magmatism at the continental margin of Northeast Asia can be subdivided into nine stages that took place in the Early-Middle Triassic, Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, Late Cretaceous, and Paleogene, respectively. The Triassic magmatism is mainly composed of adakitic rocks, bimodal rocks, alkaline igneous rocks, and A-type granites and rhyolites that formed in syn-collisional to post-collisional extensional settings related to the final closure of the Paleo-Asian Ocean. However, Triassic calc-alkaline igneous rocks in the Erguna-Xing’an massifs were associated with the southward subduction of the Mongol-Okhotsk oceanic slab. A passive continental margin setting existed in Northeast Asia during the Triassic. Early Jurassic calc-alkaline igneous rocks have a geochemical affinity to arc-like magmatism, whereas coeval intracontinental magmatism is composed of bimodal igneous rocks and A-type granites. Spatial variations in the potassium contents of Early Jurassic igneous rocks from the continental margin to intracontinental region, together with the presence of an Early Jurassic accretionary complex, reveal that the onset of the Paleo- Pacific slab subduction beneath Eurasian continent occurred in the Early Jurassic. Middle Jurassic to early Early Cretaceous magmatism did not take place at the continental margin of Northeast Asia. This observation, combined with the occurrence of low-altitude biological assemblages and the age population of detrital zircons in an Early Cretaceous accretionary complex, indicates that a strike-slip tectonic regime existed between the continental margin and Paleo-Pacific slab during the Middle Jurassic to early Early Cretaceous. The widespread occurrence of late Early Cretaceous calc-alkaline igneous rocks, I-type granites, and adakitic rocks suggests low-angle subduction of the Paleo-Pacific slab beneath Eurasian continent at this time. The eastward narrowing of the distribution of igneous rocks from the Late Cretaceous to Paleogene, and the change from an intracontinental to continental margin setting, suggest the eastward movement of Eurasian continent and rollback of the Paleo- Pacific slab at this time.  相似文献   

16.
The Bashikaogong-Shimierbulake granitoid complex is about 30 km long and 2―6 km wide, with an area of 140 km2, located at the north margin of the Bashikaogong Basin in the north Altun terrain. It intruded into schist, metapelite and metatuff of Precambrian ages. This granitoid complex consists of darkish quartz diorite, grey granite, pink granite and pegmatite. Geochemically, the quartz diorite has I-type granite affinity and belongs to Calc-alkaline sereies, and the other gran- ites have S-type affinity and to high-K calc-alkaline series. Zircon SHRIMP U-Pb dating shows that the quartz diorite has a bigger age than those of other granites, which is 481.6±5.6 Ma for quartz diorite, 437.0±3.0 Ma―433.1±3.4 Ma for grey granite and 443±11 Ma―434.6±1.6 Ma for pink granite, re- spectively. Combined with regional geology, we think that the quartz diorite formed in tectonic envi- ronment related to oceanic crust subduction and the granites in post-collision.  相似文献   

17.
NH4 is the most common form of nitrogen found in rocks and may substitute for K in potas-sic minerals such as biotite, muscovite, and K-feldspar[1,2]. N2 has been observed in fluid inclu-sions, and thermodynamic calculations suggest that N2 is the most c…  相似文献   

18.
We determine the stress field of Guangdong and its adjacent area by using focal mechanism solutions of 137 earthquakes and obtain tectonic stress tensors in 12 zones. The result shows that the azimuth of maximum principal stress σ1 is approximately WNW in southwestern Fujian, southern Jiangxi, Guangdong’s Heyuan and the Pearl River Delta, NW in Guangdong’s Yangjiang, and nearly NNW in the two zones of eastern Guangxi and Beibuwan Gulf (the Northern Gulf), varying clockwise in WNW-NW-NNW from east to west. The azimuth of minimum principal stress σ3 varies from NNE to ENE. The relative magnitude of medium principal stress σ2 (R value), is the smallest in Beibuwan and largest in Longyan of Fujian. Strike-slip faulting is dominated in the study area.  相似文献   

19.
The strongly peraluminous granites (SPGs) of Eastern Nanling Range (ENR) are a characteristic of all bearing highly aluminous minerals, such as muscovite±AI-rich biotite±tourmaline±garnet, and lack of cordierite. In respect of petrography, geochemistry, Nd isotope, and single grain zircon U-Pb dating, the representative granite bodies of them are studied. The research shows that these granites were emplaced in two stages, namely 228-225 Ma BP and J2-3 159-156 Ma BP, belonging to Indosinian and early Yanshanian periods, respectively, and they have low εNd(t) values (-10.6--11.1), high A/CNK, Rb/Sr ratios and tDM values (1887-1817 Ma), and REE's tetrad effect (TE1,3=1.13-1.34). In comparison with related geology, petrology and chronology of granites in adjacent regions, it is suggested that Indosinian SPGs of ENR formed in the circumstance of post-collisional extension 20 Ma after the major collision of Indosinian Movement (258-243 Ma BP) in Indo-China Peninsula, and early Yanshanian SPGs formed in the  相似文献   

20.
The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contact zone between Yanshanian granites and Carboniferous-Permian limestone. Granites related to this mineralization mainly include equigranular, middle- to coarse-grained granites and granitic porphyries. There are two mineralization types: skarn scheelite(copper) and granite scheelite mineralization. The former is large scale and has a high content of scheelite, whereas the latter is small scale and has a low content of scheelite. In the Taqian-Fuchun Basin, its NW boundary is a thrust fault, and the SE boundary is an angular unconformity with Proterozoic basement. In Carboniferous-Permian rock assemblages, the tungsten and copper contents in the limestone are both very high. The contents of major elements in granitoids do not differ largely between the periphery and the inside of the Zhuxi ore deposit. In both areas, the values of the aluminum saturation index are A/CNK1.1, and the rocks are classified as potassium-rich strongly peraluminous granites. In terms of trace elements, compared to granites on the periphery of the Zhuxi ore deposit, the granites inside the Zhuxi ore deposit have smaller d Eu values, exhibit a significantly more negative Eu anomaly, are richer in Rb, U, Ta, Pb and Hf, and are more depleted in Ba, Ce, Sr, La and Ti, which indicates that they are highly differentiated S-type granites with a high degree of evolution. Under the influence of fluids, mineralization of sulfides is evident within massive rock formations inside the Zhuxi ore deposit, and the mean SO_3 content is 0.2%. Compared to peripheral rocks, the d Eu and total rare earth element(REE) content of granites inside the Zhuxi ore deposit are both lower, indicating a certain evolutionary inheritance relationship between the granites on the periphery and the granites inside the Zhuxi ore deposit. For peripheral and ore district plutons, U-Pb zircon dating shows an age range of 152–148 Ma. In situ Lu-Hf isotope analysis of zircon in the granites reveals that the calculated e_(Hf)(t) values are all negative, and the majority range from -6 to -9. The T_(DM2) values are concentrated in the range of 1.50–1.88 Ga(peak at 1.75 Ga), suggesting that the granitic magmas are derived from partial melting of ancient crust. This paper also discusses the metallogenic conditions and ore-controlling conditions of the ore district from the perspectives of mineral contents, hydrothermal alteration, and ore-controlling structures in the strata and the ore-bearing rocks. It is proposed that the Zhuxi ore deposit went through a multistage evolution, including oblique intrusion of granitic magmas, skarn mineralization, cooling and alteration, and precipitation of metal sulfides. The mineralization pattern can be summarized as "copper in the east and tungsten in the west, copper at shallow-middle depths and tungsten at deep depths, tungsten in the early stage and copper in the late stage".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号